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1 Introduction

In this Supplementary Text we give further technical information regarding the
1000 Genomes Phase 1 data collection, processing, validation, and analysis. The



aim is to record in more detail than is possible in the main text how the call sets
were generated and analyzed.

The 1000 Genomes Phase 1 release is the result of a large number of people
working in collaboration. Where possible, we have identified individuals
associated with each section of the supplement in order to provide the reader a
means of identifying individuals contributing to each area of the project.

2 Materials

2.1 Criteria for choosing populations included in the project
Authors: Aravinda Chakravarti, Bartha Knoppers, Lisa Brooks, and Jean McEwen

The choices of the specific populations to include in the project were informed
by recommendations made by the project’s Samples and ELSI Group, and were
based on a mix of scientific, ethical, and practical considerations. The most
important scientific rationale was to expand the sampling of humans so that
within each continent we had multiple yet distinct populations. The underlying
objectives were to obtain genetic variation data that would be broadly
representative for the vast majority of individuals within a continent (although
we did not attempt to cover most of the diversity in Africa, since there is too
much for the sample sizes that could be done for this project). We are well
aware that this is a great challenge since the continents differ greatly in the
amount and patterns of their internal genetic diversity

The criteria for inclusion were:

Broad consent: The participants had to have provided consent for broad use of
the samples and data, and for broad data release in databases available on the
Internet.

No names or other traditional individual identifiers: To protect the privacy
of the research participants, no names or other traditional individual identifiers
were collected. For a few of the populations, where recruitment was carried out
in conjunction with an ongoing genetic study, names that had previously been
collected were retained by the original investigators in strict confidence but have
not been shared with this project.

No phenotype data: To protect the privacy of the research participants, the
project preferred that no phenotype or clinical data be collected. For a few of the
populations, where recruitment was carried out in conjunction with an ongoing
genetic study, such data had previously been collected and are available only to
the sample collectors and their authorized collaborators, and not to the project.

Cell lines, samples available to many researchers for many future uses:
Research participants must have consented to have cell lines made from their



samples, to have the cell lines stored in a public repository, and to have the cell
lines and DNA from the cell lines distributed to a broad range of researchers for
use in a wide range of genetic and genomic studies, including studies of
molecular phenotypes such as gene expression and response to drugs.

Trios: The project wanted to include samples from mother-father-adult child
trios wherever possible since even a few trios for a population helps in assessing
the quality of the data, confirming rare variants, and inferring haplotypes.
However, at many of the collection sites it was impossible to obtain samples
from all three members of trios within the project timeline. For these
populations, the samples include a mix of trios, parent-child duos, and unrelated
individuals.

Genomic data already available: The project wanted to include some samples
on which considerable data were already available, such as the HapMap Project
samples. This allows comparisons with other sets of genotype, sequence, and
array data on these samples, for validation of the project data and efficacy of
quality control procedures.

GWAS studies: Where possible, the project sought to include samples from
populations in which GWAS studies were already being conducted. Sampling in
most cases was conducted in collaboration with a research center or hospital,
where a relationship of trust with the community had already been established.
This minimized the risks of misunderstanding of the research and increased the
likelihood that the data will eventually provide some scientific benefit for the
studied populations through the GWAS studies.

Large populations, not anthropological sampling: To minimize the risk of
stigmatization or breach of privacy, particularly in populations that may be
vulnerable because of small size, the populations chosen for sampling had to be
reasonably large. The precise way that each sampled population was defined
depended on the locality. In some places a single population, defined by
ethnicity, was collected, while at other places the samples came from the
geographic region or country with no emphasis on being from a particular ethnic
or ancestral group. The goal was not to define populations in an anthropological
sense, but to collect samples that addressed the project’s biomedical goals while
recognizing the complexities of local populations and how they define
themselves.

As a privacy safeguard, more samples were collected from each population than
were actually studied for the project. In this way it is unknown whether the
sample from any particular sampled person was actually used in the project.

Eight of the HapMap I/Il and HapMap 3 population samples met the above
inclusion criteria and were included in the project:

* People with African Ancestry in the Southwest United States (ASW)
* Han Chinese in Beijing, China (CHB)
* Japanese in Tokyo, Japan (JPT)



* Luhya in Webuye, Kenya (LWK)

* People with Mexican Ancestry in Los Angeles, California (MXL)

e Utah residents with ancestry from Northern and Western European, US
(CEU)

* Toscani in Italia (TSI)

* Yoruba in Ibadan, Nigeria (YRI)

One other set of existing samples, collected from the Finnish in Finland (FIN) by
the late Leena Peltonen of the Wellcome Trust Sanger Institute, Hinxton, UK and
the University of Helsinki, Helsinki, Finland, met the above inclusion criteria and
were also included.

Samples from six additional populations were collected as part of the sampling
plan. These were:

* British from England and Scotland, UK (GBR)
* Colombians in Medellin, Colombia (CLM)

* Han Chinese South, China (CHS)

* [berian Populations in Spain (IBS)

* Puerto Ricans in Puerto Rico (PUR)

More detail about each population can be found on the website of the NHGRI
Sample Repository for Human Genetic Research at the Coriell Institutel. This
includes information about how each population was defined for the project, the
rationale for the shorthand label chosen for each population, and other
important background information relating to each population and the specific
sampling strategy used for that population.

The way that a population is named in studies of genetic variation such as the
1000 Genomes Project has important ramifications scientifically, culturally, and
ethically. It is thus important to use care in labeling the populations when
publishing or presenting the findings of studies that use project data. Guidelines
on how to refer to the populations can be found online2.

Samples from additional populations will be included in later phases of the
project.

2.2 Sample collection and distribution

Authors: Aravinda Chakravarti, Bartha Knoppers, Lisa Brooks, and Jean McEwen

Each research group that collected samples from a population first provided a
detailed written sampling plan, for the Samples and ELSI Group to review and
approve. Each sampling plan included information about the social and
demographic characteristics of the population proposed for sampling and the
specific community where recruitment was to occur; information about the
informed consent process; and information about any particular concerns



anticipated to arise in the community and how they would be addressed. The
research groups obtained all required IRB and ethics approvals from their
institutions and collaborating institutions, as well as government approvals
where required. Few major issues arose during the course of sampling that the
Samples and ELSI Group was asked to address, but the group remained available
throughout the course of the sampling to consult on any matters that did arise.

The samples are stored at the NHGRI Sample Repository for Human Genetic
Research at the non-profit Coriell Institute for Medical Research in Camden, New
Jersey (Coriell). When Coriell receives orders from researchers for samples, it
screens the statements of intended research use. Coriell provides regular
reports to each community where sampling occurred on the use of the samples
from that community, and has funds available to support educational or outreach
activities related to biomedical research in the communities. Coriell provides
each research group that collected samples in a community with a free set of
DNA or cell lines from those samples. Coriell charges researchers in resource-
limited countries a much reduced rate for sample DNA.

2.3 Lymphoblastoid cell line establishment
Authors: Neda Gharani and Lorraine H. Toji

Lymphoblastoid cell cultures were established at the Coriell Cell Repositories
from fresh bloods after separating the mononuclear cells on a Ficoll gradient and
incubating with Epstein Barr virus and phytohemaglutinin in RPMI 1650 with
15% v/v fetal bovine serum3.

When a transformed cell culture was obtained, sufficient cells were grown to
cryopreserve 40 to 60 ampoules at 5 million cells per ampoule; 8 to 10 amps of
these are reserved for future expansion to replenish cell culture and DNA
distribution stocks. The remainder are available for distribution as cell cultures
to investigators around the world. As part of the cell culture quality control,
cultures are tested for sterility and confirmed to be free of mycoplasma, bacteria,
and fungi*. Frozen LCLs are also checked for viability by checking growth of a
recovered ampoule of frozen cells. In addition, LCLs are screened for presence of
HIV proviral sequences. Quality control® to detect possible misidentification of
samples is carried out by comparing each cell culture expansion and each lot of
DNA to the original submission using a set of six highly polymorphic
microsatellite markers (supplemented by the ABI Amplifier panel to resolve
ambiguities) and an amelogenin gender assay; these data are also used to
confirm family relationships of trios.

From some populations (GBR, FIN and IBS) one or two ampoules of frozen
lymphoblastoid cell cultures, established elsewhere, were submitted to the
Repository. Frozen LCLs were cultured, expanded to the required cell numbers
to create distribution and reserve cell culture stocks that were subjected to the
same cell culture quality control tests as above. Because no original blood was
available for these samples, the identity quality control relied on consistency of
family relationships (if trios were collected) and gender information provided by



the submitting group. A portion of each frozen culture stock is reserved for
replenishment of cell culture stocks and DNA.

Therefore, for as long as possible, replenishment of distribution stocks of cell
cultures and DNA goes back to the original frozen cell culture stock. If the
original cell culture stock is ultimately depleted, the reserved amps of an
expansion of that original stock will become the new reserve stock and will be
approximately 5 to 7 population doublings beyond the original culture stock.

3 Data generation and processing

3.1 Reuse of data from Pilot phase
Authors: Laura Clarke, Xiangqun Zheng-Bradley, and Richard E. Smith

The pilot phase of the 1000 Genomes Project® consisted of three separate
projects: low coverage whole genome sequencing of unrelated individuals; deep
coverage whole genome sequencing of two family trios; and exon targeted
sequencing for a subset of approximately 1000 genes. Phase 1 of the 1000
Genomes Project continued with the low coverage sequencing strategy of the
Pilot phase of the project, and also conducted whole exome sequencing on all
samples. Trio and exon targeted sequence data from the Pilot was not included
in Phase 1. However, the low coverage Pilot data has been included as part of
Phase 1.

For Phase 1, we performed Quality Control (QC) and filtering of the input FASTA
files available in the Short Read Archive (SRA)?. This QC and filtering consists of
a series of syntax and sequence checks to ensure the data meets minimum
formatting and quality criteria.

The Pilot phase contained early data from the [llumina, 454 and SOLiD platforms.
Much of the early SOLID data consisted of 25 bp reads that showed substantial
reference bias. The Project decided to remove this data, rather than attempt
adjustment of analysis methods to correct for this bias.

3.2 Low coverage sequencing

3.2.1 Broad Institute
Author: Namrata Gupta

Libraries were constructed then sequenced on either an Illumina HiSeq 2000 or
[llumina GAIIX with the use of 101 bp paired-end reads. Output from Illumina
software was processed by the Picard® data-processing pipeline to yield BAM
files containing well-calibrated, aligned reads. All sample information tracking
was performed by automated LIMS messaging.



For a subset of samples, starting with 3pg of genomic DNA, library construction
was performed as described by Fisher et al’. Another subset of samples,
however, was prepared using the Fisher et al. protocol with some slight
modifications. Initial genomic DNA input into shearing was reduced from 3pug to
100ng in 50uL of solution. In addition, for adapter ligation, Illumina paired end
adapters were replaced with palindromic forked adapters containing unique 8
base index sequences embedded within the adapter.

