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ABSTRACT We propose a reaction-diffusion model of
spatial pattern formation whose solutions can exhibit scale-
invariance over any desired range for suitable choices of pa-
rameters in the model. The model does not invoke preset po-
larity or any other adboc distinction between cells and provides
a solution to the French flag probleit without sources at the
boundary. Furthermore, patterns other than the polar pattern
that usually arises first in a growing one-dimensional syst6m
described by Turing's model can be obtained. Evidence is given
that suggests that the model may apply in the slug stage of
Dictyostelium discoideum.

At numerous stages in the development of a multicellular or-
ganism, an aggregate of essentially indentical cells undergoes
spatially dependent differentiation or pattern formation and
new types of cells emerge in the proper spatial relationship.
Pattern formation is commonly viewed as the result of the re-
sponse of individual cells to an underlying spatial pattern of
control variables, and a major problem in developmental
biology is to discover mechanisms that generate the appropriate
spatial pattern of these variables in an aggregate of initially
similar cells (1).
Numerous models in which the control variables are diffus-

ible chemical species called "morphogens" have been proposed,
but many invoke ad hoc specialization of boundary or other
cells to produce nonuniform distributions of the morphogens.
Such models sidestep the fundamental problem, and a more
attractive hypothesis, which requires no such prior specializa-
tion, is that the pattern arises spontaneously from the interaction
between chemical reactions within or on cells and some mode
of spatial communication between cells. In its simplest form this
idea is due to Turing (2), who assumed that cells interact via
diffusible morphogens, and the standard Turing model is de-
scribed by a system of reaction-diffusion equations in which
kinetic and diffusion coefficients'are taken to be space- and
time-invariant. Many of the applications and open questions
surrounding the model are discussed in refs. 3-6.

Turing's model can provide a plausible explanation for pat-
tern formation in mosaic systems and in systems that regulate
by epimorphosis. However, it is less successful in predicting the
range of size- or scale-invariance observed in systems, such as
Hydra and Dtayostelium discoideum slugs, that regenerate
by morphallaxis under appropriate conditions. The reason for
the failure is that in Turing's theory the wavelength of growing
disturbances is fixed solely by the reaction and diffusion coef-
ficients; the overall size of the system enters only in fixing the
number of repetitions of the basic pattern that will fit into the
system. According to linear theory, the basic structure of the
pattern selected remains invariant only over a limited range
of lengths, and numerical computations on model reaction

mechanisms show that the same conclusion often holds for the
nonlinear theory as well (5).
The assumption that the kinetic and diffusion coefficients

in a reaction-diffusion model are constant is certainly only an
approximation, and our purpose here is to show that any desired
degree of scale-invariance can be achieved via a simple, yet
plausible, mechanism by which the overall size of the system
is reflected in these coefficients. We treat in detail a case in
which it is assumed that the diffusion coefficients of the mor-
phogens depend on the concentration of a diffusible regulatory
species that is produced at a constant rate by all cells, and we
show that the desired invariance can be obtained by adjusting
the production rate and the rate at which the regulatory species
leaks into the sourroundings.

There are several ways in which such concentration-de-
pendence could arise. For instance, the permeability of the cell
membrane (either junctional or ordinary) could be increased
by the regulatory species; in the continuum description we
adopt here, this would be reflected in an increased diffusion
coefficient. Alternatively, the regulatory species could facilitate
transport by increasing adsorption of the morphogens on cel-
lular structures, thereby enhancing surface diffusion, or through
the formation of specialized transport structures. Recent ex-
perimental evidence shows that the postulated effect on
membrane permeability actually occurs in some developing
systems. For example, the molting hormone ecdysone stimulates
a period of increased epidermal communication, as measured
by the degree of electrical coupling between cells, in the pre-
pupa stage of the beetle Tenebrio (7), and there is evidence that
gap junctions in some amphibian oocytes are hormonally con-
trolled (8). In these examples the source of the regulatory species
is, extracellular, but the same effect can be achieved when the
source is intracellular.

