Supporting Information

Tseng and Prather 10.1073/pnas.1209002109

Fig. S1. Schematic of the butanol biosynthetic pathway (*Left*), poly(3HB-co-3HV) biosynthetic pathway (in blue), threonine biosynthetic pathway (in green), and designed pentanol biosynthetic pathway (*Right*). Pentanol synthesis starts from condensation of one acetyl-CoA with one propionyl-CoA, instead of two acetyl-CoA molecules, to establish a five-carbon skeleton.

Fermentation Products

Fig. S2. Applications of various fermentation products synthesized from recombinant *Escherichia coli* strains carrying different combinations of pentanol pathway and CoA-activation/removing toolkit enzymes.

Fig. S3. Schematic of trans-2-pentenoate biosynthetic pathway (*Upper*) and titers of products synthesized by recombinant *E. coli* grown under various conditions (*Lower*). All constructs contain *ptb-buk* and *bktB* in addition to the genes indicated under each bar. The symbols of C4 and C5 denote crotonate and trans-2-pentenoate, respectively. Ratios of titers from *phaB-phaJ1* constructs to titers from *hbd-crt* constructs are shown in green and ratios of trans-2-pentenoate titers to crotonate titers are shown in pink. Cells were grown in TB supplemented with 10 g/L glucose and 20 mM propionate, and incubated at 30 °C for 24 h. For the ratios of product titers from *phaB-phaJ1* constructs to those from *hbd-crt*, a value larger than 1 suggests that the *R*-pathway outperforms the *S*-pathway, which was the case under aerobic conditions. On the other hand, the ratio vas close to one under anaerobic conditions, suggesting that the difference between the *R*- and *S*-pathway became smaller. For the ratios of tran-2-penenote titers to crotonate titers, the values also dropped when culture condition changes from aerobic to anaerobic. The difference in the two ratios between the *R*- and *S*- pathway activities, to explain which, a hypothesis is proposed in Fig. S4.

Fig. 54. Schematic representation of correlations between dissolved oxygen and various variables (cofactor ratios, ATP, and observed product ratios). The results of trans-2-pentenoate synthesis from glucose and glycerol under aerobic, microaerobic, and anaerobic culture conditions suggest that there may exist a correlation between oxygen availability and *R*- and *S*-pathway activities, to explain which a hypothesis was proposed. As generally known, the NADPH/NADP⁺ ratio is positively correlated with DOT (dissolved oxygen tension) but the NADH/NAD⁺ ratio is inversely correlated with DOT, so we would expect the NADPH-dependent *R*-pathway to outperform the NADH-dependent *S*-pathway under aerobic conditions, resulting in larger crotonate ratios (*R*-pathway to *S*-pathway) (Fig. S3). Under anaerobic conditions, the trend of cofactor ratios reverses, and the difference in performance between the two pathways should become smaller, which is consistent with our observations. In addition, we suspected that the activation of propionate is also affected by DOT as its activation by Ptb-Buk requires ATP, the amount of which is positively correlated with DOT. Thus, a larger propionyl-CoA pool could be expected under the aerobic conditions, thus favoring the condensation reaction of acetyl-CoA with propionyl-CoA, and consequently resulting in larger trans-2-pentenoate to crotonate ratios (Fig. S3). These observations gave insights into optimization of culture conditions, motivating us to profile various headspace to culture volume ratios (Fig. S3).

Fig. S5. Schematic diagram of pentanol synthesis from valerate and titers of substrates consumed and products synthesized by recombinant *E. coli*. Two activators, including Ptb-Buk and Pct, and two feed concentrations of valerate, were compared. The $adhE_{opt}$ gene was overexpressed in all constructs. Stains using Pct as the CoA-activator were found to consume more valerate and produce more pentanol compared with stains using Ptb-Buk as CoA-activator. Pentanol titers were further boosted when the valerate substrate concentration was increased from 10 mM to 20 mM. Overall, the results suggest that the AdhE enzyme, expressed from the codon-optimized $adhE_{opt}$, was able to catalyze the reaction of valeryl-CoA to pentanol.

