Supporting Information

Wensley et al. 10.1073/pnas.1201793109

Fig. S1. Core swapped versions of R16 fold by a mechanism more like R15. (Data taken from refs. 1-3).

- 1. Scott KA, Randles LG, Clarke J (2004) The folding of spectrin domains II: phi-value analysis of R16. J Mol Biol 344:207-221.
- 2. Wensley BG, Gärtner M, Choo W, Batey S, Clarke J (2009) Different members of a simple three-helix bundle protein family have very different folding rate constants and fold by different mechanisms. J Mol Biol 390:1074–1085.
- 3. Wensley BG, et al. (2010) Experimental evidence for a frustrated energy landscape in a three-helix-bundle protein family. Nature 463:685–688.

Fig. S2. Kinetics determined in increasing concentrations of glucose. (A and C) Chevron plots of E18F and K25V at increasing concentrations of glucose. (*B* and *D*) Plots of solvent viscosity vs. 1/k for R16 E18F and K25V at $\Delta G_{D-N} = 1.5$ and 0.0 kcal mol⁻¹, used to determine σ .

Fig. S3. The mutation E18F does not affect $\Delta G_{D-N}^{H,O}$ for the R16 Φ -value mutations Core mutations are shown as blue circles and surface mutations as pink circles. Wild-type (i.e., wild-type R16 and the pseudo-wild-type E18F) data shown as a black square. Only positions where the same mutation was made in both wild-type R16 and E18F are shown. WT data are taken from ref. 1.

1. Scott KA, Randles LG, Clarke J (2004) The folding of spectrin domains II: phi-value analysis of R16. J Mol Biol 344:207-221.

Fig. S4. Chevron plots and fits for the R16 E18F Φ -value mutants. (A) Core mutants. (B and C) Surface mutations where each residue was mutated to Ala and Gly and the two compared. No data were collected when $k > 600 \text{ s}^{-1}$.

3 of 5

Table S1. Equilibrium and kinetic	parameters for R16 and R17 mutants
-----------------------------------	------------------------------------

