## SUPPLEMENTARY DATA

## Table S1

| Primer name            | Sequence 5' to 3'                                                            | Description                                                                              |
|------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Rv8cF-BamHI            | GCGGATCCATGAGTGAGCAGGTGGAAAC                                                 | Forward for <i>gfp- cwsA</i> <sub>tb</sub> fusion                                        |
| Rv8cR-XbaI             | TTGCTCTAGATCAGGAGCGCGGTTGCACCT                                               | Reverse for sense <i>cwsA</i> <sub>tb</sub><br>overproduction, and <i>gfp</i><br>fusions |
| Rv8c-solR-<br>XbaI     | TTGC <b>TCTAGA</b> TCATTTGCTGCGACGTTGGGTCCGG                                 | Reverse for <i>gfp- cwsA</i> <sub>tb</sub> - <i>soluble part</i> fusion                  |
| MVM469                 | GCGACCAGTACTAAAGGAGAAGAACTTTTCACT                                            | Forward for <i>gfp</i>                                                                   |
| Rv8cF-<br>BamHI-B2H    | TCTAGA' <b>GGATCC'</b> CATGAGTGAGCAGGTGGAAAC                                 | Forward for <i>cwsA</i> <sub>tb</sub> for bacterial two hybrid assay                     |
| Rv8cR-KpnI-<br>B2H     | TTACTTA' <b>GGTACC'</b> CGGGAGCGCGGTTGCACCTCGA                               | Reverse for <i>cwsA</i> <sub>tb</sub> for bacterial two hybrid assay                     |
| Rv8c-solR-<br>KpnI-B2H | TTACTTA' <b>GGTACC'</b> CGTTTGCTGCGACGTTGGGTCC                               | Reverse for <i>cwsA<sub>tb</sub></i> -soluble<br>part for bacterial two<br>hybrid assay  |
| Wag31F-<br>BamHI-B2H   | TCTAGA' <b>GGATCC'</b> CATGCCGCTTACACCTGCCGA                                 | Forward for <i>wag31</i> for bacterial two hybrid                                        |
| Wag31R-<br>KpnI-B2H    | TTACTTA' <b>GGTACC'</b> CGGTTTTTGCCCCGGTTGAATTGAT<br>CGA                     | Reverse for <i>wag31</i> for bacterial two hybrid                                        |
| Rv8cF-KO               | AAAA'CTGCAG'CTCGGGGTGGAACTC                                                  | Forward upstream <i>cwsA</i> <sub>smeg</sub> for gene knockout                           |
| Rv8cR-KO               | GGAATTC'CATATG'TTAATTAA'GACGACAGCCCGTTC<br>GCCAAC                            | Reverse downstream<br><i>cwsA</i> <sub>smeg</sub> for gene knockout                      |
| Rv8cF-PacI             | AGAACC' <b>TTAATTAA</b> 'GAGCCCCACCAGGGAGGAAGCC<br>GAACGATGAGTGAGCAGGTGGAAAC | Forward for <i>cwsA</i> <sub>tb</sub> -soluble <i>part</i> in pLR52                      |
| Rv8c-solR-<br>SwaI     | ATCGG' <b>ATTTAAAT'</b> TCATTTGCTGCGACGTTGGGTCCG<br>G                        | Reverse for <i>cwsA</i> <sub>tb</sub> -soluble part in pLR52                             |
| Msmeg0023F-<br>ClaI    | CC'ATCGAT'TGGTTGCCGAACAGTGCGAT                                               | Forward for <i>cwsA</i> <sub>smeg</sub> under native promoter                            |
| Msmeg0023F-<br>XbaI    | TTGC' <b>TCTAGA'</b> TTCAGGGGCTTGGGGGGCGACCTC                                | Reverse for <i>cwsA</i> <sub>smeg</sub> under<br>native promoter                         |
| MR326                  | AGAG <b>GATCCC</b> ATGGCCGCGGGGGGGGGGGGGGGGGGGGGGG                           | Forward for <i>wag31</i> C-<br>terminal domain in<br>BACTH vectors                       |
| MVM831                 | TTAC <b>TTAGGT</b> ACCCGGTTTTTGCCCCGGTTGAATTGAT<br>CGA                       | Reverse for <i>wag31</i> C-<br>terminal domain in<br>BACTH vectors                       |
| MVM920                 | GGGAATTCCATATGCCGCTTACACCTGCCGA                                              | Forward for wag31 in wag31-mCherry fusion                                                |
| MVM921                 | GCAGTACTAACAACAACCTGCAGATGGTGAGCAAGG<br>GCGAGGA                              | Forward for <i>mCherry</i>                                                               |
| MVM922                 | GTAGTCTAGATTACTTGTACAGCTCGTCCATGC                                            | Reverse for <i>mCherry</i>                                                               |
| MVM923                 | CACAGTACTGTTTTTGCCCCGGTTGAATT                                                | Reverse for <i>wag31</i> in <i>wag31-mCherry</i> fusion                                  |
| msmeg23 F              | CCAGAGCAGATGTCCGATTG                                                         | Forward for qRT-PCR of                                                                   |