For a subset of samples, size selection was performed using gel electrophoresis,
with a target insert size of either 340bp or 370bp +/- 10%. Multiple gel cuts
were used for libraries that required high sequencing coverage. For another
subset of samples, size selection was performed using Sage’s Pippin Prep.

Following sample preparation, libraries were quantified using quantitative PCR
(kit purchased from KAPA biosystems) with probes specific to the ends of the
adapters. This assay was automated using Agilent’'s Bravo liquid handling
platform. Based on qPCR quantification, libraries were normalized to 2nM and
then denatured using 0.1 N NaOH using Perkin-Elmer’s MultiProbe liquid
handling platform. The subset of the samples prepared using forked, indexed
adapters was quantified using qPCR, normalized to 2nM using Perkin-Elmer’s
Mini-Janus liquid handling platform, and pooled by equal volume using the
Agilent Bravo. Pools were then denatured using 0.1 N NaOH. Denatured samples
were diluted into strip tubes using the Perkin-Elmer MultiProbe.

Cluster amplification of denatured templates was performed according to the
manufacturer’s protocol (Illumina) using either Genome Analyzer v3, Genome
Analyzer v4, HiSeq 2000 v2, or HiSeq v3 cluster chemistry and flowcells. For a
subset of samples, after cluster amplification, SYBR Green dye was added to all
flowcell lanes, and a portion of each lane visualized using a light microscope, in
order to confirm target cluster density. Flowcells were sequenced either on
Genome Analyzer I1X using v3 or v4 Sequencing-by-Synthesis Kits, then analyzed
using RTA v1.7.48; or on HiSeq 2000 using HiSeq 2000 v2 or v3 Sequencing-by-
Synthesis Kits, then analyzed using RTA v1.10.15 or RTA v.1.12.4.2. For whole
genome sequencing, 101 bp paired-end reads were used. For pooled libraries
prepared using forked, indexed adapters, [llumina’s Multiplexing Sequencing
Primer Kit was used, and a third, 8 base sequencing read was performed to read
molecular indices.

3.2.2 Baylor College of Medicine — Human Genome Sequencing Center
Author: Donna Muzny
SOLiD Mate Pair Libraries and Sequencing Methods

SOLiD 2 x 50 bp library construction preparation was performed using standard
reagents (SOLiD mate pair Library Oligo kit [LMP], 4400468) and protocol as
specified by Applied Biosystems (SOLiD System 3.0 Mate-Paired library
Preparation Guide). For this protocol, 20 ug of genomic DNA was fragmented by
HydroShear (Digilab Genomic Solutions Inc) to an average size of 1.5 kb



fragments. The fragmented DNA was repaired using the End-It DNA End Repair
Kit (Epicentre) followed by ligation of the LMP CAP adaptor. Size selection of the
ligation product was then performed using 1.0% agarose gel electrophoresis for
resolution and 1-2 kb DNA fragments were excised from the gel and purified
using QIAquick Gel Extraction Kit (Qiagen). The DNA circularization reaction was
catalyzed using the Quick Ligation kit (New England Biolabs) with SOLiD
biotinylated Internal Adaptors (approximately 10-15 pmoles, based on the
quantity of the size-selected DNA). Following circularization, DNA Plasmid-Safe
ATP-Dependent DNase (Epicentre) was used to eliminate un-circularized DNA,
resulting in 500 ng - 1 ug of circularized DNA product after purification. The
circularized DNA was then nick translated using DNA Polymerase 1 (New
England Biolabs) at 50-100 units/reaction, depending on the quantity of the
circularized product. Following nick translation and purification, the DNA
fragments were sequentially digested with 10-20 units of T7 exonuclease (New
England Biolabs) and S1 nuclease (Invitrogen). The digested DNA product was
end-repaired using the Epicenter End-It DNA End Repair Kit and was bound to
the Dyna MyOne C1 Streptavidin beads (Invitrogen) through the biotin-labeled
internal adaptor. P1 and P2 adaptors were ligated as specified by the LMP
protocol to the library fragments, and the ligated product was PCR amplified
using SOLiD Library PCR Master Mix with minimum cycling (5-7 cycles) to
maintain library complexity. The library was size selected on a 4% agarose gel
to obtain 250-350 bp fragments. Final QC of the library was performed using a
Picogreen assay (Invitrogen) and Agilent Bioanalyzer 2100 trace with DNA 7500
Chip.

SOLiD Sequencing Methods

The mate-pair libraries were clonally amplified onto 1 um beads using emulsion
PCR with a final library concentration of 0.70 to 0.85 pM. Emulsion PCR
reactions were processed using either the Life Technologies Full-Scale ePCR
reaction protocol or a modified version of the Macro-Scale ePCR reaction
protocol. As specified by the vendor, the full-scale reactions used the IKA Ultra-
Turrax to generate the emulsions followed by amplification with standard
thermal cycling methods. The 4X macro-scale emulsions were generated using a
Servodyne Electronic Mixer (Cole-Parmer, EW-50008-30, EW-50008-00) at a
speed of 780 rpm for 20 min. The 4X bulk reaction was then amplified in a
sealable bag using a Hydrocycler (K-Biosciences, HC-16) with the following
cycling conditions: denature for 10 min at 95°C, followed by 40 cycles of 1 min at
950°(C, 2 min at 62°C and 2 min at 72°C with a final extension of 10 min at 72°C.
Beads were recovered by centrifugation with 2-butanol in 50 ml conical
centrifuge tubes and then enriched and 3’ modified according to the Life
Technologies Macro-Scale ePCR reaction protocol. The 3’ modified template
positive beads were deposited and covalently bound to SOLiD sequencing slides
and then underwent sequencing using the 2x50bp run format on either the
SOLiD V3, V3+, or V4 platform. Sequencing was performed according to the
manufacturer’s protocols and using the Life Technologies SOLiD MP Library
Sequencing Kit (4406398), Opti MP Library Sequencing Kit (4442058), and ToP
MP Library Sequencing Kit (4452685) for the V3, V3+, and V4 platforms
respectively.
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SOLiD Primary Data Processing and Sequencing QC

Base and quality calling for the SOLiD data was performed on-instrument using
standard vendor software and settings. Upon completion of a run, read and
quality data were copied into our data-center where individual sequence events
were split into 10M read bundles to undergo preliminary quality control
mapping using BFAST. After read group bundles were mapped, their results
were merged back into a single sequence-event-level BAM, and where necessary,
these BAMs were merged into a sample-level BAM using Picard, and duplicate
reads were marked at the library level using SAMtools. Alignment metrics and
uniqueness were evaluated to confirm that the sequencing performed as
expected and to verify that each sample met a minimum of 6X sequencing
coverage. In addition, sample concordance analysis was also performed by
comparing SNP array genotypes to the sequencing data to confirm sample
identity and evaluate contamination.

3.2.3 BGI
Author: Jun Wang

Genomic DNA for all Phase I samples of 1000 Genomes Project was obtained
from Coriell Institute for Medical Research and was sequenced from May 2008 to
October 2010. The sequencing was carried out on mainly two platforms: [llumina
(Genome Analyzer and HiSeq 2000) and Applied Biosystems (SOLiD). For each
sample, the data coverage was at least 4X.

For Illumina sequencing platform, library preparation complied with the
[llumina’s instruction. In short, 2-5 ug of genomic DNA was fragmented by
nebulization with compressed nitrogen gas. After adding “A” base and DNA
adaptors to the blunt DNA fragments, DNA products were then separated on a
2% agarose gel, excised from the gel at a position between 150 and 250 bp (450
and 550 bp from 2009), and purified (Qiagen Gel Extraction Kit). The modified
DNA fragments were enriched by PCR with PCR primers 1.1 and 2.1 (Illumina).
The concentration of the libraries was measured by absorbance at 260nm. The
libraries were hybridized to the flow cells of Genome Analyzer/Genome Analyzer
[Ix/HiSeq 2000 for paired-end sequencing. The fluorescent images were
converted to sequence using the Illumina base-calling pipeline (Solexa, 0.2-2.6;
HiSeq 2000, 1.0-1.3). The length of obtained read contained 44 bp, 75 bp and 90
bp.

For SOLiD sequencing platform, genomic DNA was taken to construct libraries,
which included two type, mate-pair libraries (~20 ug) and pair-end libraries
(~3ug), and the ranges of insert size were 1.5-2 kb and 150-200 bp respectively.
In accordance with the manufacturer’s protocol (Applied Biosystems SOLiD
Library Preparation Protocol), in brief, library preparation, emulsion PCR, slide
preparation and sequencing were all performed. SOLiD sequencing libraries
were amplified by a limited PCR reaction (mate-pair, < 12 cycles; pair-end, < 8
cycles) with a Hi-Fidelity PCR Supermix (Invitrogen, 12531-016). The length-
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fixed PCR band was excised from a 2% agarose gel, purified with the Qiaquick gel
extraction kit (Qiagen, 28706) and quantified with the Agilent 2100 Bioanalyzer.
Sequencing was carried out on the SOLiD system (V2.0 and V4.0). Image analysis
and base-calling were carried out with the Applied Biosystems pipeline (SOLiD
V2.0, Corona lite v4.2; SOLiD V4.0, BioScope v1.2/v1.3).

3.2.4 Max-Planck Institute for Molecular Genetics
Authors: Marc Sultan, Marie-Laure Yaspo, and Ralf Sudbrak”
* Corresponding Author

Genomic DNA sequencing of samples of the Phase 1 of the 1000 Genomes project
was fulfilled between July 2009 and October 2010 on one of two sequencing
platforms: Genome Analyser Il (GAII, [llumina) and SOLiD versions 3-4 (Applied
Biosystems).

For the Illumina platform, libraries were prepared from genomic DNA
fragmented by ultrasound. 185-235 bp DNA fragments were gel purified and
further processed into GAII paired-end (PE) libraries. Libraries were prepared
using Illumina PE library preparation kit. Several modifications were introduced
in the original Illumina library preparation protocol (e.g. additional gel-
purification after library amplification, which helps to get rid of unspecific PCR
products; real-time check of non-amplified libraries for determination of
required number of amplification cycles and estimation of library complexity;
real-time check of 10nM library stocks before loading them onto flowcell to
reach optimal cluster density) to make the process more reproducible and
predictable. Libraries were loaded onto PE sequencing flowcells (the average
cluster density was ~12x10% per tile). 36 bp PE runs (from March 2009 - 50 bp
PE runs) were performed for each flowcell, allowing identification of 36 (or 50)
nucleotides from each side of the genomic DNA insert.

For the SOLiD sequencing platform, mate-pair libraries (1.5-2kb) were prepared
using the ABI protocol with several modifications. Shearing was performed on
Hydroshear. To avoid chimeras additional size selection after shearing was
performed. For all purification steps except for gel purification
phenol/chloroform purification was used. In the circularization reaction the
ratio DNA molecules : Internal adapter was changed to 1: 1.2; ligation time was
increased to 1.5 hours (or more). For testamplification and large-scale
amplification not Invitrogen mix, but 2x Phusion HF Master Mix (NEB, #F-531L)
was used. Resulting beads with attached library molecules were loaded onto the
flowcell (amount of usable beads varied from 450 to 500 million per single-
frame flowcell). For each flowcell, 50 bp mate pair run was performed.

