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Methods. SOP-Side Chain (SOP-SC) model for GFP: The effective en-
ergy of a polypeptide chain in the coarse grained SOP-SC model
is a sum of bonded (B) and non-bonded (NB) interactions. The
non-bonded interactions are a sum of native (N) and non-native
(NN) interactions. If two sites that are in contact in the native
state are separated by at least two other sites along the sequence,
and the distance between them is less than a cutoff distance, Rc
(Table S1), in the coarse grained crystal structure then the inter-
action between them is classified as native. The total effective
energy is given by:

ETOT ¼ EB þEN
NB þENN

NB : [S1]

The Finite Extensible Nonlinear Elastic (FENE) potential de-
scribes the bonding potential (EB) between various bonded beads
and is given by

EB ¼ −∑
NB

i¼1

k
2
R2

o log
�
1 −

ðri − rcry;iÞ2
R2

o

�
[S2]

whereNBð¼ 459Þ is the total number of bonds between the back-
bone-backbone beads and the backbone-side chain beads in the
coarse grained model of protein.

The functional form for the non-bonded native interactions,
EN

NB, between various beads in Eq. S1 is,
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where N bb
N ð¼ 698Þ, N bs

N ð¼ 1814Þ, and N ss
N ð¼ 824Þ are the num-

bers of backbone-backbone, backbone-sidechain, sidechain-side-
chain native interactions, respectively, ri is the distance between
the ith pair of residues, and rcry;i is the corresponding distance in
the crystal structure. The strength of interaction between the pair
of side chain beads i, ϵss

i , is taken from the Betancourt-Thirumalai
statistical potential (1).

The non-native interactions, ENN
NB , in Eq. S1 between various

beads is taken to be
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where NNNð¼ 100;860Þ is the total number of non-native inter-
actions, σi is the sum of the radii of the ith pair of residues, σi;iþ2 is
the sum of the radii of the interaction sites i and iþ 2, and ri;iþ2 is
the distance between the sites i and iþ 2. The radii for side chains
of amino acids are given in Table S2. Various other interaction
parameters used in the energy function are given in Table S1.

Multicanonical molecular dynamics simulations: Thermodynamic
sampling of the coarse grained model of GFP is obtained using

multicanonical molecular dynamics simulations (2, 3). In multi-
canonical ensemble, each state of the protein is weighted by a
non-Boltzmann factor WmuðEÞ so that a uniform distribution
of energy, PmuðEÞ is obtained,

PmuðEÞ ∝ ΩðEÞWmuðEÞ ≡ constant [S5]

where ΩðEÞ is the density of states. We rearrange Eq. S5 as

WmuðEÞ ≡ e−βoEmuðE;ToÞ ¼ 1∕ΩðEÞ: [S6]

βo ¼ 1∕kBTo, and To is an arbitrary reference temperature, kB is
the Boltzmann constant, and the multicanonical potential,
EmuðE;ToÞ, is defined as

EmuðE;ToÞ ¼ kBTo lnðΩðEÞÞ ¼ ToSðEÞ [S7]

with SðEÞ being the entropy in the microscopic ensemble. Mole-
cular dynamics in themulticanonical ensemble follows fromEq.S7
and is performed by solving the modified Newtons equation:
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where ~rk, ~Pk, ~f k are the position, momentum and deterministic
force respectively for the quasi-particle k, ζ is the friction coeffi-
cient, Γ is the random force with a white noise spectrum and auto-
correlation function, hΓðtÞΓðt 0Þi ¼ 2ζkBTδðt − t 0Þ, and δðtÞ is the
Dirac delta function. The effective temperature, TðEÞ, is defined
as 1

TðEaÞ ¼
∂SðEÞ
∂E jE¼Ea

. The equation of motion, Eq. S8, is inte-
grated using Verlet algorithm (4–6) with a friction coefficient,
ζ ¼ 0.05 mτ−1. The canonical probability distribution for a wide
range of temperatures,T, is obtained by the reweighting technique:

PBðβ; EÞ ∝ PmuðEÞW −1
muðEÞe−βE: [S9]