S A No

Fig. 56. Schematic diagram of pentanol synthesis from trans-2-pentenoate and titers of products resulting from the feeding of trans-2-pentenoate. All relevant products coming from trans-2-petenoate are shown. Genes of *ptb-buk*, *bcd-etfAB*, and *adhE_{opt}* were overexpressed. Two formate dehydrogenases (encoded by *fdh1* with codon-optimization) from *Saccharomyces cerevisiae* and *Candida boidinii* were overexpressed to increase NADH availability. The effect of supplementation with 1 g/L formate was also compared. To quantify the effect of overexpression of *fdh1*, one number was assigned to each product based on its relative redox state, for example, "2" for pentenol synthesized from trans-2-pentenoyl-CoA requires 2 mol of NADH, and "-1" for projonate synthesized from trans-2-pentenoyl-CoA generates 1 mol of NADH. Next, we calculated the total NADH used for product formation, which is the summation of products of multiplying the relative redox value by the product titer. The calculated total NADH used for product formation is shown within each of the bottom three plots. Clearly, the overexpression of *fdh1* control to 11.4 and 9.8 in cells expressing *S. cerevisiae fdh1* and *C. boidinii fdh1*, respectively. Additionally, the observation of production of valerate and pentanol in the *bcd-etfAB* containing strain suggest that the Bcd enzyme used in the bottom pentanol pathway can transform trans-2-pentenoyl-CoA, a five-carbon substrate, to valeryl-CoA.

Fig. 57. Comparison of the two Ter enzymes from *Treponema denticola* and *Euglena gracilis* on pentanol synthesis. The Ter_{Td} enzyme obviously outperformed the Ter_{Eg} enzyme in converting trans-2-pentenoyl-CoA to valeryl-CoA, resulting in more valerate and pentanol despite its incapability of catalyzing hexanoyl-CoA, a C6 substrate, based on a reported in vitro enzyme assay result (1). The *fdh1*_{sc} gene was overexpressed in both strains along with supplementation of 1 g/L formate.

1. Tucci S, Martin W (2007) A novel prokaryotic trans-2-enoyl-CoA reductase from the spirochete Treponema denticola. FEBS Lett 581(8):1561–1566.

Fig. S8. Butanol synthesis from glucose via newly constructed pentanol pathways. This figure shows butanol titers, specific titers, and cell densities from cultures of recombinant *E. coli* containing the pentanol pathways. Cells were grown under various culture conditions with different ratios of headspace to culture volume for 48 h. Two routes, including the *hbd-crt* route (*Upper*, strain Pal5) and the *phaB-phaJ1* (*Lower*, strain Pal6) route, were compared. In general, strains containing either *R-* or *S-* pentanol biosynthetic pathway produced butanol, achieving the highest butanol specific titers at a headspace to culture volume ratio of 4.

Table S1.	Comparison of	physical	-chemical	properties c	of various	biofuels and	gasoline

Fuels	Air-fuel ratio	Vapor pressure (psi)	Energy density (MJ/kg)	Fits current infrastructure
Gasoline	14.6	0.1–30	42.7	Yes
Ethanol	9.0	1.1	29.7	No
Butanol	11.2	0.077	36.1	Yes
Isobutanol	11.2	0.17	36.1	Yes
Pentanol	12.5	0.039	37.7	Yes

Although ethanol represents an initial success as a biofuel because of its high production yield and efficiency, it does not compare favorably to gasoline. Ethanol has a lower energy density (~34% less energy per unit volume than gasoline, resulting in a 34% reduction in miles per gallon), a low vapor pressure, and a high hygroscopicity, possibly leading to corrosion in pipelines and engines. Furthermore, ethanol raises the vapor pressure of the mixture when blended to gasoline, although this is partially offset by an increase in octane number. In contrast, advanced biofuels, including butanol, isobutanol, and pentanol, have better physical-chemical properties, such as higher energy densities, low hygroscopicities as well as lower vapor pressure for gasoline blends. Although the octane number of l-butanol is slightly less than gasoline, branched-chain isomers, such as isobutanol, have higher octane numbers, allowing for more flexibility in fuel design. Furthermore, as carbon length increases, the amount of air needed to combust unit amount of fuel also increases. Because standard gasoline engines can only adjust the air-fuel ratio to accommodate variations in the fuel within certain limits, the closer to 14.6 the air-fuel ratio of the fuels, the better the engine's efficiency. Therefore, long-chain alcohols are preferable fuel alternatives. Perry's handbook (1) and www2.dupont.com/BioFuel/en_US/index.html.