For both platforms raw data was pipelined according to corresponding
manufacturer’s instructions. Illumina’s Genome Analyzer Sequencing Control
Software (SCS) v2.4 and SOLiD Analysis Tools pipeline were used for base calling
for Illumina and SOLiD, respectively. For preliminary analysis, resulting
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sequencing reads were aligned to the human genome (hg18, NCBI build 36.1).
The identity of each sample was confirmed using HapMap genotypes.

3.2.5 Washington University
Author: Elaine Mardis

Genomic DNA was obtained from the Coriell Institute for Medical Research.
[llumina libraries were constructed according to the manufacturer's (Illumina
Inc, San Diego, CA), recommendations with the following exceptions: 1) 500 ng
of DNA was sheared using a Covaris S220 DNA Sonicator (Covaris, INC. Woburn,
MA) to a size range between 200-500 bp. 2) PCR optimization was performed to
determine the optimal cycle number to prevent over-amplification, thus
decreasing duplication rates. 3) Eight PCR reactions were amplified to enrich for
proper adaptor ligated fragments. 4) The final size selection of the library was
achieved by electrophoresis of the enriched library on a 4-10% PAGE gel, and
isolating 50 to 100 bp fractions within a window size of 350-400 bp, 300-400 bp
or 450-500 bp. The fractions collected include the Illumina adaptor sequences.
gPCR was used to determine library concentrations. Libraries were sequenced
on the Illumina GAIIx with a target of greater than 4X coverage of the human
genome. Four lanes of 2 X 101 bp read pairs were generated for each sample
with a minimum of 12 Gb per sample as a minimum passing criterion.

3.2.6 Sanger Institute
Authors: Thomas Keane and Jim Stalker

Genomic DNA was obtained from the Coriell Institute for Medical Research.
Three different types of libraries were produced: standard, high-complexity, and
noPCR. For all libraries we began with 5 ug of genomic DNA. The standard
libraries were constructed according to the manufacturer's recommendations
(Ilumina Inc, San Diego, CA). Each sample was fragmented using a disposable
nebulizer (Invitrogen) and purified using a giaquick column (Qiagen). DNA was
end-repaired and adaptors ligated to the ends of the DNA. Fragments of
approximately 300-400 bp were gel-purified and PCR amplified. For details of
the high-complexity and noPCR library preparation adaptations, see Quail et
al.1%, Flow cells were prepared, clusters generated, and processed flowcells were
paired-end sequenced from each end on either an Illumina Genome Analyzer II
(108 bp) or HiSeq 2000 (100 bp). For each lane, reads were aligned to
hg19/NCBI37 and HapMap genotype validation was performed.

3.2.7 lllumina
Author: Sean Humphray

Genomic DNA was acquired from the Coriell Institute for Medical Research. The
samples were sequenced between March and May 2010. Preparation of short-
insert paired-end Illumina sequencing libraries, flow cell preparation and cluster
generation was conducted as has been described previously!l. Briefly, genomic
DNA samples (4 ug) were randomly fragmented by nebulization and used to
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prepare paired-end sequencing libraries with average insert size of 303 bp
human insert and a 6% 1xSD. Libraries were denatured using NaOH (0.1 N) and
diluted in cold (4 °C) hybridisation buffer (5x SSC + 0.05 % Tween 20) prior to
seeding clusters on the surface of the flow cell. Cluster amplification,
linearization, blocking and hybridisation to the Read 1 sequencing primer were
carried out on a Cluster Station. Following the first sequencing read, flow cells
were held in situ and clusters were prepared for Read2 sequencing using the
[llumina Paired-End Module. Paired-end sequence reads of 101 bases were
generated using the Genome Analyzer IIX with v5 SBS reagent Kkits, as described
in the Illumina Genome Analyzer operating manual. Data were processed using
Real Time Analysis (RTA) v1.6.47.1. We generated an average of 17Gb PF (pass
filter) data for each sample. A total of 93% of PF reads had a raw read accuracy
of 2Q30.

3.3 Whole exome sequencing

3.3.1 Description of Exome consensus
Authors: Jin Yu, Laura Clarke, Gabor Marth

For the Phase 1 Exomes, three different versions of capture platforms were used.
The BCM-HGSC and BGI used the ‘SeqCap EZ Human Exome Library’ (v2.0 and
v1.0 respectively) from Nimblegen, whereas the BI and WUGSC used the
‘SureSelect All Exon V2 Target Enrichment’ kit from Agilent. We first defined a
consensus capture target region list by intersecting all the target design files (the
.bed files) with the NCBI CCDS database, and then added 50 bp at either side of
each consensus target. We used this extended target regions list for variant
calling.

In the subsequent QC exercise of exome calls, we discovered that we had
previously missed one of the three target design files from the intersection
described above. Therefore, we had used a more extensive exome target set in
our variant analyses. We updated the consensus target file by intersecting it with
the target design file we previously missed and used this corrected version in
exome data analyzing. Although the Exome variant calls were made from the
more extensive targets, our comparison between SNPs found in the low coverage
and the exome data (Figure 14) contains the correct intersection accounting for
all three design files. As we always used a superset of the consensus target
regions in exome variant calling, the shrinkage of the corrected version of
consensus target only has a minimal effect to our results. The two sets of
consensus targets files and README are hosted on the 1000 Genomes FTP12,

3.3.2 Baylor College of Medicine — Human Genome Sequencing Center
Author: Donna Muzny

SOLiD Library Construction
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DNA samples (5ug) were constructed into SOLiD precature libraries according to
a modified version of the manufacturer’s protocol (Applied Biosystems, Inc.).
Briefly, the genomic DNA was sheared into fragments of approximately 120 base
pairs with the Covaris S2 or E210 system as per manufacturer instruction
(Covaris, Inc. Woburn, MA). Fragments were processed through DNA End-
Repair (NEBNext End-Repair Module; Cat. No. E6050L) and A-tailing (NEBNext
dA-Tailing Module; Cat. No. E6053L). The resulting fragments were ligated with
BCM-HGSC-designed Truncated-TA (TrTA) P1 and TA-P2 adapters with the NEB
Quick Ligation Kit (Cat. No. M2200L). Solid Phase Reversible Immobilization
(SPRI) bead cleanup (Beckman Coulter Genomics, Inc.; Cat. No. A29152) was
used to purify the adapted fragments, after which nick translation and Ligation-
Mediated PCR (LM-PCR) was performed using Platinum PCR Supermix HIFi
(Invitrogen; Cat. No.12532-016) and 6 cycles of amplification. After bead
purification, PCR products’ quantification and their size distribution were
analyzed using the Agilent Bioanalyzer 2100 DNA Chip 7500. Primer sequences
and a complete library construction protocol are available on the Baylor Human
Genome Websitel3.

SOLiD Exome Capture

The pre-capture libraries (2 ug) were hybridized in solution to NimbleGen EZ
Exome 2.0 Solution Probes (~44 Mb of sequence targets from ~30K genes)
according to the manufacturer’s protocol with minor revisions. Specifically,
hybridization enhancing oligos TrTA-A and SOLiD-B replaced oligos PE-HE1 and
PE-HE2 and post-capture LM-PCR was performed using 12 cycles. Capture
libraries were quantified using PicoGreen (Cat. No. P7589) and their size
distribution analyzed using the Agilent Bioanalyzer 2100 DNA Chip 7500. The
efficiency of the capture was evaluated by performing a qPCR-based quality
check on the built-in controls (qPCR SYBR Green assays, Applied
Biosystems). Four standardized oligo sets, RUNX2, PRKG1, SMG1, and NLK, were
employed as internal quality controls. The enrichment of the capture libraries
was estimated to range from 7 to 9 fold over the background. Primer sequences
and a complete capture protocol are available on the Baylor Human Genome
Websitel3.

SOLiD Sequencing Methods

The captured libraries were clonally amplified onto 1 um beads using emulsion
PCR with a final library concentration of 0.70 to 0.85 pM. Emulsion PCR
reactions were processed using either the Life Technologies Full-Scale 2 ePCR
reaction protocol or a modified version of the Macro-Scale 8 ePCR reaction
protocol. As specified by the vendor, the full-scale reactions used the IKA Ultra-
Turrax to generate the emulsions followed by amplification with standard
thermal cycling methods. The 8X bulk emulsions were generated using a
Servodyne Electronic Mixer (Cole-Parmer, EW-50008-30, EW-50008-00) at a
speed of 780 rpm for 20 min. The 8X bulk reaction was then amplified in a
sealable bag using a Hydrocycler (K-Biosciences, HC-16) with the following
cycling conditions: denature for 10 min at 95°C, followed by 40 cycles of 1 min at
950°C, 2 min at 62°C and 2 min at 72°C with a final extension of 10 min at 72°C.
Beads were recovered by centrifugation with 2-butanol and 50 ml conical
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centrifuge tubes and then enriched and 3’ modified according to the Life
Technologies Macro-Scale 8 ePCR reaction protocol.

The 3’ modified template positive beads were deposited onto XD sequencing
slides, targeting approximately 300 K beads/panel and sequenced using SOLiD
V4 ToP reagents. Both barcode fragment and paired end sequencing methods
were used in this project. For barcoded methods, capture libraries were
individually captured and then pooled in sets of 4 samples after post-capture
amplification. The 4 sample barcode library pools were sequenced with SOLiD
Barcode Fragment Sequencing Kits (Life Technologies, 4452697). Here the first
5 bp barcode read is utilized to de-convolute the individual capture libraries
followed by a 50 bp forward read. Individual capture libraries were sequenced
with SOLiD Paired End Sequencing Kits (Life Technologies, 4459179) using a 35
bp reverse read followed by a 50 bp forward read. Base and quality calling for
the SOLiD data was performed on-instrument using standard vendor software
and settings.

3.3.3 Broad Institute
Author: Namrata Gupta

Whole exome library preparation was conducted using the same procedure
described in the Low Coverage sequencing section. In place of size selection, in-
solution hybrid selection was performed as described by Fisher et al°.
Sequencing procedures were the same as described for the Low Coverage
sequencing methods, with the exception that 76 bp paired-end reads were used.

3.3.4 Washington University
Author: Elaine Mardis

The Washington University Genome Institute utilized genomic DNA for exome
sequencing that was provided by the Coriell Institute for Medical Research.
[llumina libraries were constructed according to the manufacturer's
recommendations (Illumina Inc, San Diego, CA), with the following exceptions: 1)
1 ug of DNA was sheared using a Covaris S220 DNA Sonicator (Covaris, INC.
Woburn, MA) to a size range between 200-400 bp. 2) Four PCR reactions were
amplified for 8 cycles to enrich for proper adaptor ligated fragments. 3) A Solid
Phase Reversible Immobilization (SPRI) bead cleanup procedure was conducted
to select size fractions between 300 and 500 bp. Hybridizations were performed
utilizing the Agilent SureSelect Human All Exon v.2 kit. gPCR was used to
determine the quantity of captured library necessary for loading. Two lanes of 2
X 101 paired-end reads on an Illumina GAIIx were generated in order to produce
greater than 10 Gbp of sequence per sample. A minimum coverage of 70% of the
targeted region at 20X depth was used to determine a passing sample.