Because ΩðEÞ is unknown a priori it has to be determined
numerically. The method prescribed (7) by Okamoto and Hans-
mann is used to iterate for ΩðEÞ and the procedure is de-
scribed below:

1. In practice it is possible to satisfy Eq. S5 only for an interval of
E, and the interval we choose in our simulation is
Eminð¼ −596 kcal∕moleÞ ≤ E ≤ Emaxð¼ 246 kcal∕moleÞ for
the temperature range Tminð¼ 295 KÞ ≤ T ≤
Tmaxð¼ 445 KÞ. Here hEiT¼Tmin

¼ Emin and hEiT¼Tmax
¼

Emax are determined from a Langevin dynamics simulation.
2. Initial guess for lnðΩðEÞÞð0Þ with the bin width

δE ¼ 1 kcal∕mole is obtained from the Langevin dynamics si-
mulations and weighted histogram method (8). A canonical
molecular dynamics simulation at To ¼ 1200 K is performed
by integrating the equations of motion using the energy func-
tion given in Eq. S7 as described by Eq. S8. The numerical
derivative, ∂EmuðE;ToÞ

∂E , required to integrate the equation of
motion is obtained by fitting lnðΩð0ÞðEÞÞ in the range
ðE − 50Þkcal∕mole ≤ E ≤ ðEþ 50Þkcal∕mole to a 10-degree
polynomial. If E > Emax, then TðEÞ ¼ Tmax. If E < Emin,
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then TðEÞ ¼ Tmin is used. The energy distribution obtained
from the simulation, HðEÞ, is constructed with the bin width
δE ¼ 1 kcal∕mole, and is checked for reasonable flatness. Si-
mulation iterations are performed until a reasonably flatHðEÞ
is obtained.

3. IfHðEÞ obtained from the ðiÞth simulation iteration is not flat,
then ðiþ 1Þth simulation is performed with a modified
lnðΩðEÞÞðiþ1Þ obtained using lnðΩðEÞÞðiþ1Þ ¼ lnðΩðEÞÞðiÞþ
lnðHðEÞÞðiÞ. We performed iterations until we obtained a
ΩðEÞ, which forces the protein to sample the complete energy
space of interest (Emin ≤ E ≤ Emax). In other words, an un-
folded protein folds into a native state and unfolds back into
a denatured state.

4. From a long multicanonical simulation trajectory where we ob-
serve multiple protein folding-unfolding events, the average
value of a physical quantity A at any temperature,
Tðβ ¼ 1∕kBTÞ, in the canonical ensemble is calculated using

hAiT ¼
∑
E

AðEÞHðEÞeβoEmuðE;ToÞ−βE

∑
E

HðEÞeβoEmuðE;ToÞ−βE
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∑
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e ½βoEmuðEi;ToÞ−βEi� : [S10]

where Nconf is the total number of protein conformations in
the trajectory.

5. From Nsim independent MC simulation trajectories, we calcu-
lated the average value of a physical quantity A at any tem-
perature, T, in the canonical ensemble using the equation:

hAiT ¼ ∑
Nsim

j¼1 ∑
N j

conf
i¼1

AðEijÞe ½βoEmuðEij;ToÞ−βEij �

∑
Nsim

j¼1 ∑
N j

conf
i¼1

e ½βoEmuðEij;ToÞ−βEij�
: [S11]

where Nj
conf is the total number of protein conformations in

the jth trajectory.

Molecular transfer model (MTM):The energy of a protein conforma-
tion in a denaturant solution of concentration ½C� is assumed to
be the sum of the potential energy, E, and a transfer free energy
ΔGtrð½C�Þ estimated using the TM model (9, 10). According to
TM, the free energy of transferring a protein from water to
the denaturant solution of concentration ½C� is equal to the
sum of the transfer free energies of the backbone and sidechain
beads, and is written as

ΔGtrð½C�Þ ¼ ∑
2N

i¼1

δgtr;ið½C�Þðαi∕αGly−i−GlyÞ: [S12]

where δgtr;ið½C�Þ is the transfer free energy of the bead i, αi is the
solvent accessible surface area (SASA) of the bead i, αGly−i−Gly is
the solvent accessible surface area of the bead in the tripeptide
Gly − i −Gly. The transfer energies δgtr;ið½C�Þ for backbone and
sidechain chain beads are listed in Table. S3 in ref. 11. The values
for αGly−i−Gly are listed in Table. S4 in ref. 11.