1. Perry R, Green D (2007) Perry's Chemical Engineers' Handbook (McGraw-Hill, New York).

Table S2. List of strains and plasmids used in this work

PNAS PNAS

Strain or plasmid	Relevant genotype	Ref.
Strain		
DH10B	F^- mcrA Δ (mrr-hsdRMS-mcrBC) w80lacZ Δ M15 Δ lacX74 recA1	Invitrogen
2	endA1 araD139 Λ (ara, leu)7697 galU galK λ^- rpsl nupG	interogen
ElectroTen-Blue	Λ (mcrA)183 Λ (mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1	Stratagene
	$gvrA96$ relA1 lac Kan ^r [F'proAB lacl ^q Z Δ M15 Tn10 (Tet ^r)]	stratugene
BL21Star(DE3)	F^- ompT hsdSB (rB ⁻ mB ⁻) gal dcm rne131 (DF3)	Invitrogen
Module 3	· ····································	
BI 1	pCDE/ptb-buk + pACYC/adhE	Present study
BL2	pCDF/ptb-buk + pACYC/adhE _{ent}	Present study
BI 3	pCDE/pct + pACYC/adhE	Present study
BI 4	$pCDE/pct + pACYC/adhE_{+}$	Present study
BIS	pCDE/pct + pACYC/viaY	Present study
BI 6	pFT/bcd-etfAB/adhE _{ent} + pCDF/ptb-buk	Present study
BL7	pET/bcd-etfAB/adhE_opt + pCDF/ptb-buk/fdh1c.	Present study
BL8	pET/bcd-etfAB/adhE-opt + pCDF/ptb-buk/fdh1ct	Present study
BLO	$pET/Ter_{a}/adhE_{opt} + pCDF/ptb/bulk/fdh1_$	Present study
BL 10	$pET/Ter_{d}/ddhE_{opt} + pCDF/ptb_buk/fdh1_{c}$	Present study
BL10 BL11	$pET/Ter_J/adhE_{pt} + pCDF/ptb-buk/fdh1_+ pACYCDuet_1$	Present study
BL17	$pET/Ter_{fd}/adhE_{opt} + pCDF/ptb-buk/fdh1_{st} pACYC/acaEE_Ind$	Procent study
MG16EE	$E^{-}\lambda^{-}$ ily C ref 50 rob 1	
	$F \wedge IIVG - IID - 30 IpII - 1$ MG1655(DE3 Apta AadbE AldbA)	ATCC 700920 (1)
Modulo 2		(1)
Pol1	nET/hktP/hhd + nCDE/nth huk/crt	Procent study
Pala	pET/bktB/hbd + pCDF/ptb-buk/cit	Present study
Pal2	per/bktb/hbd + pcDr/ptb-buk	Present study
Pala Dala		Present study
Pai4	pEI/DKTB/pnaB + pCDF/ptb-buk	Present study
Pals	pET/bcd-ettAB/DktB + pCDF/cft/hbd + pACYC/adhE _{opt}	Present study
	pel/bcd-ettAb/bktb + pCDF/phaJI/phaB + pACYC/adhe _{opt}	Present study
Module 2+3		
Pal/		Present study
Pal8	pET/bcd-ettAB/bktB/pct + pCDF/crt/hbd + pACYC/fdh1 _{sc} /adhE _{opt}	Present study
Pal9	pET/bcd-ettAB/bktB/pct + pCDF/crt/hbd + pACYC/fdh1 _{Cb} /adhE _{opt}	Present study
Pal10	$pEI/Ier_{Td}/bktB/pct + pCDF/crt/hbd + pACYC/fdh1_{sc}/adhE_{opt}$	Present study
Pal11	pET/Ter _{Td} /bktB/pct + pCDF/crt/hbd + pACYC/fdh1 _{sc} /aceEF-lpd ₁₀₁ /adhE _{opt}	Present study
Pal12	pET/Ter _{Td} /bktB/pct + pCDF/crt/hbd + pACYC/tdh1 _{sc} /aceEF-lpd ₁₀₁	Present study