3.4 OMNI genotyping

Authors: George Grant, Wendy Brodeur, Diane Gage, and Andrew Crenshaw
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DNA samples were sent to the Broad Institute Genetic Analysis Platform
for genotyping. Initially all samples were typed usinga Sequenom MassArray
SNP Genotyping panel of 23 SNPs and one gender determining assay to establish
a genetic fingerprint. After gender concordance was verified the samples are
then placed on 96-well plates using the Illumina HumanOmni2.5-Quad v1-0
B SNP array. Omni genotypes were called using GenomeStudio v2010.3 with the
calling algorithm/genotyping module version 1.8.4 using the default cluster file
HumanOmni2.5-4v1-Multi_B.egt. Called genotypes were run through a standard
QC pipeline and only samples passing a call rate threshold of 97% and passing
genetic fingerprint and gender concordance were passed. The Broad Institute
did not filter any SNPs based on of technical quality control metrics. Only
samples passing an overall call rate of 97% criteria and standard identity check
were released.

3.5 Lane level identity checks

Authors: Laura Clarke, Xiangqun Zheng-Bradley, Richard E. Smith, and Petr
Danecek

Each run was subsampled (typically 250-500Mb) and aligned to the reference
genome. GLFtools!* checkGenotype was then used to calculate genotype
likelihoods for all the sites and these are compared to the known genotypes of all
the samples. A total log likelihood for each possible sample is calculated and
scaled according to the number of sites available for each possible sample. The
ratio of the second most likely sample to the most likely sample is calculated and
provided it is greater than 1.2 then the most likely sample is considered to be
correct. If the most likely sample does not match expectations, or the ratio is less
than 1.2, then the lane was withdrawn from further analysis and the production
center responsible informed for further investigation. Many sample swaps could
be resolved using this process, with the lane reassigned and reintroduced into
the analysis process.

3.6 Post-alignment identity and contamination checks

Authors: Laura Clarke, Xiangqun Zheng-Bradley, Richard E. Smith, and Hyun Min
Kang

The Project also performed sample identify and contamination checks on the
alignment files using the VerifyBamID program?!5. The algorithm establishes
whether the aligned reads match the genotypes from the given individual or
another individual. The algorithm also can identify if an alignment is
contaminated with non-sample DNA. For each aligned base that overlaps a
known genotype, the probability that it was derived from a given individual is
calculated. The program finds the individual whose genotypes best match the
genotypes predicted by the alignment. If this does not match the expected
sample the BAM file is further assessed to establish if this is problem is from just
one of the runs contributing to the alignment or found in all of them. Any
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contaminated alignments are withdrawn from the analysis process and the
production sequencing center notified to further investigate. As with the
sequence level sample QC, if a run can subsequently be associated with the
correct individual it was reinstated in the Project.

3.7 Analysis of cryptic relatedness and other sample identity checks
Author: James Nemesh

We analyzed genome-wide SNP data (generated using the Illumina Omni 2.5
array) to evaluate genetic relatedness of the samples eligible for sequencing by
the 1000 Genomes Project. Our analysis used Plink® to generate an estimate of
%IBD1 and %IBD2 (identity by descent) for each pair of individuals in each
population (using the --genome command in Plink). These results were then
categorized into different types of relationships using custom software written
in R.

Three classes of relationships were categorized. “Parent-Child” relationships
were defined as individuals sharing an entire haploid genome (criterion: 100%
of their genomes IBD1.) “Sibling” relationships were defined by individuals
sharing 25% of their genomes IBD2 and 50% IBD1. “Second-order”
relationships refer to a class of relationships including uncle-niece, grandparent-
grandchild, and half sibling, all of which involve an expected 50% IBD1 and 50%
IBDO. IBD was calculated for each pair of individuals in a population, and the
results were clustered by their IBD1 and IBD2 into these classes.

Any discovered cryptic relationships were validated by checking the expected
IBD levels for the indirect, derived relationships implied by the cryptic
relationships. For example, if two individuals in separate trios are found to be
siblings, each sibling should have an avuncular relationship to the other sibling’s
child. The inferred relationships are shown in Table S10.

We conducted further analysis to detect potential sample purity or identity
issues in each population. The problematic signal involves a modest level of
predicted IBD1 “relationship” between one sample and many other samples in
the population. This can arise when a DNA sample or cell line is contaminated
with DNA or cells from another individual. In both of the cases we identified
(NA20760 in TSI and NA20278 in ASW) the samples exhibited both a low level of
IBD to many samples in the population, as well as having the highest
heterozygosity in their respective populations.

4 Data processing

4.1 Low coverage lllumina and 454 processing

Authors: Shane McCarthy and Sendu Bala

18



Low coverage Illumina data was aligned to the reference using bwa v0.5.517. First
indexing the genome reference sequence was indexed using the command “bwa
index -a bwtsw”. To align, the command “bwa aln -q 15” was used to find suffix
array coordinates of good hits for each individual read. A chromosomal
coordinate sorted BAM file was then generated using the bwa sampe option for
paired-end reads or the bwa samse option for unpaired reads.

Low coverage LS454 data was aligned to the reference using ssaha v2.518 by first
precomputing the hash index using the command “ssaha2Build -skip 3 -save $ref
$ref’, where $ref is the reference fasta file. Reads were filtered to remove those
shorter than 30 bp, then mapped independently using “ssaha2 -disk -454 -output
cigar -diff 10 -save $ref’. The top 10 hits for each read were recorded. The cigar
output was then converted to BAM format, taking into account whether the reads
were paired and the expected library insert size. For paired reads, if both ends
aligned uniquely, then the reads were assigned to these positions. If one end
mapped uniquely and the other end had multiple hits, then the multiple hit read
was placed at the position closest to the expected insert size. If both ends
mapped with multiple hits, then the reads were placed at the location closest to
the expected insert size and the mapping quality set to zero.

The lane-level alignment BAMs were further processed to increase the quality
and speed of subsequent SNP calling using tools from GATK!%20 and samtools?1.
Reads underwent local realignment around known indels from the 1000
Genomes Pilot® using the GATK IndelRealigner command. Next, mate
information in the resulting BAMs was fixed and coordinate sorted using the
Picard package FixMatelnformation command® Read qualities were then
recalibrated using the GATK TableRecalibration package, masking SNPs from
dbSNP release 129. Finally, the command “samtools calmd -r” was used to
introduce BQ tags?2 which could be used during SNP calling.

The processed BAMs were merged to create the release BAM files available for
download. This process began by removing extraneous tags (0Q, XM, XG, and XO)
to reduce total file size by around 30%. Next, lanes from the same library were
merged using the Picard MergeSamFiles command, with PCR duplicates
subsequently marked in these library-level BAMs (Picard MarkDuplicates).
Library-level BAMs were merged (Picard MergeSamFiles) to the platform level,
to produce a single BAM file for each of the sequencing platforms used to
sequence each sample. Finally, the platform level BAMs were split into two
separate BAM files - one containing all reads that mapped to the reference and
one containing reads which did not map.

4.2 Low coverage SOLiD read mapping

Author: David Craig

SOLID fastq files were obtained from 1000 Genomes’ DCC server based on the
2010/11/23 sequence index. Mate-pair 25mer reads and single-ended were not
included in Phase 1 release as these samples were already sequenced on
[llumina and/or 454 with longer paired reads. Reads were aligned to GRCh37
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using BFAST?3 version 0.64e with the following settings: maxKeyMatches=8,
maxNumMatches=384, queueLength=25000, local align offset=20,
minMappingQuality=10, minNormalizedScore=36, and algorithm=3. SRR/ERR
level outputs were realigned with GATK’s indel realigner tool (V:1.0.04418)329,
followed by FixMatelnformation within Picard8. Following realignment, lane
level BAM files were recalibrated with GATK (V:1.0.4705). After recalibration
BAM files had certain fields removed to only include RG, X1, NM, XT, MD, CS, CQ
in order to reduce file size. These BAMs were then ready to be merged to sample
level. After merging they went through Picard’s mark duplicates tool. All BAMs
were split by chromosome. Finally BAI, BAS, and md5sum files were generated
for each BAM before they were transferred back to DCC.

4.3 Exome lllumina read mapping
Authors: Alistair Ward, Wan-Ping Lee, and Gabor Marth

Exome I[llumina data was mapped at Boston College using the Mosaik pipeline
described in Section 4.5 below.

4.4 Exome SOLiD read mapping
Authors: Jeffrey Reid, Christie L. Kovar, and Fuli Yu*
* Corresponding Author

Read and quality data were copied into our data-center where individual
sequence events were split into 10M read bundles to undergo preliminary
mapping using BFAST?3. After read group bundles were mapped, their results
were merged back into a single sequence-event-level BAM, and where necessary,
these BAMs were merged into a sample-level BAM using Picard8, and duplicate
reads were marked at the library level using SAMtools2l. Alignment metrics and
uniqueness were evaluated to confirm that the sequencing performed as
expected. To gauge the overall performance of the capture process, sample-level
BAMs were also subjected to a capture analysis QC pipeline to obtain additional
metrics such as the proportion of the aligned reads that mapped to the targeted
region and the proportion of targeted bases at various coverage levels. Samples
that met a minimum of 70% of the targeted bases at 20X or greater coverage
were submitted for subsequent analysis and QC. In addition, sample
concordance analysis was also performed by comparing SNP array genotypes to
the sequencing data to confirm sample identity and evaluate contamination.

4.5 MOSAIK low coverage and exome read mappings

Authors: Gabor Marth, Chunlin Xiao, Erik Garrison, Wan-Ping Lee, Stephen Sherry
and Alistair Ward
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Phase I data was mapped using Mosaik?4 read mapping software collaboratively
between Boston College (BC) and the National Center for Biotechnology
Information (NCBI). A hash-seeded Smith-Waterman algorithm is utilized for all
sequencing technologies in the project (Illumina, LS454 and SOLiD). The input
parameters and specifics of the alignment pipeline were technology, read and
fragment length dependent. The Mosaik aligner rescues unmapped or multiply-
mapped read fragments by searching for mapping locations that meet library-
specific fragment length and read orientation criteria. The identification of
properly mapped pairs was performed using BCs BamTools2> software.
Duplicate marking was performed using Picard® for all [llumina and SOLiD data,
and BCMMarkDupes was used for LS454 data. GATK!%20 was used for base
quality recalibration. All of the low coverage data were mapped at the NCBI and
all of the exome data (including the official lllumina exome BAMs) were mapped
at BC.