|            |                     | cwsA                   |
|------------|---------------------|------------------------|
| msemg23_R  | GCTTCCTGGATCGTCTCG  | Reverse for qRT-PCR of |
|            |                     | cwsA                   |
| sigAsmeg_F | CCCACCGGGAATTCGTAAG | Forward for qRT-PCR of |
|            |                     | sigA                   |
| sigAsmeg_R | TTGCCGGGCTTGCCTT    | Reverse for qRT-PCR of |
|            |                     | sigA                   |

**'BOLD LETTERS'** indicate restriction sites.

**Supplementary Figures and legends** 



FIG. S1. Localization of *gfp-cwsA* in *M. tuberculosis*. Actively growing cultures of *M. tuberculosis Pami::gfp-cwsA* were induced with 0.2% acetaminde for 48 h, harvested and fixed in 4% paraformaldehyde for 24 h. The cells were examined by bright-field (i) and fluorescence (ii) microscopy as described in the text. Arrow – midcell (new pole) localization; arrowhead – polar localization.

| M.tuberculosis           | 1MSEQVEIKLIPKEKLIKGLAYSAVGPVDVIKGLLELGVGLGLQSARSIAAGLKKKYKEGKLA                                                     | 62  |
|--------------------------|---------------------------------------------------------------------------------------------------------------------|-----|
| M.canettii               | 1 MSEQVETRLTPRERLTRGLAYSAVGPVDVTRGLLELGVGLGLQSARSTAAGLRRRYREG RLA                                                   | 62  |
| M ofricanum              | 1                                                                                                                   | 62  |
| m.an canun               |                                                                                                                     | 02  |
| M.bovis                  | 1MSEQVEIRLIPKERLIKGLAYSAVGPVDVIKGLLELGVGLGLQSARSIAAGL <u>RKKYKEG</u> KLA                                            | 62  |
| M.vanbaalenii            | 1                                                                                                                   | 62  |
| Maihum                   | 1                                                                                                                   | 62  |
| m.giivuin                |                                                                                                                     | 02  |
| M.kansasii               | 1 MSEKVETRLTPRERLTRGLTYSAVGPVDVTRGVVGLGV QSAQSTASEVRRRYREG RLA                                                      | 58  |
| M.smeamatis              | 1 MPARADVRLAPRORLTRGLKYTAVGPVDITRGVLGIGA DTAQATAAELRRRYASG KLQ                                                      | 58  |
| M marinum                | 1                                                                                                                   | 58  |
|                          |                                                                                                                     | 50  |
| M.avium                  | 1 MRAKAEDKLIPKEKLAKGLIYSILGPLDLIKGVAGLSG QSARSIAEQLKKKYKEG KLA                                                      | 58  |
| M.intracellulare         | 1OSAQSTAAQLRRRYREGRLA                                                                                               | 58  |
| M avium naratubaraulasia | 1 MPAKA EDDI TODEDI A DOL TYSTI ODI DI TOOVACI SV                                                                   | 50  |
| m.avium-paracubercuosis  |                                                                                                                     | 50  |
| M.colombiense            | 1 MSAKTUSKLIPRORLARGLSYSAQGPVDVIRGVVGLSV QSAQSIA SQLRRRYQEG RLA                                                     | 58  |
| M.parascrofulaceum       | 1                                                                                                                   | 58  |
| M rhodesiae              |                                                                                                                     | 62  |
| m.moucsec                |                                                                                                                     | 02  |
| M.abscessus              | 1MSLLIKSEEPAVKLISGURLAKGLKEAALAPIDVSKGIAGLSFGLAKSAISAAGKLLKKGK                                                      | 61  |
| M.massiliense            | 1 MSLLTKSEEPAVKLTSGORLARGLKEAALAPIDVSRGTAGLSFG LAKSATSAAGRLLRRG K                                                   | 61  |
| M thermore is tibile     |                                                                                                                     | 54  |
|                          |                                                                                                                     | 54  |