Domain	[Den] _{50%} (M)	m ^{eqb} D-N (kcal mol ^{−1} M ^{−1})	$\Delta G_{D-N}^{H_2O}$ (kcal mol ⁻¹)	$k_f^{\rm H_2O}$ (s ⁻¹)	<i>m_{k_f}</i> (M ⁻¹)	$k_u^{\rm H_2O}$ (s ⁻¹)	m_{k_u} (M ⁻¹)	$\Delta G_{kin}^{H_2O}$ (kcal mol ⁻¹)
R16								
R16 WT*	3.3 (±0.1)	1.9 (±0.1)	6.4 (±0.2)	126 (±2)	2.0 (±0.1)	$3.2 imes 10^{-3} \ (\pm 1 imes 10^{-4})$	1.2 ⁺	6.3 (±0.3)
Individual substitutions in A helix of R16 to residue found in R15								
R16 E18F	3.4 (±0.1)	1.9 (±0.1)	6.5 (±0.1)	2,200 (±200)	1.8 (±0.1)	$6.4 imes 10^{-2} (\pm 9 imes 10^{-3})$	1.2 ⁺	6.2 (±0.1)
R16 E19D	2.5 (±0.1)	2.0 (±0.1)	4.9 (±0.1)	81 (±4)	2.0 (±0.1)	$1.10 \times 10^{-2} (\pm 8 \times 10^{-4})$	1.2 ⁺	5.3 (±0.1)
R16 I22L	2.5 (±0.1)	2.0 (±0.1)	4.9 (±0.1)	139 (±5)	2.0 (±0.1)	$3.9 \times 10^{-2} (\pm 2 \times 10^{-3})$	1.2 ⁺	4.8 (±0.1)
R16 K25V	3.3 (±0.1)	1.9 (±0.1)	6.4 (±0.1)	630 (±50)	1.8 (±0.1)	$1.7 \times 10^{-2} (\pm 3 \times 10^{-3})$	1.2 ⁺	6.2 (±0.1)
R16 V29L	3.6 (±0.1)	1.9 (±0.1)	7.0 (±0.1)	313 (±9)	1.8 (±0.1)	$3.0 \times 10^{-3} (\pm 3 \times 10^{-4})$	1.2 ⁺	6.9 (±0.1)
Other substitutions of E18					. ,			
R16 E18A	3.1 (±0.1)	2.2 (±0.1)	6.0 (±0.1)	900 (±60)	2.0 (±0.1)	0.05 (±0.01)	1.2 ⁺	5.8 (±0.1)
R16 E18L	4.1 (±0.1)	1.8 (±0.1)	7.9 (±0.1)	3,800 (±200)	1.8 (±0.1)	$1.4 \times 10^{-2} (\pm 1 \times 10^{-3})$	1.2 ⁺	7.4 (±0.1)
R16 E18Q	3.3 (±0.1)	2.1 (±0.1)	6.2 (±0.1)	280 (±10)	2.0 (±0.1)	$9.2 \times 10^{-3} (\pm 9 \times 10^{-4})$	1.2 ⁺	6.1 (±0.1)
Other substitutions of K25					. ,			
R16 K25M	3.9 (±0.1)	2.2 (±0.1)	7.4 (±0.1)	1,490 (±50)	1.7 (±0.1)	$7.1 \times 10^{-3} (\pm 1 \times 10^{-3})$	1.2 ⁺	7.3 (±0.1)
R16 K25A [‡]	3.2 (±0.1)	1.8 (±0.1)	6.2 (±0.1)	400 (±10)	1.9 (±0.1)	$1.2 \times 10^{-2} (\pm 9 \times 10^{-4})$	1.2 ⁺	6.2 (±0.1)
R16 E18A	3.1 (±0.1)	2.2 (±0.1)	6.0 (±0.1)	900 (±60)	2.0 (±0.1)	0.05 (±0.01)	1.2 ⁺	5.8 (±0.1)
R17	. ,	. ,	. ,	. ,	. ,			. ,
R17 WT*	3.1 (±0.1)	2.0 (±0.1)	6.0 (±0.2)	30 (±2)	2.3 (±0.1)	$4.0 \times 10^{-4} \ (\pm 3 \times 10^{-5})$	1.5 (±0.1)	6.6 (±0.3)
Substitutions at positions E18 and K25	5				. ,		. ,	
in A helix of R17 to residue found in R15								
R17 E18F	2.2 (±0.1)	1.9 (±0.1)	4.2 (±0.1)	170 (±20)	1.8 (±0.1)	0.37 (±0.04)	1.2 (±0.1)	3.6 (±0.1)
R17 K25V	3.4 (±0.1)	1.9 (±0.1)	6.3 (±0.2)	84 (±3	2.2 (±0.1)	$1.2 \times 10^{-3} (\pm 1 \times 10^{-4})$	1.2 (±0.1)	6.6 (±0.1)
R17 E18F/K25V	2.0 (±0.1)	1.5 (±0.1)	3.1 (±0.1)	210 (±60)	1.5 (±0.2)	3.7 (±0.5)	0.9 (±0.1)	2.4 (±0.2)
R16 K25M	3.9 (±0.1)	2.2 (±0.1)	7.4 (±0.1)	1,490 (±50)	1.7 (±0.1)	$7.1 \times 10^{-3} (\pm 1 \times 10^{-3})$	1.2	7.3 (±0.1)
R16 K25A [‡]	3.2 (±0.1)	1.8 (±0.1)	6.2 (±0.1)	400 (±10)	1.9 (±0.1)	$1.2 \times 10^{-2} (\pm 9 \times 10^{-4})$	1.2 ⁺	6.2 (±0.1)

*R15, R16, and R17 data are taken from Scott et al. (1). These data are included for comparison. ¹This is the globally fitted R16 unfolding m value determined from the R16 Φ -value data set (2). [†]R16 K25A data taken from in Scott et al. (2).