Pal13	pET/bcd-etfAB/bktB/pct + pCDF/phaJ1/phaB + pACYC/tdh1 _{sc} /adhE _{opt}	Present study
Pal14	pE1/bcd-etfAB/bktB/pct + pCDF/phaJ1/phaB + pACYC/fdh1 _{cb} /adhE _{opt}	Present study
Pal15	pET/Ter _{Td} /bktB/pct + pCDF/phaJ1/phaB + pACYC/fdh1 _s /adhE _{opt}	Present study
Pal16	pET/Ter _{Td} /bktB/pct + pCDF/phaJ1/phaB + pACYC/fdh1 _{sc} /aceEF-lpd ₁₀₁ /adhE _{opt}	Present study
Module 1+2+3		
Pal17	pET/bcd-etfAB/bktB + pCDF/crt/hbd + pACYC/adhE _{opt} + pCOLA/thrA''BC/ilvA''	Present study
Pal18	pET/bcd-etfAB/bktB + pCDF/crt/hbd + pACYC/fdh1 _{sc} /adhE _{opt} + pCOLA/thrA''BC/ilvA''	Present study
Pal19	pET/bcd-etfAB/bktB + pCDF/crt/hbd + pACYC/fdh1 _{cb} /adhE _{opt} + pCOLA/thrA ["] BC/ilvA ["]	Present study
Pal20	pET/bcd-etfAB/bktB + pCDF/phaJ1/phaB + pACYC/adhE _{opt} + pCOLA/thrA"BC/ilvA"	Present study
Pal21	pET/bcd-etfAB/bktB + pCDF/phaJ1/phaB + pACYC/fdh1 _s /adhE _{opt} + pCOLA/thrA"BC/ilvA"	Present study
Pal22	pET/bcd-etfAB/bktB + pCDF/phaJ1/phaB + pACYC/fdh1 _{cb} /adhE _{opt} + pCOLA/thrA ^{Tr} BC/ilvA ^{Tr}	Present study
Pal23	pET/Ter _{Td} /bktB + pCDF/crt/hbd + pACYC/fdh1 _{sc} /aceEF-lpd ₁₀₁ /adhE _{opt} + pCOLA/thrA ^{rr} BC/ilvA ^{rr}	Present study
Pal24	pET/Ter _{Td} /bktB + pCDF/crt/hbd + pACYC/fdh1 _{sc} /aceEF-lpd ₁₀₁ + pCOLA/thrA ^{tr} BC/ilvA ^{tr}	Present study
Pal25	pCDF/tesB + pCOLA/thrA ^{rr} BC/ilvA ^{rr}	Present study
Pal(DE3 Δmdh)	MG1655(DE3 $\Delta pta \Delta ldhA \Delta adhE \Delta mdh)$	
Palm1	pET/Ter _{Td} /bktB + pCDF/crt/hbd + pACYC/fdh1 _{sc} / aceEF-lpd ₁₀₁ /adhE _{opt} +	Present study
	pCOLA/thrA ^{tr} BC/ilvA ^{tr}	
Pal(DE3 ∆tesB)	MG1655(DE3 Δpta ΔldhA ΔadhE ΔtesB)	
Palt1	pET/Ter _{Td} /bktB + pCDF/crt/hbd + pACYC/fdh1 _{sc} / aceEF-lpd ₁₀₁ /adhE _{opt} +	Present study
	pCOLA/thrA ^{fr} BC/ilvA ^{fr}	
Plasmid		
pETDuet-1	ColE1(pBR322) <i>ori, lacl,</i> T7 <i>lac</i> , Amp ^R	Novagen
pET/bcd-etfAB/bktB	pETDuet-1 harboring bcd-etfAB operon from Clostridium acetobutylicum	Present study
	ATCC 824, and bktB from Cupriavidus necator (formerly known as Ralstonia eutropha) H16	
pET/bcd-etfAB/bktB/pct	pETDuet-1 harboring bcd-etfAB operon from C. acetobutylicum ATCC 824,	Present study
	bktB from C. necator H16,and pct from Megasphaera elsdenii	
pET/bcd-etfAB/adhE _{opt}	pETDuet-1 harboring bcd-etfAB operon and codon-optimized adhE _{opt}	Present study
	from <i>C. acetobutylicum</i> ATCC 824	