| m.tusciae                | 1 DGAQSSAAWIGDLYBRSRLKVSAVGPVDVIRGALGLGV DGAQSSAAWIGDLYBRSRLKDQLG                                                   | 54  |
| M.ulcerans               | 1HSAQSTASELERRYPOGRLA                                                                                               | 50  |
| T naurometahola          | 1 MATELLDDVOPADETSOAPSNAORVATGEGOSETGPLNLARGITGIGIS LASHVI HTEENI TEKT                                              | 67  |
| 1.paulonicanola          |                                                                                                                     | 07  |
|                          |                                                                                                                     |     |
| M.tuberculosis           | 63 REVAAAQETLAQELTAAQDVVANLPQALQDARTQRRSKHHLWIFAGIAAAILAGGAVAFS                                                     | 122 |
| M canettii               |                                                                                                                     | 122 |
| M C .                    |                                                                                                                     | 400 |
| M.atricanum              | 63 KEVAAAQEI LAQEL TAAQU VVANLPQALQUAK I QKK SKHHLWI FAG TAAA I LA                                                  | 122 |
| M.bovis                  | 63 REVAAAQETLAQELTAAQDVVANLPQALQDARTQRRSKHHLWIFAGIAAAILAGGAVAFS                                                     | 122 |
| M vanhaalenii            | 63 A FLAAA O FA LA VEVAAA O FVVAGL POAL FK.                                                                         | 121 |
|                          |                                                                                                                     | 140 |
| M.gilvum                 | 63 TELAAAQQVVANLPEVVQNARKPKKKVKPLLLAGVAVAVLAGGAVTFS                                                                 | 110 |
| M.kansasii               | 59 REIAAAQETLAQELAAAQEVVANLPQVLQEARRSQRRGSKKRVWVIAGAATVVVVAGGAVAFT                                                  | 121 |
| M.s.meamatis             |                                                                                                                     | 112 |
| M                        |                                                                                                                     | 440 |
| M.marinum                | 59 REVAAAQEATAQELAAAQEVVANLPQVTQEARRKQGRSKRPWVTAGAVTVVVAGGAVAFT                                                     | 119 |
| M.avium                  | 59 RDLAAAQETLAQELAAAQEVVTGLPQALQDARR AQRRGKRPWI IAGVAVAVLA GGAAAFS                                                  | 118 |
| M intracellulare         |                                                                                                                     | 118 |
|                          |                                                                                                                     | 400 |
| M.avium-paratuberculosis | 59 KULTAAQETLAQELAAAQEVVIGLPQALQDAKRAQKRGKPWVIAGVAVAVLAGVAVAVLAGGAAAFS                                              | 120 |
| M.colombiense            | 59 RD LAAAQET LAQE LAAAQEVVT SL PQA LQDAR R AQRRGKR PWVFAG VA VA VLA GGA VA F S                                     | 118 |
| M parascrofulaceum       |                                                                                                                     | 118 |
|                          |                                                                                                                     | 400 |
| M.modesiae               | 63 QELAAAQDI TAQELAAAQEVVSNLPQALLGAPPTRSVGGKARGKRKKKPLLFAATGVAVLAGGAVAFS                                            | 130 |
| M.abscessus              | 62 A V <mark>S S</mark> E V Q D A V A D V V D T L P E V V S G A R K R K L P R A L T G L A V V G L L G A G A V A F S | 111 |
| M massiliense            |                                                                                                                     | 111 |
| M II                     |                                                                                                                     | 440 |
| M.thermoresistiblie      | 55 KULAAAUUALALELAAAUEVVSGLPUALUDAKKARKKKKPLIVAA TAAVILVGGATIVI                                                     | 113 |
| M.tusciae                | 55 KELAAAQDT IAA ELAAAQEVVANLPQALQ KARTRRKRPLLLAALGVAVLA GGAVAIS                                                    | 112 |
| M. ulcerans              |                                                                                                                     | 111 |