The thermodynamic properties of the protein at a nonzero de-
naturant concentration ½C� are obtained (11, 12) by reweighting
the probability of the protein conformations obtained at ½C� ¼ 0

using the transfer energies ΔGtrð½C�Þ. The average value of a phy-
sical quantity A at any temperature, T and non-zero denaturant
concentration ½C� is calculated using.

hAð½C�ÞiT ¼ ∑
Nsim

j¼1 ∑
N j

conf
i¼1

AðEijÞe ½βoEmuðEij;ToÞ−βðEijþΔGij
tr ð½C�ÞÞ�

∑
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j¼1 ∑
N j

conf
i¼1

e ½βoEmuðEij;ToÞ−βðEijþΔGij
tr ð½C�ÞÞ�

:

[S13]

where Eij is the potential energy of the conformation i from the
jth simulation trajectory, AðEijÞ is the physical quantity of the
protein in conformation i from the jth simulation trajectory,
ΔGij

trð½C�ÞÞ is the free energy cost of transferring protein confor-
mation i from the jth simulation trajectory from water to a de-
naturant solution of concentration ½C�.
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Fig. S1. (A) A typical Multicanonical simulation trajectory demonstrating that GFP reversibly folds, thus effectively sampling the relevant energy space. (B) A
plot of the structural overlap function, χ, (defined in the main text) as a function of t for a Multicanonical simulation trajectory. The red and green lines are
drawn at χ ¼ 0.7 and 0.895 respectively. The conformations with 0 < χ ≤ 0.7 are folded, an intermediate state has 0.7 < χ ≤ 0.895 and conformations with
χ > 0.895 are unfolded.
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Fig. S2. Criteria used to identify the four distinct folding pathways for GFP. For each trajectory, logarithm of energy distribution, logðPðEÞÞ is plotted as a
function of E. The trajectories fall into four distinct pathways as shown in panels A, B, C and D. For each pathway three different trajectories are shown in red,
green and blue respectively. The energy in trajectories in A hop between two values one corresponding to the folded state and the other to the unfolded state.
When plotted as logPðEÞ we see that there are two distinct basins. In contrast, multiple basins are found in B, C, and D.
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Fig. S3. (A) Plots of f ss as a function of Rg sampled during the process of folding in pathways 1 and 2. (B) Same as (A) except these plots are for KIN3 and EQL
pathways.

Movie S1. Folding trajectory of KIN1 pathway. β -sheets with local contacts shown in blue, silver and red form first on decreasing the temperature. These
substructures coalesce to form the folded structure.
Movie S1 (MPG)
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Table S1. Parameters for the SOP-Side
Chain model used in Eqs. S1–S4

Parameters Protein

Ro 2.0
k 20 kcal∕ðmol:Å2Þ
Rc 8 Å
ϵbbh 0.45 kcal∕mole
ϵbsh 0.45 kcal∕mole
ϵl 1.0 kcal∕mole
σbb 3.8 Å

Table S2. Sidechain and backbone radii of
amino acids based on partial molar
volumes

Residue Radius (Å)

Gly 0
Ala 2.52
Val 2.93
Leu 3.09
Ile 3.09
Met 3.09
Phe 3.18
Pro 2.78
Ser 2.59
Thr 2.81
Asn 2.84
Gln 3.01
Tyr 3.23
Trp 3.39
Asp 2.79
Glu 2.96
Hse* 3.04
Hsd 3.04
Lys 3.18
Arg 3.28
Cys 2.74
backbone 2.25

*Hse-Neutral histidine, proton on NE2 atom.
Hsd-Neutral histidine, proton on ND1 atom.
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