SCALE-INVARIANCE IN TURING'S MODEL
Let S denote the region of space occupied by the developing
system, whose boundary is assumed to be impermeable to the
morphogens but not to the regulatory species, and suppose that
transport within S is solely by diffusion. Suppose that there are
N morphogens whose concentration is C = (C1, . . ., CN)T, and
let CN+ 1 denote the concentration of the regulatory species.
We first consider the case in which the regulatory species affects
only the morphogen diffusivities and, for simplicity, we assume
that the effect is linear in CN+ 1. Then the governing equations
are

dc = V * (~o + CN+l)VC+R(C) inS

-n- (Do + DOCN+ 1)VC = 0 on 9S
OCN+ 1= DN+ 1V2 CN+ 1 + RN+ 1 in S

at
-n - ON+IVCN+I= hCN+1I onOaS

[11

[2]
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plus appropriate initial conditions. Here, Do and DI are con
stant N X N diagonal matrices, R(C) is the reaction rate vettd
(which is independent of CN+ 1), and RN+ 1 denotes the con
stant rate of production of the regulatory species. All kineti4
coefficients in R(C) and the mass transfer coefficient h are as
sumed to be constant.

In order to cast the equations into dimensionless form, let L
be a measure of S, let CE be a reference concentration for specie
i, let K-1 be a time scale characteristic of the morphogen ki
netics, and let as = max(Dj)jj; i = 0,1. Write the spatial coor-
dinate as r = L, set r = Kt, cE = Cj/CE, (2f))H = (oDf)11/S, and
V = LV; then Eqs. 1 and 2 become

1
2 V (6o.o + 6jCN+ 1jScN+1) Vc + R(c) [3]

n * (bo4 + 61CN+ 1fD IcN+l) + = 0, and

do d 1 = V2CN+ I+ 0102 [4]Or
n *VCN+1 = 02CN+ 1.

Here, 0o KL2/ON+1, 01 RN+ L/hCN+1, and 02
hL/DN+ 1. Hereafter, the overbars will be dropped.
The unique solution of Eq. 4 can be written

CN+ 1(AT) = 0102 £E )f 1S k(t)dt

+ E e fT/o7k1I/k(k [5]
k=O

where (f3,1k) is a solution of

V241k =-fl1k [6]

nD V4/k =-024k,
and the 'kk are normalized to 1. When 02 is small, IO is small and
the first term of each series is dominant, and in this case the
solution is nearly uniform in space and slowly varying in time.
A steady-state level of CN+ 1 is reached only if 0102 0 as 02
0, but whether or not this holds, the zero-order approximation
consists in setting CN+1 and bo5Z~o + 51CN+ IYJcN+ 1 equal to
a constant and a constant matrix, respectively. This leads to the
standard Turing model.
A basic assumption of Turing's model is that there exists a

constant, spatially uniform solution cs of Eq. 3 that loses stability
as either kinetic or diffusion coefficients cross critical loci in
parameter space. Stability of the uniform solution is governed
by the linearization of Eq. 3, and the solution of the resulting
linear equation is (9)

U(rT) =Ee(K-inD)r Yn~gnMr [71
n=O

The matrix K is the Jacobian of R(c) at c = cs, u = c - Cs, n=
a2/KL2 and (,c4,n ) is a solution of Eq. 6 with 02 = 0, ordered
by the magnitude of ae2.t If K -AD has exactly one real posi-
tive eigenvalue for ,uE[,AM+], where pt- > 0, and if all other
eigenvalues have a negative real part, then the nth eigen-
function is unstable according to linear theory when

LT[LrLssanlg fonsm
The intervals of unstable "lengths" for successive modes are

disjoint if and only if L;I < Ln-that is, if and only if
an,/thn- < A/A +. For instance, in a one-dimensional
system of length L, an = n r, and therefore the intervals are
disjoint for all n such that

jr

S- n < ( ,.1 [8]