5 Variant calling

5.1 Low coverage and Exome SNP calling: Broad
Authors: Guillermo del Angel, Ryan Poplin, Mark DePristo, and Eric Banks”
* Corresponding Author

Low coverage SNP calling was performed on the project official low-coverage
BAM files. Exome SNP calling was carried out using Illumina data only on BAM
files produced locally at the Broad Institute using an equivalent pipeline to the
official low coverage BAMs. These BAMs are available in a separate location on
the project FTP site?26.

The Broad Institute produced a SNP callset for both the low coverage and exome
samples using the GATK’s Unified Genotyper. This multiple-sample, technology-
aware SNP and indel caller uses a Bayesian genotype likelihood model to
estimate simultaneously the most likely genotypes and allele frequency in a
population of N samples, emitting an accurate posterior probability of there
being a segregating variant allele at each locus as well as for the genotype of each
sample. Mathematical details are given in DePristo et al'°.

Given a set of putative variants along with SNP error covariate annotations,
variant quality score recalibration employs a variational Bayes Gaussian mixture
model to estimate the probability that each variant is a true polymorphism in the
samples rather than a sequencer, alignment or data processing artifact. The set
of variantsis treated as ann-dimensional point cloud in which each
variant is positioned by its covariate annotation vector. A mixture of Gaussians is
fit to a set of likely true variants. Here, we used the variants already present
in HapMap 3 as well as those variants that were found to be polymorphic by the
Omni chip were used as ‘true’ variants. Following training, this mixture model is
used to estimate the probability of each variant call being true, capturing the
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intuition that variants with similar characteristics to previously known variants
are likely to be real, whereas those with unusual characteristics are more likely
to be machine or data processing artifacts.

The following error covariate statistics are calculated on a per-site basis and are

used by the variant quality score recalibrator to model error.

* QualByDepth. The variant quality score (the confidence assigned by the
unified genotyper in the site being a variant site) divided by the number of
reads in the pileup. This statistic captures the intuition that as sequencing
depth increases the confidence in the site should also increase if it is a real
variant.

* DepthOfCoverage. The number of passing reads which cover this site.

* HaplotypeScore. A measure for how well the data from a 10 base window
around the SNP can be explained by at most two haplotypes. In the case
of mismapped reads, the pattern of mismatches around the SNP would seem
to imply many more than two haplotypes and is indicative of error.

* MappingQualityRankSum. A Wilcoxonrank sum test that tests the
hypothesis that the reads carrying the alternate base have a consistently
lower mapping quality than the reads with the reference base.

* ReadPositionRankSum. A Wilcoxonrank sum test which tests the
hypothesis that the alternate base is consistently found more often at the
beginning or ending of the read instead of randomly distributed throughout.
A bias would indicate that the reads are mismapped.

* FisherStrand. The p-value from a Fisher’s exact test of the strandedness
(positive or negative) of reads which hold the alternate allele versus those
that hold the reference allele.

* RMSMappingQuality. The root mean square of the mapping quality of all
reads covering this site.

* InbreedingCoefficient. The population genetics F-statistic. The degree of
reduction or excess of heterozygosity when compared to the Hardy-
Weinberg expectation.

5.2 Low coverage SNP calling: Baylor College of Medicine HGSC
Authors: Yi Wang, James Lu, Fuli Yu*
* Corresponding Author

The Phase 1 Low coverage data presented a challenge for reliable identification
of SNP sites and accurate genotyping due to heterogeneity in sequencing
technologies and the alignment methods. At the Baylor College of Medicine
Human Genome Sequencing Center (BCM-HGSC), we developed the SNPTools
integrative pipeline?? for the purposes of variant calling, which achieved high
quality for (1) variant site discovery, (2) genotype likelihood estimation, and (3)
genotype/haplotype inference via imputation?28. It has demonstrated especially
high performance when dealing with the Phase 1 low coverage data that was
collected from heterogeneous platforms (Illumina, SOLiD, and Roche 454).
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SNPTools applies a variance ratio statistic?® to discover SNP sites. This statistic
compares the difference in variation contributed from the variant read coverage
(in case that they are true positives), and the variation that would be due to
sequencing and mapping errors (in case that they are false positives). The larger
the variance ratio statistic is, the more likely the site is a true polymorphic site.
We identified 34.14 million SNPs from the Phase I samples, the overall Ti/Tv rate
was 2.14. The novel sites were ~88.2% of our discoveries, and their Ti/Tv was
2.13, indicating high quality.

The next stage is to estimate the genotype likelihoods by clustering all candidate
sites within each particular BAM file to overcome data heterogeneity using a
binomial mixture model - this is named as the ‘BAM-specific Binomial Mixture
Model’ (BBMM). BBMM normalizes the heterogeneity within each sample BAM
by estimating BAM/sample specific parameters. It takes into consideration all
the variant sites identified from the sample collection (30-40 million sites in
~1000 individuals), and clusters across sites in one particular BAM to estimate
the genotype likelihoods. By clustering the scaled read coverage across millions
of sites, it substantially reduces the variance and improves the accuracy in the
genotype likelihood estimation. The BBMM can effectively overcome the
heterogeneity in the low coverage data. The genotype likelihoods are passed to
an imputation engine to refine the individual genotypes and produce phased
haplotypes.

5.3 Low coverage SNP calling: University of Michigan
Authors: Hyun Min Kang, Mary Kate Trost, and Goncalo Abecasis

The UMAKE SNP calling pipeline2? was used to produce low coverage SNP calls
contributed by University of Michigan. The pipeline first computes genotype
likelihood for each platform using the default samtools genotype likelihood
model, after adjusting by per-base alignment quality (BAQ)%2. Genotype
likelihoods are merged across platforms if needed. This strategy effectively
assumes dependency between base calling errors within a platform, but no
dependency across platforms.

To detect polymorphic sites, we used Brent’s algorithm3% to obtain maximum
likelihood estimates of allele frequency at each locus. We compared
Likelihood[no-variant] to Likelihood[variant] under uniform prior between each
3 possible polymorphisms. Sites were considered as potentially polymorphic
when the posterior probability of a variant call was ~0.70 (corresponding to a
phred scaled quality score of 5), with neutral allele frequency spectrum under a
constant population size at average mutation rate of 0.001. When calling variants
on the X chromosome, the males are modeled as haploids except for the pseudo-
autosomal regions (PAR) and females are modeled as diploids.

The candidate variant sites were filtered based on multiple per-site feature
statistics, including (1) expected fraction of reference base at heterozygous allele
(allele balance) (2) average depth across the samples (3) Pearson’s correlation
coefficient and z-score between strand and allele (strand bias metric) (4)
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correlation between machine cycle and allele (cycle bias), and (5) distance to
nearby 1000 Genomes pilot 1 indels. For each of these features, a manually
chosen threshold based on the empirical distribution of feature statistics,
transition to transversion ratio, and overlap with HapMap SNPs was determined
and filtered out the variants beyond the threshold. Each feature was
independently considered during the filtering, and the sites that did not pass at
least one criterion were filtered out from the call set.

From the procedure described above a total of 34,515,663 SNPs were identified.
The transition to transversion ratio (Ts/Tv) for the variants overlapping with
dbSNP build 129 was 2.14, and 2.16 for the rest of the variants. 98.63% of
HapMap3 SNPs were rediscovered in this call set.

5.4 Low coverage SNP and indel calling: Sanger
Author: Petr Danecek

The Sanger low coverage SNP and indel calls were made by samtools and
bcftools version 0.1.17 (r973:277)%1. Samtools was used to generate all-site all-
sample BCF files (samtools mpileup -C50 -m2 -F0.0005 -d 10000 -P ILLUMINA)
with bcftools subsequently used to call variants (bcftools view -p 0.99 -bvcgs).
Calling was conducted separately within the four continental groups, AMR, AFR,
ASN, and EUR. The calls were then merged and filtered (StrandBias 1le-5;
EndDistBias 1e-7; MaxDP 10000; MinDP 2; Qual 3; SnpCluster 5,10; MinAltBases
2; MinMQ 10; SnpGap 3). The pseudoautosomal regions on chrX (60001-
2699520 and 154931044-155270560) were treated as diploid in male samples.

5.5 Low coverage SNP calling: NCBI

Authors: Chunlin Xiao, Tom Blackwell, Alistair Ward, Erik Garrison, Wan-Ping Lee,
Hyun Min Kang, Mary Kate Trost, Gabor Marth, Goncalo Abecasis, and Stephen
Sherry

The NCBI used a consensus calling strategy to generate a high-quality set of SNP
calls. The strategy was based on the Boston College’s freeBayes (version 0.4.2)
and the UM’s glfMultiples (version 2010-06-16) from a pool of 1094 samples,
including 946 Illumina and 15 Roche454 BAM files generated with the Mosaik
aligner, and 142 SOLiD BAMs generated with the Bfast aligner. The two SNP
callers were used to generate two independent raw callsets with default
settings. Then two raw callsets were intersected to create a consensus SNP
callset to maximize confidence in the SNPs. The NCBI discovered 30,686,612
SNPs in the autosome with a transition to transversion ratio (Ts/Tv) of
2.29. 25.16% of the sites were previously known according to dbSNP Build129,
and 98.4% of HapMap3 SNPs were rediscovered by this call set.

5.6 Exome SNP calling: Baylor College of Medicine HGSC

24



Authors: Jin Yu, Danny Challis, Uday Evani, Fuli Yu*
* Corresponding Author

For the Phase 1 Exomes, two different capture platforms were applied (see
above). The BCM-HGSC and BGI used the SeqCap EZ Human Exome Library (v2.0
and v1.0 respectively) from Nimblegen, whereas the BI and WUGSC used
SureSelect All Exon V2 Target Enrichment kit from Agilent. We first defined a
consensus capture target region3! by intersecting the two different target design
files (the .bed files) with the NCBI CCDS database.

SNPs and indels were called using the Atlas2 Suite3233, Atlas2 has capabilities for
calling variants in high coverage next-generation sequencing data on multiple
sequencing platforms (i.e. [llumina, Roche 454) for both SNPs and short-range
(within tens of bps) indels. The Atlas2 Suite makes use of logistic regression
models trained on whole exome capture sequencing (WECS) data to identify SNP
and indel sites with high sensitivity and specificity, and subsequently produce
accurate genotypes.

5.7 Exome SNP calling: University of Michigan
Authors: Hyun Min Kang, Goo Jun, Mary Kate Trost, and Goncalo Abecasis

The exome SNP calls were produced using the UMAKE SNP calling pipeline2®
consistent with low coverage calling with the following key differences. First,
two call sets were generated separately for the Illumina and SOLiD platform.
Second, SNPs were called only within 50 bp from the consensus target region.
Third, the reads with mapping quality less than 20 were removed prior to
calculating the genotype likelihoods. Fourth, the minimum posterior probability
of a variant call was set to 0.90 (corresponding to a phred scale quality score 10).
Finally, for the SOLiD exome sequence data where the base quality of aligned
sequence reads were not empirically calibrated, we recalibrated the base quality
using the GATK software (version 6128)20 locally at Michigan with default
parameters under the color space.

