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S| Methods

Data Sources. Further selection criteria for including a study com-
paring SOC in organic vs. nonorganic systems were the following:
(i) availability of field comparisons (i.e., from plots managed or-
ganically and conventionally in the same field or in close vicinity,
thus ensuring equal external conditions besides management as far
as possible); (i7) the data provided values for SOC concentrations,
SOC stocks, or C sequestration rates or information that allowed us
to calculate these values (SOC concentrations, measured bulk den-
sity, sampling depth, and duration of farming system comparison).

The data ideally also included clear, logical reference to ag-
ricultural land use types (arable, grassland, vegetable (excluding
greenhouse cultivation), horticulture/viticulture); reported pedo-
climatic conditions (mean annual temperature, mean annual
precipitation, and clay concentration); reported inclusion/exclu-
sion of green manures (e.g., grass—clover leys); and included
information on whether there have been annual external inputs
(e.g., slurry or compost) and on further characteristics of the
experimental sites (e.g., regarding crop rotations) (Dataset S1).

To assess differences in SOC between farming systems, ideally,
the SOC stocks at the beginning and at the end of the reporting
period should be known. This then allows identifying differences
in SOC stocks while accounting for differences already present at
the beginning. Thus, average C sequestration rates can be derived
and compared by dividing the increase in soil carbon stocks over
the reporting period by the length of this period. Only few studies
provided all this information, and we therefore decided to also
assess differences in soil C stocks and concentrations from studies
in which the baseline values were not known. This provided
further information, although we could not identify how much of
the difference between farming systems may be due to soil carbon
values being different right from the beginning. Thus, results
derived from such SOC concentration and stock comparisons are
less reliable, but given the fact that all data considered originated
from pairwise system comparisons including controlled field
trials, baseline differences in SOC concentrations and stocks
among the different plots of one comparison were expected to be
negligible. Results from these analyses may thus not be able to
provide accurate numbers, but robust trends can still be identified.

In some cases, more than one study reported SOC results from
a particular experiment. We reported only SOC data from the
study covering the longest period but included additional in-
formation concerning field activities from studies reporting on the
same experiment but for shorter periods (Dataset S1). In 11
studies, information about the duration of the nonorganic
farming practice was not available. In these cases we assumed
that the duration of the nonorganic practice was the same as for
the organic management.

In the present study, soil depth was not adjusted to account for
changes in bulk density with conversion to organic agriculture
unless the authors of the original data had already done so. We
think such an adjustment might be meaningful when effects in
land use changes (e.g., from forest to grassland, or arable to
grassland) were studied, which was not the focus of the present
article. In two of 209 comparisons, the sampled soil depths varied
slightly within comparative pairs. SOC corrections to uniform soil
depths were not performed because these two adjustments had no
significant effect on the difference in SOC.

Data Analysis. Besides performing the random-effects meta-

analysis using the restricted maximum likelihood estimator using
the Knapp-Hartung adjustment, we also tested results with the
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empirical Bayes method, which gave very similar results (1, 2). We
also recalculated without the Knapp and Hartung adjustment. As
expected, this resulted in smaller confidence intervals and cor-
respondingly higher significance levels. Differences affected
significance levels for some calculations only and by at most one
order of magnitude. Outliers were identified via their Cook’s
distance and the diagonal elements of the hat matrix (and the
other criteria provided by the “influence” function of the “met-
afor” package). We then asked what caused them to be outliers.
Frequent causes were very high external C inputs and SOC
changes. In the full dataset, five to nine outlying comparisons out
of 209 were deleted for the three effect size measures. In the
subsets, the number of outliers was lower and for some analysis
even zero.

Metaregression. Analysis was again done with the restricted
maximum likelihood estimator with the Knapp and Hartung
adjustment and also checked with the empirical Bayes estimator
(with Knapp and Hartung adjustment). Results between these
methods did not differ much, and omitting the Knapp and
Hartung adjustment had similar effects as described above for the
metaanalysis (i.e., slightly increasing significance levels for some
analyses). Outliers were also identified as described above.
Outliers were often linked to very high external C inputs or SOC
changes. This also explained why the full dataset including out-
liers showed significant results for the influence of external C and
N inputs on the effect sizes, whereas these effects disappeared
after having removed the few outliers. Removing these outliers is
thus crucial for unbiased results.