Now consider what happens as L increases, perhaps due to
growth or to rearrangement of the cells. If L is sufficiently small
and all ZDi are positive, all nonuniform disturbances decay ex-
ponentially in time and the system returns to a uniform state
(4, 11). The smallest length at which cs loses stability is LT and
the growing mode at this point is 01, which generally has a
simple spatial structure. (For example, in a one-dimensional
system, q6I = cosirx/L, which decreases monotonically between
+1 and -1.) The largt L for which 01 is linearly unstable is
Lt and if a2>a,> VM-l@ the instability interval for 451 is
followed by a gap 1Lt,L-j in which all modes are stable ac-
cording to linear theory. This succession of instability intervals
separated by gaps is repeated for higher modes at larger L, but
eventually the gaps disappear and the instability intervals
overlap for sufficiently large values of n. When this happens
several modes are simultaneously unstable and more compli-
cated patterns can result.

If the jth interval [LJLf ] is disjoint from other intervals, the
wave number of the growing mode varies between v'I=7V
and vljKJi7l as L increases through [Ly,Lf ]. However, the
nodal structure of the growing disturbance, which captures the
essence of the spatial pattern, does not change because q51 is
nondegenerate; it merely shifts to accommodate the increase
in L. Thus, the linear system exhibits a limited degree of
scale-invariance in that the spatial structure of the growing
mode is essentially unchanged within an instability interval.
It can certainly happen that such limited invariance suffices
in particular instances but it is not adequate for all systems, and
we show next that much stronger results can be obtained for
larger values of 01 and 02

RAPID LOSS OF THE REGULATORY SPECIES
PRODUCES PERFECT INVARIANCE

When 01 and 02 are no longer small, CN+ 1 can vary on time and
distance scales comparable to those characteristic of the mor-
phogens, and the temporal and spatial variation of the Di must
be taken into account. However, when 02 is large, 3o2 0 (10),
and so if K-1 >> L2/10 Yg+1, the unique steady-state distri-
bution of the regulatory species is established rapidly compared
to the time required for significant changes in the morphogens.
A reasonable estimate for K1 in the present context is 2-3 hr,
and if DN+I - 10-5 cm2/sec, then the foregoing condition is
met if L << 1 cm. It is noteworthy that pattern formation typ-
ically occurs in systems whose largest dimension is of the order
of 1mm (12).
The geometry of S must be known to compute the steady-

state distribution, and hereafter we restrict attention to one-
dimensional systems. In addition, we only consider the special
case in which Do = DO-). The steady-state distribution is

CN+ 1(r) =212 (02-1 + D_ P2)
and the linear problem associated with Eq. 3 can be written

' + D ((Al + A2(-2))Mj) + Ku

Al- =0 at v=0,1

It can happen, particularly if S is symmetric, that some of the a! are
degenerate (10). However, such degeneracy can be removed by a
small perturbation of S and, for simplicity, we assume that the an
are simple.

[9]
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where

A1 _ (6 + 2lc +l l)/5 A2 SiCN+10102/26

and
a _ (60 + 6iZN+ 101)2 + (51?N+ 10102)2

The appropriate eigenvalue problem for the pattern functions
is

d (Al + A2(r- M2) do+ a20= 0 [10]

Al do = ° at =0,1,

for then the stability of the uniform steady state again hinges
on the eigenvalues of K-MnD where, as before, An = anb/KL2.
The relative kinetic and diffusion coefficients fix the ,. values
for which there is an eigenvalue with a positive real part, but
now the instability intervals for the various modes cannot be
computed directl even in the one-dimensional case, because
the eigenvalues ,, cannot be computed analytically, except in
two limiting cases.
The first occurs when 01 = 020= , because then A, = 1, A2