The candidate variant sites were filtered based on the per-site feature statistics
used for the low coverage SNP calling, but the threshold for each feature was
chosen differently based on the empirical distribution of the statistics. The
thresholds were determined separately for the Illumina and the SOLiD platform.

Across the 822 samples sequenced on the Illumina platform, a total of 628,533
SNPs were identified, and 352,702 (56.1%) of them reside within the target
region. The Ts/Tv for the dbSNP build 129 SNPs was 2.96 and 2.80 for the rest of
the variants. 569,966 SNPs (90.7%) were included in the consensus exome SNPs.
For the 306 samples sequenced in the SOLiD platform, 342,756 SNPs were
identified, with 198,069 (57.8%) on target. The Ts/Tv ratios were 3.08 and 2.74
for SNPs within and outside of dbSNP129. A total of 324,730 (94.7%) of these
SNPs were included in the consensus SNPs.
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5.8 Exome SNP calling: Weill Cornell Medical College
Author: Juan Rodriguez-Flores

Genotypes for SNPs were called in 822 exomes sequenced on the Illumina
platform and mapped using Mosaik. Genotyping was conducted in two phases:
site discovery and genotyping. The site discovery phase involved identifying all
possible SNPs in the 822 exomes, genotyping each exome separately and
merging the sites discovered with a summary by population. The genotyping
phase involved population-based genotyping at variant sites identified in the
discovery phase. For each population (GBR, TSI, FIN, CEU, CHS, CHB, JPT, YRI,
LWK, ASW, MXL, PUR, CLM), genotypes were called for all individuals of the
population simultaneously, limiting the calling to sites identified in the discovery
phase. The site list for genotyping was a consensus site list that excluded low-
quality SNPs from the discovery phase that were identified by a support vector
machine, and added high-confidence SNPs identified by other call sets.

The discovery site list included all autosomal SNPs identified by SAMTools?!
version 0.1.17 with SNP quality > 100 in one or more of the 822 exomes, limited
to bases with quality > 17. In order to combine the individual calls, for each
variant site the alternate allele was compared and verified to be consistent
across samples. In cases where multiple alternate alleles were observed, the site
was excluded. The depth and alternate allele count for each site was summed
and included in the INFO column, with the depth limited to bases of quality > 17
summed across 822 exomes. The reported QUAL score is the lowest reported
quality for an individual exome. A population-specific INFO tag was included, this
lists for each SNP three-letter population codes where the SNP was observed in
one or more exomes. Over 53% of SNPs were observed in only one population,
with 5.4% observed in all 13 populations at least once. Called sites were limited
to sites in the consensus target list +/- 50bp.

The WCMC site list was compared to call sets from Boston College (BC), Baylor
(BCM), University of Michigan (UMich) generated from the same set of 822 of
[llumina reads mapped using Mosaik. Concordance with other site lists was
>98% when compared to BCM and UMich calls, lower (61.6%) when compared
to BC. The total site list included 482,272 SNPs, with a Ts:Tv ratio of 2.94. The
overlap with databases of variants includes 38.6% in dbSNP version 132, 6.3% in
HapMap 3, and 67.2% in the consensus site list based on low coverage whole-
genome sequencing. A fifth call set based on BWA alignments generated by the
Broad was then compared to the four call sets based on Mosaik alignments. All
five call sets included autosomal SNPs, and only the WCMC call set excluded sites
with multiple alternate alleles. The Broad call set included indels. Both the Broad
and UMich call sets include X and Y chromosome sites. The Ts:Tv ratio for the
WCMC call set was within the range of other call sets for all SNPs, exonic SNPS,
nonsynonymous SNPs and SNPs outside RefSeq transcripts, based on functional
classification in RefSeq transcripts using ANNOVAR34,

In the genotyping phase, the exomes were genotyped at all variant sites
identified in the discovery phase, minus sites filtered out by the SVM filter and
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with the addition of high-confidence sites identified by the SVM filter in another
call set (BC, UMich, BCM, or Broad). The SVM consensus site list includes 597,687
SNPs. No minimum quality score filtering was applied to this call set, and all
observed alternate alleles were kept. The combined call set summary VCF file
includes all alternate alleles observed (in order of decreasing frequency), the
minimum quality score for a population where the variant was observed, and the
combined depth and allele count across all populations. Population-specific
information in the VCF file includes the number of populations where the SNP
was observed (NPOP), and the alternate allele count observed in each population
(POPAQ). For sites where multiple alternate alleles were observed, the alternate
alleles in each population are listed (POPALT). The Ts:Tv ratio for the major
alternate allele was 2.8 (436,186 transitions and 155,281 transversions),
excluding 6,220 sites in the SVM consensus site list where no SNPs were
observed in this call set.

5.9 Variant calling from MOSAIK alignments
Authors: Erik Garrison, Alistair Ward, and Gabor Marth

SNP, MNP and indel calls were generated for the low coverage and the exome
data using Mosaik alignments and BCs freebayes3> Bayesian variant calling
software. The variant calling pipeline included a left-realignment step
(bamleftalign3>) to ensure that all indels were left-aligned in order to be
consistent with the project conventions. In some situations, local misalignment
of larger indels results in spurious, artifactual mismatches or gaps. BCs ogap3°
software was used to realign all reads with embedded gaps using alignment
parameters designed to replace multiple putative in-phase indels and SNPs with
lesser number of larger events. This process does not introduce new
mismatches or gaps into the alignments. Finally the BAQ model implemented in
samtools?1.22 (samtools calmd) was applied to the reads to incorporate local
alignment quality into base quality. Following these preprocessing steps,
variants were called by assessing the BAM files from all populations
simultaneously and all bi- and multi-allelic variants were reported in the VCF
format3’. Genotypes and genotype likelihoods were also generated for each
sample at each variant site.

In order to consider a variant allele, low coverage data required a minimum of
two observations of the alternate allele. Due to increased coverage in the exome
data, this requirement was increased to a minimum of five reads supporting an
alternate allele in order to consider the variant. The Bayesian model
implemented in freebayes3> establishes the posterior probability that a given
locus is polymorphic in the samples under analysis given a neutral model for
allelic diffusion and differentiation. The prior probability model combines an
estimate of the probability of sampling a given set of allele frequencies provided
an expected pairwise heterozygosity rate (Ewens Sampling Formula) with the
discrete sampling probability of the set of genotypes given the allele frequencies,
which effectively incorporates the neutral expectations of genotype frequencies
under Hardy-Weinberg equilibrium. The resulting variants were filtered on
estimated posterior probability of polymorphism and alternate allele balance
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among heterozygotes using BCs vcffilter (part of the vcflib38 package) to remove
low quality SNPs.

BC called 33,324,407 SNPs in the autosomes of the 1,094 samples. 23.8% of
these were known sites (contained in dbSNP). The TsTv ratio for these sites was
2.12 (2.1 for novel sites and 2.17 for known). The Illumina exome data (822
samples) yielded 344,781 SNPs with a TsTv ratio of 3.18 (3.09 for the novel sites
and 3.52 for the known sites. 22.1% of the exome sites were previously known).
The SOLiD exome data (306 samples) yielded 176,637 SNPs with a TsTv ratio of
3.34 (3.22 for novel sites and 3.58 for known sites. 36% of the sites were
previously known).

BCs vcfCTools3? software was used to perform set analysis (union, unique and
intersections) between the variant calls made at BC and those made by the
Broad, Baylor, NCBI and Cornell.

5.10 Creation of low coverage SNP consensus
Authors: Guillermo del Angel, Ryan Poplin, Mark DePristo, and Eric Banks”
* Corresponding Author

The GATK%20 was used to generate a consensus project callset from the six
individual sets submitted by the various centers. A high-level view of the process
used to build the project consensus is as follows:

1) First pool together all SNP calls made by any center. For the Phase 1 calls this
list was approximately 46.3 million SNPs.
2) Re-call at all SNP sites using the GATK's Unified Genotyper with project BAM
files that in addition have been fully indel realigned at the population level. The
calls were made by dividing the samples into nine overlapping analysis panels as
follows:

* EUR=CEU + FIN + GBR + TSI + IBS

* EUR.admixed = CEU + FIN + GBR + TSI + IBS + MXL + CLM + PUR + ASW

* AFR=LWK+ YRI + ASW

* AFR.admixed = LWK + YRI + ASW + CLM + PUR

e ASN=CHB + CHS +JPT

* ASN.admixed = CHB + CHS + JPT + MXL + CLM + PUR

e AMR=MXL + CLM + PUR

* AMR.admixed = MXL + CLM + PUR + ASW

* ALL populations

3) The Unified Genotyper additionally adds several important statistics,
calculated on a per-site basis, which will be used by the variant quality score
recalibrator. These statistics were explained in more detail above and are the
same as those used to produce the Broad Institute SNP callset.

4) Apply the Variant Quality Score Recalibrator genome-wide to train a Gaussian
mixture model over the same eight per-site error covariates listed in Section 5.1
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(QualByDepth, DepthOfCoverage, HaplotypeScore, MappingQualityRankSum,
ReadPositionRankSum, FisherStrand, RMSMappingQuality, and
InbreedingCoefficient). Each input variant is assigned a VQSLOD score, which is
the log odds ratio between the probability that the SNP is true or false given the
model. In addition to using the error covariate statistics the model incorporates a
prior probability of being a true variant which is based on the number
of callsets that the original variant is found in. This captures the intuition that
variants called independently by multiple callers are more likely to be real. The
prior used here is Q<10X>, where X is number of callsets the variants was found
in.

5) Partition the list of variants into those that are PASSing and those which are
filtered out by choosing the VQSLOD value which gives 99.8% sensitivity to the
accessible HapMap3 variants.

This procedure produces a high quality and statistically principled consensus set
of sites.

5.11 Generation of consensus Exome SNP call set
Authors: Hyun Min Kang, Goo Jun, Mary Kate Trost, and Goncalo Abecasis

For each Illumina and SOLiD platform, a union exome call set (across 5 sets for
the Illumina platform and across 3 for the SOLiD platform) was produced. Each
union call set was filtered jointly by multiple criteria using Support Vector
Machine (SVM) approach described as follows.

First, for each candidate variant site, per-site feature statistics including allele
balance, strand bias, cycle bias, average depth, and inbreeding coefficient
statistics were calculated from aligned sequence reads.

Second, a preliminary filter was applied for each feature separately based on a
threshold manually determined from the empirical distribution of the feature
statistics, similar to the filtering step in the Michigan Exome SNP calling. Then
each site is annotated by each filtering criterion whether the site met (PASS) or
did not meet (FAIL) the criterion. In addition, each individual call set was
considered as an additional filter by annotating each as present (PASS) or absent
(FAIL) in the individual call set. After this preliminary filtering step, each
candidate variant site is annotated by multiple PASS or FAIL labels across
multiple filtering criteria.

Third, we apply a SVM model by labeling sites filtered out by three or more
criteria as negative labels, and considered sites overlapping with HapMap SNPs
as positive labels. Each feature statistic was normalized using an inverse normal
transformation, and a SVM model with Gaussian radial was applied with the
assigned label to score each variant with a SVM score. Variants with positive SVM
score were considered as consensus SNP.