Table S2. Cont.

SANG SANG

Strain or plasmid	Relevant genotype	Ref.
pET/Ter _{Td} /bktB	pETDuet-1 harboring ter from T. denticola, and bktB from C. necator H16	Present study
pET/Ter _{Td} /bktB/pct	pETDuet-1 harboring <i>ter</i> from <i>T. denticola, bktB</i> from <i>C. necator</i> H16, and <i>pct</i> from <i>M. elsdenii</i>	Present study
pET/Ter _{Td} /adhE _{opt}	pETDuet-1 harboring <i>ter</i> from <i>T. denticola</i> , and codon-optimized <i>adhE</i> _{opt} from <i>C. acetobutylicum</i> ATCC 824	Present study
pET/Ter _{Eg} /adhE _{opt}	pETDuet-1 harboring <i>ter</i> from <i>E. gracilis</i> , and codon-optimized <i>adhE</i> _{opt} from <i>C. acetobutylicum</i> ATCC 824	Present study
pET/bktB/hbd	pETDuet-1 harboring <i>bktB</i> from C. <i>necator</i> H16, and <i>hbd</i> from C. acetobutylicum ATCC 824	(2)
pET/bktB/phaB	pETDuet-1 harboring bktB and phaB from C. necator H16	(2)
pCDFDuet-1	CloDF13 <i>ori, lacl,</i> T7 <i>lac</i> , Strep ^R	Novagen
pCDF/crt/hbd	pCDFDuet-1 harboring crt and hbd from C. acetobutylicum ATCC 824	Present study
pCDF/phaJ1/phaB	pCDFDuet-1 harboring phaJ1 from P. aeruginosa, and phaB from C. necator H16	Present study
pCDF/ptb-buk	pCDFDuet-1 harboring ptb-buk operon from C. acetobutylicum ATCC 824	(3)
pCDF/ptb-buk/fdh1 _{sc}	pCDFDuet-1 harboring <i>ptb-buk</i> operon from <i>C. acetobutylicum</i> ATCC 824, and codon-optimized <i>fdh1</i> from <i>S. cerevisia</i> e	Present study
pCDF/ptb-buk/fdh1 _{Cb}	pCDFDuet-1 harboring <i>ptb-buk</i> operon from <i>C. acetobutylicum</i> ATCC 824, and codon-optimized <i>fdh1</i> from <i>C. boidinii</i>	Present study
pCDF/ptb-buk/crt	pCDFDuet-1 harboring ptb-buk operon and crt from C. acetobutylicum ATCC 824	Present study
pCDF /ptb-buk/phaJ1	pCDFDuet-1 harboring <i>ptb-buk</i> operon from <i>C. acetobutylicum</i> ATCC 824, and <i>phaJ1</i> from <i>P. aeruginosa</i>	Present study
pCDF/pct	pCDFDuet-1 harboring pct from M. elsdenii	(4)
pCDF/tesB	pCDFDuet-1 harboring tesB from E. coli MG1655	(2)
pACYCDuet-1	P15A <i>ori, lacl,</i> T7 <i>lac,</i> Cm ^R	Novagen
pACYC/adhE	pACYCDuet-1 harboring adhE from C. acetobutylicum ATCC 824	(3)
pACYC/adhE _{opt}	pACYCDuet-1 harboring codon-optimized adhE _{opt} from C. acetobutylicum ATCC 824	Present study
pACYC/yiaY	pACYCDuet-1 harboring yiaY from E. coli MG1655	Present study
pACYC/aceEF-lpd ₁₀₁	pACYCDuet-1 harboring aceEF-lpd ₁₀₁ operon from E. coli SE2378	Present study
pACYC /fdh1 _{sc} /adhE _{opt}	pACYCDuet-1 harboring codon-optimized <i>fdh1</i> from <i>S. cerevisia</i> e, and codon-optimized <i>adhE</i> _{opt} from <i>C. acetobutylicum</i> ATCC 824	Present study
pACYC /fdh1 _{sc} /aceEF-	pACYCDuet-1 harboring codon-optimized fdh1 from S. cerevisiae,	Present study
lpd ₁₀₁ /adhE _{opt}	<i>aceEF-lpd</i> ₁₀₁ operon from <i>E. coli</i> SE2378 and codon-optimized <i>adhE</i> _{opt} from <i>C. acetobutylicum</i> ATCC 824	
pACYC /fdh1 _{sc} /aceEF-lpd ₁₀₁	pACYCDuet-1 harboring codon-optimized <i>fdh1</i> from <i>S. cerevisia</i> e, and <i>aceEF-lpd</i> ₁₀₁ operon from <i>E. coli</i> SE2378	Present study
pACYC /fdh1 _{Cb} /adhE _{opt}	pACYCDuet-1 harboring codon-optimized <i>fdh1</i> from <i>C. boidinii</i> , and codon-optimized <i>adhE</i> _{opt} from <i>C. acetobutylicum</i> ATCC 824	Present study
pCOLADuet-1	COLA <i>ori, lacl,</i> T7 <i>lac</i> , Kan ^R	Novagen
pCOLA/thrA ^{fr} BC/ilvA ^{fr}	pCOLADuet-1 harboring <i>thrA^{G1297A}BC</i> operon from <i>E. coli</i> ATCC 21277, and <i>ilvA^{fr}</i> from C. <i>glutamicum</i> ATCC 13032	(5)