=0 and we recover Turing's model with its limited invariance.
In one dimension the eigenvalues and eigenfunctions are a
= (n7r)2 and cos n ir , respectively. In the second case, Al = 0
and A2 = 1, which corresponds to Bo0= , 02 =o and 102 <00.
This case arises when CN+1 = 0 on the boundary and here Eq.
10 reduces to Legendre's equation, for which the eigenvalues
are a! = n(n + 1), n = 0,1, .... As before, the nth mode is
unstable according to linear theory if and only if Mn [IA7,I +1]
which is true if the production rate is such that

2K( VN+l < RN+ 1 <2 .N+1 [11]

It will be the only growing mode if

Mn - An-i > A+ -A
and

An+l -An > A+ - A

and these are satisfied provided that

RN+ 1 > K-N+ 1 (+
nsl

It follows that the instability intervals defined by inequality
11 are disjoint for all n < n * where

n
+

+ _

Since these intervals are independent of L, the linear problem
shows complete scale invariance! Furthermore, it is clear from
Eq. 3 that the same conclusion holds for the nonlinear problem
as well.
The eigenfunctions in the scale-invariant case are the Le-

gendre polynomials, the first four of which are

Po(D = 1

P2(r = 3 (1 - 2)2 - 1/2
2

2 2

The major qualitative difference between these and the trigo-
nometric functions is the behavior at the endpoints. When
(A1,A2) = (0,1), the flux at the boundary vanishes because the
diffusion coefficient vanishes, whereas for any Al > 0 the
boundary conditions imply that d4/dt = 0. When Al is very
small there is a boundary layer near D = 0 and D = 1 in which
the derivative of the O.s changes rapidly. As A2 varies between
0 and 1 the eigenfunctions vary continuously from the trigo-
nometric functions to the Legendre polynomials.

Similarly, the eigenvalues vary continuously between (n7r)2
and n(n + 1) as A2 varies between 0 and 1, and for small A2
the eigenvalues are analytic functions of A2. One finds that the
first terms in the power series expansion are

a2
= (nir)2A1 + (2 + (6-) 2 + O(A2).

Therefore the eigenvalues increase for small A2 but, since r2
> 1 + 1/n for n 2 1, they must eventually decrease. It is known
more generally that, however Al and A2 vary, the eigenvalues
of Eq. 10 increase (decrease) whenever Al + A2( -t2) in-
creases (decreases) for all Be [0,11 (13). Consequently, by max-
imizing the critical point of VT A2+ A2( - 2) over A, one
finds that aad2/aA2 <0 whenever A2> A2 = 1/VX-. We shall
regard only hL, and RN+ 1 as variables in A2, and it follows that
0A2/OL 2 0, 0A2/ch > 0 and that

aA2 [>0 forLL co
=1<0 for L -0

OIRN+1 =0 for o0=

Therefore, the eigenvalues a! are decreasing functions of h and
L whenever A2 > A2, which is equivalent to the condition

JN 1L > L* = 8h 1 + VI + 326oh2/bIRN+ IDN+ 1. [13]

Because each a2 depends on h, L, and RN+ 1 only through the
combinations hL and RN+ ,L/h, each is invariant under all
transformations of the form

RN+ 1 XRN+1,L -I L/VX,h -* /X
for any positive X, and under such a transformation

at2 5
An = XLAXn.