SANG SANG

Scott KA, Batey S, Hooton KA, Clarke J (2004) The folding of spectrin domains I: Wild-type domains have the same stability but very different kinetic properties. J Mol Biol 344:195–205.
Scott KA, Randles LG, Clarke J (2004) The folding of spectrin domains II: phi-value analysis of R16. J Mol Biol 344:207–221.

Domain	ΔG_{D-N} (kcal mol ⁻¹)	k	Slope	error	σ (cP)	error
R15*	1.5	k _f	0.77	0.05	0.25	0.21
R15*	1.5	k _u	0.83	0.04	0.09	0.14
R15*	0	$k_f = k_u$	0.64	0.03	0.42	0.13
R15*		Weighted average:	0.72	0.02	0.26	0.09
R16*	1.5	k _f	0.17	0.04	3.43	1.24
R16*	1.5	ku	0.28	0.05	3.58	1.32
R16*	0	$k_f = k_u$	0.16	0.03	6.26	2.30
R16*		Weighted average:	0.19	0.02	3.87	0.84
R16 E18F	1.5	$k_f \& k_u$	0.27	0.03	3.34	1.20
R16 E18F	0	$k_f = k_u$	0.20	0.03	6.07	2.59
R16 E18F		Weighted average:	0.24	0.02	3.82	1.09
R16 K25V	1.5	$k_f \otimes k_u$	0.19	0.03	5.23	1.75
R16 K25V	0	$k_f = k_u$	0.11	0.01	9.95	3.18
R16 K25V		Weighted average:	0.12	0.01	6.33	1.53

*R15 and R16 data taken from Wensley et al. (1).

1. Wensley BG, et al. (2010) Experimental evidence for a frustrated energy landscape in a three-helix-bundle protein family. Nature 463:685-688.

Table S3. Kinetic and thermodynamic parameters for R16 E18F wild type (WT) and mutants in urea

Mutation	$\Delta G_{D-N}^{H_2O}$ (kcal mol ⁻¹)	$\Delta\Delta G_{D-N}^{H_2O}$ (kcal mol ⁻¹)*	$k_{f, TS1}^{2 M}$ (s ⁻¹)	$\Phi_{f, TS1}^{2 M} \star^{\dagger}$
WT	6.6 (±0.1)	-	55 (±6)	-
Core mutar	nts			
183A	4.5 (±0.1)	2.1 (±0.1)	19 (±2)	0.30
F90A	4.3 (±0.1)	2.3 (±0.1)	23 (±5)	0.23
W94F	4.5 (±0.1)	2.1 (±0.1)	25 (±4)	0.23
L97A	2.9 (±0.1)	3.6 (±0.1)	10 (±3)	0.28
A101G	3.7 (±0.1)	2.9 (±0.1)	19 (±4)	0.22
L108A	4.9 (±0.1)	1.7 (±0.1)	62 (±5)	-0.04
Surface mu	tants			
Q85A	6.8 (±0.1)	-	64 (±6)	-
Q85G	5.9 (±0.1)	0.9 (±0.1)	25 (±3)	0.62
A88G	5.5 (±0.1)	1.1 (±0.1)	16 (±4)	0.67
D92A	7.4 (±0.1)	-	160 (±10)	-
D92G	6.5 (±0.1)	1.0 (±0.1)	46 (±4)	0.76
Q99A	7.0 (±0.1)	-	73 (±5)	-
Q99G	5.6 (±0.1)	1.3 (±0.1)	30 (±5)	0.40
A103G	5.5 (±0.1)	1.0 (±0.1)	43 (±5)	0.14

*For Ala-Gly helix scanning positions values of $\Delta\Delta G_{D-N}^{H_2O}$, $\Phi_{f,TS1}^{2,M}$, $\Phi_{f,TS2}^{2,M}$ and are shown against the appropriate glycine mutant.

[†]Errors in the Φ -values were propagated form errors of the fits of the data and are <0.1.