 Fischer CR, Tseng HC, Tai M, Prather KL, Stephanopoulos G (2010) Assessment of heterologous butyrate and butanol pathway activity by measurement of intracellular pathway intermediates in recombinant *Escherichia coli. Appl Microbiol Biotechnol* 88(1):265–275.
Tseng H-C, Martin CH, Nielsen DR, Prather KLJ (2009) Metabolic engineering of *Escherichia coli* for the enhanced production of (R)- and (S)-3-hydroxybutyrate. *Appl Environ Microbiol* 75(10):3137-3145.

3. Nielsen DR, et al. (2009) Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng 11(4-5):262–273.

4. Martin CH (2010) Development of metabolic pathways for the biosynthesis of hydroxyacids and lactones. PhD dissertation (Massachusetts Institute of Technology, Cambridge, MA). Available at http://hdl.handle.net/1721.1/57867.

5. Tseng HC, Harwell CL, Martin CH, Prather KL (2010) Biosynthesis of chiral 3-hydroxyvalerate from single propionate-unrelated carbon sources in metabolically engineered E. coli. Microb Cell Fact 9:96.

Table S3. List of DNA oligonucleotides used in this work

PNAS PNAS

Primer	Sequence 5'→3'	Source
crt-FP-BamHI	ATTAGGATCCAGGAGGATTAGTCATGGAAC	Sigma-Genosys
crt-RP-Notl	ATTAGCGGCCGCAAACTTACCTCCTATCTATTTTTG	Sigma-Genosys
crt-FP-Mfel	TAACAATTGGGAGGATTAGTCATGG	Sigma-Genosys
crt-RP-XhoI	ATT <u>CTCGAG</u> TACCTCCTATCTATTTTTG	Sigma-Genosys
phaJ1-FP-BamHI	ATA <u>GGATCC</u> AGGGGAGAGAACATGAGCCAGGTCCAGAAC	Sigma-Genosys
phaJ1-RP-Notl	ATA <u>GCGGCCGC</u> TCAGCCGATGCTGATCGG	Sigma-Genosys
phaJ1-FP-Ndel	ATACATATGAGGGGAGAGAACATGAGCCAGGTCCAGAAC	Sigma-Genosys
phaJ1-RP-AvrII	ATACCTAGGTCAGCCGATGCTGATCGG	Sigma-Genosys
bcd-FP-BamHI	ATTAGGATCCAAGGAGAGTTTATATGGATTTTAATTTAA	Sigma-Genosys