KL

[141

To quantify scale-invariance in Turing's model, we estab-
lished the criterion that a system shows scale-invariance with
respect to a given Fourier mode over the range of L for which
that mode is linearly unstable. To compare the predictions of
the present model with those of Turing's, the instability interval
for each mode must be computed for fixed values of h and
RN+ 1. This computation requires the corresponding eigenvalue
a2 as a function of the parameters and these eigenvalues have
been computed for the lowest modes using a finite-difference
approximation to Eq. 10. First, suppose that Bo = 0, which
means that the concentration-independent component of the
diffusivities is zero, and let CN+ 161 = DN+1 = 10-5 cm2/sec,
RN + 1/CN+1 = 2.5 X 10 4sec-1, and K = 10 4sec-1. Fig. 1
shows the dependence of the first nonzero eigenvalue a 2 and
the dimensionless wave number Ml on the parameters h and L,
and it is apparent from the former that h has a significant effect
on the transition between al=I2
L - 0. The computations show that the turning points in Fig.
1 Upper are essentially equal to L*, and since L* = 10-5/4h
(in cm) when 5o = 0, this accounts for the strong influence of
h.

[12]
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The effect of a small nonzero component of the diffusivities
10 _ is shown in Fig. 2, wherein all parameters but bo are as in Fig.

1 and the exception is set at 0.01 CN+ I61. Comparison of Figs.
h = 10-4 1 Upper and 2 Upper shows that this value of 5o is too small to

8 Zi \ \/ h = 10 affect the transition between aI = ir2 and ad = 2.0 when h =
h - 10-3 10-4, but it has the effect of compressing the transition region
h = 10-2 considerably when h 2 10-3. This effect can be predicted by

2 6 - comparing the relative magnitude of the two terms in Al.oil \ / / \A similar effect is observed in the transition of gl between
4

fi / \ its asymptotes at small and large L. When 5o # 0, Al 1 and
A\l i7r2bo/KL2 as L -w 0, and all curves are asymptotic to the
line of slope -2 labeled "Turing's model." (By comparison,

2 when 6o= 0, all curves are asymptotic to lines of slope -1 as L
0, but the intercepts depend on h.) The asymptote for large

L for the given parameters isul = 2.5, whether or not 6o # 0.
0 , . . Increasing h sharpens the transition between the asymptotes,
0.01 0.1 1.0 10 as it must, given the effect of h on id. The instability interval

for 4i is [0.57,0.71] according to Turing's model, while if h =
10-2, 01 is unstable for L > 1.75. The latter is much larger than
the lower limit of 0.25 that holds when Bo = 0, which shows that

103 the lower limit of instability may be quite sensitive to the choice
of bo Of course, whether or not 6o . 0, the range of instability
can be adjusted more or less at will by judicious choice of the
parameters and by application of transformation 14.

M 2 6\ 1

102 4 \ \ l1H~~~~~~~~

10'~~ ~~~~~~h1-

Length, mm h

FIG. 1. The lowest nontrivial eigenvalue (Upper) and the reduced 2
wave number (Lower) as functions of L for 6o = 0.
100 4~~~~~~~~~~~~~

The mode Al is unstable when ,ue [,usu and we have seen °0.01 0.1 1.0 10
that ,g and u+ are fixed solely by the relative kinetic and dif-
fusion constants of the morphogens. To compute them requires 102
a kinetic model and for illustrative purposes we have used a
polynomial model for glycolysis (14).§ This requires three pa-
rameters-the input flux, the rate of decay of x, and the nor-
malized diffusivity of y-and these were fixed at 1.0, 0.001, and
0.165, respectively. For these choices s = 1.97 andu+ = 3.08,
which are shown as dashed lines in Fig. 1 Lower. When h =
10-2, for instance, k1 is unstable for L e [0.25, aol-i.e., for all
lengths greater than about 25 cell diameters. Since a2 is inde- \ \ h = 10'
pendent of RN+1 and a is proportional to RN+1, the curves are 10'\ h = 10
translated parallel to the ,u axis by changes in RN+ I. For the .
preceding choice of h, a reduction of 25% in RN+ changesthe
instability interval of Xl to L e [0.1, 1.0] and produces invar-
iance over the range 10-100 cell diameters, which is precisely
the range of interest in many biological systems. The fact that _
IA,, is proportional to RN+1 can also be used to adjust the curves \4-for higher modes so that they pass through the interval[j]-,A+_
for the desired range of L. Turing's model