| Tanavaratabala           |                                                                                                                     | 400 |
| i .paurometabola         | 08 LALAKKVVHTVKSDUPAAPADDAAPSLPVKGGGVKKPLLTTLVVALVLAVGGTAPK                                                         | 123 |
|                          |                                                                                                                     |     |
| M.tuberculosis           |                                                                                                                     | 145 |
| Moonottii                |                                                                                                                     | 145 |
| M.canetti                |                                                                                                                     | 145 |
| M.atricanum              | 123 IVKKSSRPEPSP-RPPSVEVQPRP                                                                                        | 145 |
| M.bovis                  | 123 IVRRSSRPEPSP-RPPSVEVOPRP                                                                                        | 145 |
| Myanhaalanii             |                                                                                                                     | 144 |
| m.vanbaacim              |                                                                                                                     | 144 |
| M.gilvum                 | 111 ILKKSAQPDPSP-LPPSVEVIPKP                                                                                        | 133 |
| M.kansasii               |                                                                                                                     | 144 |
| Memoramotic              |                                                                                                                     | 136 |
| m.ancynaus               |                                                                                                                     | 130 |
| M.marinum                | 120 VVKK85SQFEF8F-KFPSVDVQFKF                                                                                       | 142 |
| M.avium                  | 119 I VRRSVREK PQEPQS-R PPSVDVQPRP                                                                                  | 144 |
| M intracellulare         |                                                                                                                     | 144 |
|                          |                                                                                                                     | 450 |
| M.avium-paratuberculosis | 12/ I VKKSVKEKPQEPQS-KPPSVDVQPKP                                                                                    | 152 |
| M.colombiense            | 119 LVRRSVRAKPQEPQS-RPSVDVQPRP                                                                                      | 144 |
| M parascrofulaceum       |                                                                                                                     | 144 |
| M -h - d - i             |                                                                                                                     | 450 |
| m.modesiae               | 131 IIRREEFNEFFFILGFSVFM-FKF                                                                                        | 153 |
| M.abscessus              | 112 VLRRSGQP EPSP - LAPSVDPQPQP                                                                                     | 134 |
| M.massiliense            |                                                                                                                     | 134 |
| M thermomentibile        |                                                                                                                     | 120 |
| m.ulermoresisublie       |                                                                                                                     | 130 |
| M.tusciae                | 113 I I KKPPPQ EPPI TLQPSVPVSPKP                                                                                    | 136 |
| M.ulcerans               | 112 VVRRSSQPEPSP-RPSVNVQPRP                                                                                         | 134 |
| T naurometahola          |                                                                                                                     | 179 |
| r.paulometabola          |                                                                                                                     | 173 |