bcd-RP-NotI	ATTAGCGGCCGCATTTATCTTAATTATTAGCAGC	Sigma-Genosys
fdh1 _{sc} -FP-BamHI	ATAGGATCCAGGGGATATCATATGATGTCCAAAGGCAAAG	Sigma-Genosys
fdh1 _{sc} -RP-Sall	ATA <u>GTCGAC</u> CCTAGGTTATTTTTTCTGACCATACG	Sigma-Genosys
fdh1 _{Cb} -FP-BamHI	ATAGGATCCAGGGGATATCATATGATGAAAATCGTGCTGG	Sigma-Genosys
fdh1 _{Cb} -RP-Sall	ATA <u>GTCGAC</u> CCTAGGTCATTTTTTGTCGTGTTT	Sigma-Genosys
pct-FP-Xhol	ATA <u>CTCGAG</u> AGGGGAGAATTCATGAGAAAAGTAGAAATC	Sigma-Genosys
pct-RP-AvrII	ATACCTAGGACCTGCAGTTATTTTTCAGT	Sigma-Genosys
bktB-FP-EcoRI	ATA <u>GAATTC</u> AGGGGAAAAGTCATGACGCGTGAAGTGG	Sigma-Genosys
bktB-RP-HindIII	ATAAAGCTTAACCTCAGATACGCTCGAAGATGG	Sigma-Genosys
aceE-FP-Sall	ATTA <u>GTCGAC</u> AAGGAGATATTATATGTCAGAACGTTTCCCAAATGACG	Sigma-Genosys
lpd101-RP-Notl	ATTAGCGGCCGCTTACTTCTTCGCTTTCGGGTTC	Sigma-Genosys
yiaY-FP-Aatll	ATTAGACGTCAAGGAGATATTATATGGCAGCTTCAACGTTCTT	Sigma-Genosys
yiaY-RP-Avrll	ATTACCTAGGCCGTTGTGGAAATGATGATTAC	Sigma-Genosys
hbd-FP-Ndel	ATTCATATGAAAAAGGTATGTGTTATAGG	Sigma-Genosys
hbd-RP-Xbal	ATTTCTAGAACTTATTTTGAATAATCGTAG	Sigma-Genosys
phaB-FP-Mfel	ATTCAATTGACGAAGCCAATCAAGGAG	Sigma-Genosys
phaB-RP-AvrII	ATT <u>CCTAGG</u> GGTCAGCCCATATGCAG	Sigma-Genosys
C-FP-tesB (for colony PCR)	TTTCTCCTTATTATCAATGCACC	Sigma-Genosys
C-RP-tesB (for colony PCR)	CATTTATCGGCTACAAATTGG	Sigma-Genosys
C-FP-mdh (for colony PCR)	GCGACTGTTAATTACGTAAGTTAGG	Sigma-Genosys
C-RP-mdh (for colony PCR)	CCCTGTAGTAGTGATGCGTG	Sigma-Genosys

Restriction sites used for cloning are underlined. Primer names correspond to the name of the gene that the primer amplifies, whether the primer is the forward primer (FP) or reverse primer (RP) of that gene, and the restriction site incorporated into the primer sequence for cloning.