1.0
Length, mm

FIG. 2. The lowest nontrivial eigenvalue (Upper) and the reduced
wave number (Lower) as functions of L for bo = 0.01 lJN+l 61-

§ It is unnecessary to choose a kinetic model if one arbitrarily chooses
Au+, but it would then be difficult to match these values with a par-
ticular kinetic model, as would be required for computations of so-
lutions of the nonlinear equations.
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CONCLUSION
It is remarkable that perfect scale-invariance can be achieved
by a relatively simple and biologically plausible modification
of Turing's model. The key requirement is that the morphogen
diffusivities be proportional to L2, L being a measure of the size
of the system, and we have shown that this can be accomplished
by admitting a certain form of concentration dependence in
the diffusivities. In our model the dependence is not on the
morphogen concentration, but on the concentration CN+1 of
a diffusible regulatory species produced at a constant rate by
all cells. The diffusivities are assumed to be linear functions of
CN+ 1, and if the constant term (Do)t vanishes and CN+ 1 is zero
on the boundary of the system, then perfect scale-invariance
results. Although much of our analysis dealt with one-dimen-
sional systems, it is apparent from Eqs. 1 and 5 that perfect
scale-invariance results whenever (2o),), vanishes and CN+ 1
is zero on the boundary, irrespective of the number of space
dimensions. When (l)O)# # 0 or when the rate of loss of the
regulatory species at the boundary is finite, perfect invariance
no longer obtains, but we have shown on the basis of a linear
analysis that the range of L over which the growing pattern is
essentially unchanged can be made as large as desired by ad-
justing the parameters appropriately. This is certainly adequate
in the biological context and if, as we expect, it holds for the
nonlinear problem as well, some doubts concerning the appli-
cability of reaction-diffusion models to pattern formation
should be removed.

In the preceding section we have emphasized selection of the
lowest nonconstant mode, but other modes can certainly be
selected. Patterns with any desired number of extrema in the
morphogen distributions can be produced and these could be
used to trigger differentiation at equally spaced sites in a
scale-invariant manner. Indeed, the earlier discussion on the
case in which the (DOo)M are zero leads to the conclusion that
selection of the desired mode can be accomplished simply by
varying the production rate of the regulatory species, and this
rate could be programmed genetically.

There are systems that are essentially one-dimensional and
exhibit a scale-invariant polar pattern of differentiation. Our
results may apply to at least one of these, the slug stage of D.
discoideum. It has been proposed (15) that all cells in the slug
produce a diffusible substance during normal development, and
that the permeability of the surface sheath which surrounds the
slug limits leakage of this substance into the environment to the
anterior end. These two processes produce an axial gradient of
the substance and this gradient could be used in pattern for-
mation. Our model can be readily adapted to apply to this
system, even though the properties of the boundary are variable.
The simplest case results when the slug is regarded as a cylinder
whose boundary is impermeable to the morphogens everywhere

and is impermeable to the regulatory species except at the an-
terior end, where the concentration of this species vanishes. This
leads to equations similar to Eqs. 3 and 4 and it can be shown
that, when the (o),, are zero, the morphogen distributions are
perfectly scale-invariant. The results of numerical calculations
for other cases and a discussion of experimental tests of the
predictions of the model for this system will be reported else-
where.
The idea that model parameters may depend on the con-

centration of other species can certainly be developed further.
For instance, it is equally possible that a regulatory species could
affect only the kinetic coefficients or both the kinetic and dif-
fusion coefficients. If the regulatory species functions as a pure
Vmax inhibitor for all reactions and if CN+ 1 o L2, then all rates
are proportional to 1/L2 and perfect invariance results. If not
all of the kinetic terms are affected, detailed numerical work
is required to determine the degree of invariance present. Some
results along these lines are given in ref. 5. An example of an
illuminated reacting system in which pattern size is related to
the size of the system is given in ref. 16.
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