In the SOLiD exome consensus call set, the singletons exclusively called by Baylor
College had noticeably smaller overlap with low coverage SNPs with much lower
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deamination (G->A,C->T) to deamination (A->G,T->C) ratio compared to the
other call sets. We refined the consensus call set by additionally filtering out the
variants supported by less than 3 effective variant reads (see Baylor Exome SNP
calling for details) from the variants exclusive to Baylor’s call sets. As a result,
6,805 SNPs were additionally filtered out from the consensus call set.

A total of 597,695 SNPs and 356,114 SNPs passed the SVM consensus approach
for the 822 Illumina samples and the 306 SOLiD samples, respectively. The
Ts/Tv ratios for SNPs known and novel to dbSNP129 were 2.98 and 2.74 for the
[MNlumina call set, and 3.09 and 2.91 for the SOLiD call set. The SVM consensus
approach produced better quality metrics than the consensus call set by simple
voting strategy. For example, when a 3-out-of-5 or 2-out-of-3 consensus
approach was used for the Illumina and SOLiD platforms, respectively, slightly
fewer SNPs passed the criteria than SVM consensus call set, but the overlaps
with SNPs monomorphic in the Omni2.5 genotype platform increased by 25%
and 36% for each platform.

5.12 Low coverage and exome indel calling: Broad
Authors: Guillermo del Angel, Ryan Poplin, Mark DePristo, and Eric Banks”
* Corresponding Author

As for SNP calling at the Broad, low coverage indel calling was performed on the
project official low-coverage BAM files. However, exome indel calling was carried
out using Illumina data only on BAM files produced locally at the Broad Institute
using an equivalent pipeline to the official low coverage BAMs. These BAMs are
available in a separate location on the project FTP siteZ2®.

The Broad Institute produced an indel dataset consisting of genomic sites and
genotype likelihoods for all low coverage samples, as well as for the 822 exome
samples sequenced with I[llumina technology. The production of both datasets
followed the same procedure:

1. Realignment around Indels in reads

The purpose of this step is to create consensus indels in the reads so that base
mismatches are minimized. Each sample was realigned independently,
considering as candidate sites known indels, as well as sites where the read
mapping software introduced insertions or deletions.

2. Choose candidate sites and alleles to genotype

For each indel present in reads after realignment, a simple counting algorithm
was used to create candidate indel sites and alleles: if a candidate indel allele was
present in at least 5 reads at a site, it would be passed over to the next step for
genotyping, or otherwise it was excluded. At most only one alternate allele was
output per site (i.e. only biallelic calls were produced). If a site had multiple
alternate alleles present, the allele with highest count in reads was chosen.
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3. Genotype candidate alleles on each sample

For each candidate site, the genotype likelihoods were computed for each
sample. Likelihood computation involved forming 2 candidate haplotypes per
site, one containing only the reference allele and the other containing the
alternate allele, and then scoring each sample’s read against each of these 2
haplotypes. The likelihood of each read scored against each haplotype was
computed using a Pair Hidden Markov Model#? using affine gap penalties.

4. Compute site qualities and attributes and post-filter variants
Based on the Genotype Likelihoods computed at the previous step, the Allele
Frequency distribution was computed for each site. Only sites with a probability
of being variant that exceeded 0.6 (Phred-scaled Q value 4.0) were kept.
Additionally, several site attributes were computed. In particular, the following
attributes were computed in order to serve as statistics for subsequent filtering,
with each attribute’s computation and meaning being the same as in the SNP
case:

* FisherStrand

* QualByDepth

* ReadPosRankSum

* InbreedingCoeff

Only variants whose attributes fell within empirically derived thresholds for
each annotation were kept. After filtration, the resulting low coverage callset had
5,543,104 variants, out of which 1,651,867 were insertions, 3,578,869 were
deletions and 312,368 were complex substitutions. The resulting exome callset
had 11,240 insertions, 21,944 deletions and 1,723 complex substitutions.

Exome indels were called using the same statistical algorithm as described above
but due to the limited number of indels in the exome callset machine learning of
error modes was not possible. Consequently the following hard filters were
applied:

* QualByDepth < 2.0

* ReadPosRankSum < -20.0

* InbreedingCoeff <-0.8
* FisherStrand > 200.0

5.13 Low coverage indel calling: Sanger
Author: Petr Danecek

Low coverage indel calls from the Sanger were called by samtools?! using the
procedure described in the SNP calling section (Section 5.4).

5.14 Low coverage indel calling: Dindel2

Author: Kees Albers
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The Dindel2 algorithm realigns reads to candidate haplotypes using a
probabilistic approach based on the read-haplotype alignment probabilistic
model described in Albers et al.#1. The main differences are that Dindel2 uses a
multi-sample haplotype caller based on a model selection approach rather than a
pooled Bayesian EM algorithm, and that it uses a banded gapped alignment of
the read to two seed positions in the candidate alignment.

Individuals in the same population group were analyzed jointly. First, all indels
identified by the read mapper (BWA) were extracted from the alignments. All of
these indels were tested by realigning the reads against candidate haplotypes
consisting of the reference haplotype and the alternative haplotype resulting
from the indel. Second, all indels called in the first step were retested, however,
allowing for at most two nearby SNPs, thus potentially realigning all reads to at
most 8 candidate haplotypes consisting of candidate SNPs and one candidate
indel. Third, all indels called in the second step were subjected to a post-analysis
filter step. All indel calls satisfying at least one of the following criteria were
filtered: Bayes factor for strand bias was >4.0, called from only one fragment,
indel is in a homopolymer run longer than 10 nucleotides, more than 90% of
reads have mapping quality below Q30, or more than 90% of the reads have the
indel positioned in the first or last 10 bases.

5.15 Low coverage indel calling: Oxford
Author: Gerton Lunter

Platypus is a haplotype-based variant caller42. The program integrates the calling
of SNP and indel variants of up to 50 bp, using a 3-step process. First, candidates
for SNP and indel polymorphisms are generated usiong the input reads from all
population samples and their alignment to the reference sequence. Second,
haplotypes are generated from sets of these candidate variants restricted to
small windows, and all reads are re-aligned to these haplotypes. Third, an EM
algorithm estimates the frequencies of the haplotypes in the population, and
determines which haplotypes are supported by the data; the set of haplotypes
that have support determine the variants that are reported to be segregating in
the population.

To remove poorly or ambiguously mapped reads, Platpyus requires a minimum
mapping quality of 20 on the Phred scale. This filtering improves the robustness
of calls and reduce the number of spurious candidates. In addition, duplicate
reads are removed to reduce the impact of non-independent errors.

Variant candidates are considered by Platypus if they are seen at least twice. For
SNPs, the variant base must be seen at least twice with base-quality exceeding
20. Indel candidates are left-normalised. Platypus then looks in small (~100-200
base) windows across the genome, and creates haplotype candidates, based on
the list of variants in each window. Each haplotype may contain several variants.
As the number of possible haplotypes is generally exponential in the number of
candidate variants, the program adapts the window size and implements some
heuristic filters to limit the number of haplotypes that are considered to 256.
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An EM algorithm is used to infer the population frequency of each haplotype in
the data provided. This algorithm, which includes priors for SNP and indels, and
a model for genotype frequencies given the frequencies of variants, works by re-
aligning all of the reads to each of the haplotypes, and computing a likelihood for
each read given each possible diploid genotype. The algorithm used to calculate
these genotype likelihoods includes a model for indel errors in Illumina reads,
similar to the model used by Dindel4!. Platypus uses the inferred frequencies and
the likelihoods to compute a probability for each variant candidate segregating
in the data. These probabilities are reported in the VCF output file.

Finally the variants are filtered to reduce the false-positive rate. First, variants
are only called if they have a high enough posterior probability (Phred score
exceeding 20). Additional filters are used to remove variants that are only
supported by reads on the forward or reverse strand.

For the analysis of Phase 1 data, we considered both SNPs and indels during the
calling process, but only indel calls were reported. The resulting VCF file contains
4,904,406 indel calls ranging from length 1 to 63 bp.

5.16 Creation of low coverage indel consensus
Authors: Guillermo del Angel, Ryan Poplin, Mark DePristo, and Eric Banks”
* Corresponding Author

The creation of a low-pass Indel consensus set was similar to the SNP consensus
creation approach. First a union of all five input datasets was produced. In order
to create this union, every genomic position in each input dataset was left
aligned in order to guarantee that it had a consistent representation and that
sites with differing coordinate positions but which encode the same alternate
allele were combined correctly.

This union had a total of 30,720,770 indels. For each input site in this union, the
following steps were performed:

a) Creation of genotype likelihoods and site annotation, following exactly the
same procedure as outlined above for the creation of the SNP consensus
set.

b) Training a VQSR modell® based on the following statistics:

* FisherStrand

QualByDepth

ReadPosRankSum

InbreedingCoeff

* HaplotypeScore

c) The reference data used for training was the site list produced in Mills et
al. 43, subsetted to sites that were seen in at least 2 centers and in at least 2
traces from Sanger sequencing. This training data set contained 832,595
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sites, consisting of 345,859 insertions, 334,723 deletions and 152,013
complex events.

d) Cutting data set to keep only the best fits to the VQSR model. A cutting
threshold was chosen to keep 95% of the training variants in the output
result. This resulted in a data set containing 1,648,546 simple insertions,
2,343,430 deletions, and 1,515,693 complex or multi-allelic records.

Given the lower quality of multi-allelic indel records, it was decided that only the
biallelic records would be kept and sent forward for haplotype integration with
SNPs.

5.17 Structural variation: Deletions
Authors: Robert E. Handsaker”, and Steven A. McCarroll
* Corresponding Author

The set of structural variants included in the integrated call set was limited to
large (greater than 50bp) bi-allelic deletions. Site selection of these structural
variants was done in three steps: First, a list of candidate sites was chosen by
combining deletion calls from five deletion discovery algorithms (BreakDancer,
CNVnator, Delly, Genome STRiP, and Pindel) plus the set of deletion calls from
the 1000 Genomes pilot that had assembled breakpoints. Second, a subset of
these candidate sites was selected for genotyping based on estimating the overall
false discovery rate using the Omni 2.5 SNP array intensity data. Third, the set of
sites contributed to the integrated call set was selected after genotyping based
on (a) whether there was sufficient data available at the site to generate well-
calibrated genotype likelihoods (b) removal of redundant overlapping calls of
the same underlying polymorphism and (c) removal of sites that were classified
as false discoveries based on the genotyping results.

Five deletion discovery algorithms were used to make independent calls of large
deletions (longer than 50 base pairs). These were combined with a site list from
the 1000 Genomes pilot consisting of 10,855 deletions that had assembled
breakpoints in the pilot to yield a (potentially redundant) set of 113,649
candidate sites. The five computational methods used for selecting the list of
candidate sites are described below.