We ran the regressions for the full dataset (after having deleted
outliers), for the subset of the data representing zero net input
systems only, for the subset of highest data quality (i.e., reporting
measured external inputs and bulk densities), and for combina-
tions of these conditions. Because of missing values in many
variables, running the full model considerably reduced the number
of studies retained. Thus, we also ran two reduced models. In the
first, the difference in clay concentrations was omitted, because
this variable had many missing values, and nonmissing values were
mainly zero, with some big differences reported for others. In the
second, only external C and N inputs were retained. The changes
in significance levels and values when running these restricted
models (compare Dataset S1) showed that conclusions should
only be drawn very cautiously. Additionally, when reducing the
full dataset to subsets of zero net input systems, respectively
improved data quality, significance levels changed considerably,
often resulting in only insignificant results remaining. Because of
these problems, we do not draw any statistical inference from
these regressions. We only use the results as indication of which
factors may be influential and which may rather not. This is also
in line with our understanding of metaanalysis as a powerful tool
of descriptive rather than inferential data analysis.

Nonindependent Data. Aggregation of nonindependent data leads
to a considerable loss of information (3, 4), whereas the de-
pendence on the level of single comparisons mainly results in
some underestimation of variances without greatly affecting
mean values. This is the result of the double-counting of iden-
tical treatments or baseline data, which basically leads to an
overestimation of sample sizes by also double-counting them.
The metaregressions on aggregated level showed few and mainly
weakly significant results because of the reduced number of
observations. Owing to the descriptive and indicative character
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of such metaregressions, we did not further analyze these results
or compare them with the metaregression on the level of single
comparisons.

Nonindependent data were an issue in 25 studies. In 16 studies,
more than one treatment qualified for the definition “nonorganic.”
These treatments were named conventional, integrated, low-input,
or no-till management in the original studies. In these cases ad-
ditional pairs were formed (e.g., “organic vs. conventional” and
“organic vs. integrated”). In nine studies, more than one treatment
qualified for the definition of organic. In these cases, additional
pairs were formed (e.g., “organic vs. conventional” and “bio-dy-
namic vs. conventional”).

Global Mitigation Potential. Because projected crop areas in 2030
are likely to be somewhat higher than today, our estimates are
conservative regarding this. RCP2.6 is the representative con-
centration pathway scenario with radiative forcing of 2.6 W m™>
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by 2100, which is necessary to reach the 2° goal. It corresponds
to cumulative emission reductions of 70% by 2100, respectively
annual emission reductions of 95% in 2100, for which the base-
line is the IMAGE 2.4 B2 scenario, which represents a medium
development in population, income, energy, and land use. The
main emission reductions in the RCP2.6 scenario are incurred
between 2020 and 2060 (5). The cumulative emissions reductions
until 2030 under RCP2.6 used here are approximate numbers,
derived from the information given by van Vuuren et al. (5). We
point out that the RCP2.6 scenario has a land use module, and
the effects of switching to organic production should ideally be
assessed by implementing this in this land use model, because it
will affect other sectors and modules in the model. These num-
bers for the mitigation potential from SOC sequestration repre-
sent the maximum unconstrained technical potential and are not
equivalent to realizable economic or market potentials (6).
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Fig. S1. Map showing the locations of the comparative trials that were included in the metaanalysis. Countries where comparative trials were performed are

highlighted in dark gray; yellow dots mark the exact positions of the trials.

Dataset S1. Overview of the dataset with the (/) main variables, (ii) references, (iii) results of the metaregression, (iv) results of the
metaanalysis:SOC differences over time, and (v) data and calculations for the assessment of the global mitigation potential

Dataset S1
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