FIG. S2. Amino acid sequence alignment of *cwsA* homologues. CwsA homologs (DUF2562 domain containing) from mycobacterial species and closely related *Tsukamurella paurometabola* were aligned with ClustalX program. The conservation of amino acids with the same properties is indicated with colors, according to ClustalX coloring scheme (http://www.jalview.org/help/html/colourSchemes/clustal.html).



Fig. S3. Morphology of *M. smegmatis* WT and  $\Delta cwsA$  stationary phase cultures. Respective strains were grown to A600 ~ 2.0 and imaged by brightfield microscopy. Data were analyzed and scored for number of bulged (swollen) cells in each strain. Averages ± standard error from two independent experiments are shown. WT strain: N (number of cells) = 388;  $\Delta cwsA$ : N = 492.



FIG. S4. Complementation of  $\Delta cwsA$ . Morphology of *M. smegmatis* wild-type (i),  $\Delta cwsA$  (ii),  $\Delta cwsA$  *PcwsA::cwsA* (iii) and  $\Delta cwsA$  *Pami::gfp-cwsA<sub>TB</sub>* (iv, v) was examined by microscopy. Panel v - fluorescent image corresponding to panel iv. Note reversal of  $\Delta cwsA$  phenotype in complemented strains (iii and iv). Black arrowheads – bulged regions; white arrowhead – polar localization; white arrow – punctate localization.



FIG. S5. ECFP-CrgA localization in  $\Delta cwsA$ . Actively growing cultures of *M. smegmatis* WT (i, ii) and  $\Delta cwsA$  expressing *Pami::ecfp-crgA* (iii, iv) were imaged by brightfield (i, iii) and fluorescent (ii, iv) microscopy. Quantitation of CrgA localization from two independent experiments (N= 464) revealed a modest increase in ECFP-CrgA polar localization in  $\Delta cwsA$  strain [24.79 ± 0.29%] as compared to wild type strain [17.49 ± 1.97%] but no significant difference in midcell localization [WT = 13.99 ± 2.15% vs  $\Delta cwsA$  = 14.51 ± 1.97%].



Fig. S6. Wag31-mCherry can complement  $\Delta wag31$ . (A) To establish the functionality of Wag31-mCherry, the integrated copy of *Pami::wag31* (Apramycin<sup>R</sup>) in a *M. smegmatis* conditional mutant (Hyg<sup>r</sup>) (Kang et al. 2008) was swapped with *Pami::wag31-mCherry* (Km<sup>r</sup> resistant) as described (Chauhan et al. 2006) and transformants were selected on agar plates containing Hygromycin, Kanamycin and 0.2% acetamide. Colonies were patched on plates containing Hygromycin and kanamycin, but lacking acetamide. Note no growth was seen in the absence of acetamide (compare plates with and without acetamide). (B) Cells from + acetamide plate were propagated in broth containing appropriate antibiotics and 0.02% acetamide and examined by brightfield (i) and fluorescence (ii) microscopy. Arrowheads – polar localization of Wag31-mCherry. As control, *M. smegmatis* producing mCherry fluorescent protein was visualized by brightfield (iii) and fluorescence (iv) microscopy. Note diffuse localization with mCherry protein in panel iv.



FIG. S7. Wag31 levels do not change in a  $\Delta cwsA$  strain. Cell lysates prepared from *M*. *smegmatis* WT and  $\Delta cwsA$  strain were separated in a SDS-PA gel, transferred to nitrocellulose membrane and analyzed by immunoblotting with  $\alpha$ -Wag31 antibodies and  $\alpha$  –SigA (loading control). Lane 1 – Purified His-SigA protein; lane 2 – purified His-Wag31 protein.



FIG. S8. BACTH assays. Indicated gene fusions to T25 and T18 fragments of adenylate cyclase in the BACTH vectors (Table 1) were used in various combinations to transform *E. coli* BTH101

and recombinants plated on LB agar supplemented with X-Gal and IPTG. Recombinant colonies were subsequently propagated in LB broth and  $\beta$ -galactosidase activity measured as described in the text. Values shown are means  $\pm$  standard deviations from at least 3 independent experiments.



FIG. S9. Confirmation of DKO ( $\Delta cwsA \ \Delta crgA$ ) strain by PCR. Genomic DNA from WT and DKO strains was used for PCR amplification of the *cwsA* region using primers msmeg0023\_F and msmeg0023\_R (Table S1). Amplified products were run on 1% agarose gels and photographed. Expected products are: WT = 411 – bp; single cross-over (SCO) = 411- and 1300 – bp; double cross-over = 1300 – bp and V = vector pPP116 (recombination plasmid for *cwsA* deletion; Table 1) = 1300 – bp.