5.17.1 BreakDancer (run at WTSI)
Authors: Klaudia Walter and Ken Chen

Deletion calls were made with BreakDancerMax1.1 for 929 samples*4, all paired-
end sequenced on the Illumina platform and mapped with BWA17. Only paired-
ends with mapping quality of at least 20 were considered. Insert size
distributions were analyzed for chromosome 20 for each library separately to
determine thresholds for each as upper cut-off in the BreakDancer config files.
To accommodate the variety of insert size distributions, three different types of
thresholds were calculated, (1) the drop in the density function for each insert
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size distribution, (2) the median plus four times the standard deviation, (3) the
median plus five times the median absolute deviation (MAD), then the maximum
of those three types was used. In a few cases when the median insert size was
zero, the cut-off 1,000 was chosen, and if the third quantile of the insert
distribution was zero, the cut-off 10,000 was chosen. The raw BreakDancer calls
were filtered for deletion size (< 50 bp and > 1 Mb), for estimated copy number
(< 0 and = 2), for number of spanning read pairs (= 20), for regions around
centromeres (+/- 1 kb), for regions around assembly gaps (+/- 50 bp) and for
alpha satellite regions. Deletions were then merged across samples if there was a
50% reciprocal overlap with connected components. The merging process
generates confidence intervals for the start and for the end position of the
deletion that were used for further filtering, i.e. if the upper confidence limit for
the end position was lower than the lower confidence limit for the start position,
or if the confidence interval was larger than 10 kb. To improve the specificity of
the call set, the deletion set of the 1000 Genomes Pilot Project was used as
training set®. A likelihood ratio was computed using the attributes deletion size,
BreakDancer score, number of samples, estimated copy number and number of
libraries. The breakpoints were estimated by centering the deletion within the
outer confidence limits and by using the deletion size estimate from
BreakDancer.

5.17.2 CNVnator
Author: Alexej Abyzov

To call CNVs with CNVnator, data from all individuals within each population
were pooled together. The data were processed with CNVnator software#
(version 0.2.2) with standard settings and 100 bp and 50 bp bins. Additionally,
CNVs were called with relaxed parameters to call for lower allele frequency
CNVs. For each population, overlapping calls were merged by selecting the
largest call of all overlapping ones. Merged calls were filtered. A CNV call passes
the filter if: i) it does not overlap a gap in the reference genome for a deletion,
and it is not within 0.5 Mb from a gap in the reference genome for a duplication;
ii) a deletion must have at least two paired-end reads supporting the predictions
(overlapping by 50% reciprocally) or read depth in the middle part (1 kb away
from breakpoints) of the called region should be statistically different from
average read depth. Statistical testing was done the same way as when calling
CNV regions.

5.17.3 Delly
Authors: Tobias Rausch and Jan Korbel

DELLY#¢ (version 0.0.1) integrates paired-end mapping with split-read
refinement. The paired-end analysis step*’ relies on the identification of
discordantly mapped paired-ends, which show an alignment distance (insert
size) on the genome that deviates significantly from the expected distance. All
discordantly mapped paired-ends are clustered and merged to estimate the
putative start and end coordinate of the SV. Each paired-end SV interval is then
screened for split-read support. All collected split-reads are grouped together
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and their consensus sequence is aligned to the reference to detect the SV at
single-nucleotide resolution, including any microinsertion and microhomology
present at the breakpoint.

5.17.4 Genome STRiP
Authors: Robert E. Handsaker”, and Steven A. McCarroll
* Corresponding Author

We used the Genome STRiP algorithm*8 (Version v1.04.683) for large deletion
discovery using information from read pairs with unexpected alignments and
analysis of sequencing read depth. Low coverage Illumina sequencing data from
946 samples was analyzed together to perform discovery. We ran the Genome
STRiP algorithm with default parameters plus two more stringent filters for this
phase of the 1000 Genomes project:

a) (alpha satellite repeat) Sites were removed if at least 90% of the
deletion site was annotated as alpha-satellite repeat (based on the
UCSC hg19 RepeatMasker annotations).

b) (multiple read pairs per genome) Sites were required to have an
average of at least 1.1 aberrantly aligned read pairs per genome
having any observed aberrant read pairs at this site. This removed
sites that were supported predominantly by observing only one
aberrant read pair in each putative carrier individual (usually across
only two or three putative carrier individuals).

5.17.5 Pindel
Author: Kai Ye

An improved version of Pindel*® (version 0.2.0) was used to call insertions,
deletions, inversions, and tandem duplications from Phase 1 Illumina low
coverage sequence data. All samples were processed at the same time for joint
variant discovery of all variant types simultaneously. All reads with suspicious
mapping status such as soft-clip and >5% mismatches were subjected to Pindel
re-alignment and up to 3% of the read length was allowed for mismatch. The
new version of Pindel can find deletions, inversions and tandem duplications
even in the presence of non-template bases inserted at the edges of the
structural variation, and also reports the non-template bases. The variants are
selected if larger than 100 bp, appear in more than 3 samples and with more
than 10 supporting reads in total among all samples.

5.17.6 Merging candidate deletion calls to create sensitive set
Author: Marcin von Grotthuss
Calls from the five algorithms were merged along with sites derived from

assembled breakpoints from the 1000 Genomes Pilot Phase® to create a merged
set of 113,649 potential deletion sites.
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First, we determined the confidence intervals of each computational call set by
comparing deletion calls with calls from the 1000 Genomes Pilot Phase that had
assembled breakpoints. We required 80% reciprocal overlap to match deletion
calls with the pilot phase assembled deletions as a filter to avoid comparing calls
that correspond to different deletions. Start and end position residuals were
obtained from each matched call, resulting in the distributions of deviations from
the actual event. The 95t percentile of the observed deviations was assigned as
the confidence interval of each call in the deletion call set.

Next, the calls from 5 deletion call sets, plus the calls from the 1000 Genomes
Pilot with assembled breakpoints, were merged using hierarchical clustering
with complete linkage with a decreasing reciprocal overlap from 100% to 80%.
We allowed deletion calls to be merged together only when the confidence
intervals intersected.

If the predicted breakpoints of the merged calls were outside of the intersection
of the confidence intervals, the midpoint of the intersection was assigned as the
most likely breakpoint of the merged call, pending breakpoint assembly, and the
innermost coordinates of the intersecting confidence intervals were assigned as
the innermost merged confidence intervals (CIIPOS/CIIEND). If there were any
predicted breakpoints within the intersection, then the midpoint between the
predicted breakpoints was used as the most likely breakpoint. If deletion calls
were merged with a call from the pilot set, the assembled breakpoints were used
as breakpoints of the merged call, and the intersecting confidence intervals were
set to zero. We did not allow calls from the pilot set to be merged together since
they were assumed to correspond to different deletions. The outermost
coordinates of the confidence intervals of the merged calls were used as the
values of the CIPOS/CIEND intervals.

5.17.7 Assembly of deletion breakpoints
Author: Alexej Abyzov

Breakpoint assembly was attempted on the set of 113,649 merged candidate
deletion calls. Assembly was done by first generating local assemblies of
candidate contigs for the alternate allele using TIGRA-SV5? and then aligning
these contigs to the reference genome assembly using both CROSSMATCH>! and
AGE>Z, Breakpoints obtained from either aligner were used and in cases where
the two aligners differed the AGE alignments were used.

Out of the 113,649 merged candidate deletions calls, unique breakpoints were

assembled for 50,776 loci, of which 8,934 are in the set of genotyped large
deletions.

5.17.8 Performing local assembly with TIGRA-SV

Author: Ken Chen
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Breakpoint assembly was performed using TIGRA-SV (version v0.3.0) on a set of
113,649 merged candidate deletion calls. For each call, TIGRA-SV>3 first obtained
reads surrounding the predicted breakpoints (+-500 bp) from the set of bam
files that were predicted as deletion containing. It then ran a de Bruijn graphic
assembly algorithm to decode the set of non-reference alleles that best explain
the set of reads. 111,353 calls were successfully assembled (i.e., obtained at least
one contig). An assembly score was calculated to summarize both the length of
the contigs and the amount of reads that contributed to the results. The
assembled contigs were aligned with CROSSMATCH5! and AGE>2 as described
below to yield breakpoints for each deletion call.

5.17.9 Deriving breakpoints from CROSSMATCH alignments
Author: Ken Chen

Contigs locally assembled with TIGRA-SV>? were aligned using CROSSMATCHS51
(version 1.080721) against corresponding 1000 Genomes v37 reference
sequences that span the putative deletions with 700 bp flanking sequence on
either end. A deletion is called “validated” and is passed to the next stage if the
associated pair-wise alignments indicate the existence of the same deletion as
was predicted by the original callers. A deletion is not validated if the alignment
was ambiguous, i.e., contain more than 2 high scoring pairs and have an
assembly score < 200, or if the size differed by more than 50% from the
expectation. In total, 61,265 deletions had some evidence of assembly support.
38,020 were called “validated” by CROSSMATCH.

For each validated deletion, its precise boundary as well as patterns of target site
duplication and non-template insertion were deduced from the alignment and
recorded in the VCF files.

5.17.10 Deriving breakpoints from AGE alignments
Author: Alexej Abyzov

Contigs locally assembled with TIGRA-SV>0 were aligned with AGE52 (version
0.2) to target deletion regions extended by 1 kbp downstream and upstream.
AGE was run with options ‘-indel -both’ and the following scoring parameters:
match=1, mismatch=-1, gap_open=-10, and gap_extend=-1. Typically each
deletion region had few alternative contigs assembled. Each one was aligned to
target region.

Each AGE alignment consists of 5’ aligned sequence (left flank), excised region
suggestive of an SV, and 3’ aligned sequence (right flank). For each deletion
breakpoints were assigned as coordinates of excised region from a contig
alignment that satisfies all the following requirements: i) the contig is at least
100 bps in length; ii) at least 90% of contig bases are aligned; iii) alignment of
the contig has excised region suggestive of a deletion compared to the reference
genome; iv) length of each alignment flank is at least 30 bps (regions of sequence
micro-identity around excised region are not included in the lengths calculation);
v) contigs has no more than one alternative alignment of equal score; vi) average
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alignment sequence identity in right and left flanks should be at least 98%; vii)
alignment sequence identity in each flank should be at least 97%; viii)
coordinates of excised region and target region should overlap reciprocally by at
least 50%; ix) each coordinate (i.e., start and end) of target region and excised
region should not differ by more than 200 bps; x) for an alternative alignment
the previous two requirements should also be satisfied. In case more than one
contig satisfies the requirement then one of them was chosen randomly and its
alignment was used as the inferred breakpoint.

5.17.11 Classification of SV formation mechanism by BreakSeq
Authors: Alexej Abyzov®, Jasmine Mu, Robert E. Handsaker
* Corresponding Author

Using BreakSeq (version v1.3), SVs were classified according to their likely
mechanism of formation>*. In particular, SVs were classified into the following
formation mechanisms: (1) non-allelic homologous recombination (NAHR); (2)
non-homologous rearrangements (NHR), including non-homologous end-joining
(NHE]) or microhomology-mediated break-induced replication (MMBIR); (3)
variable number of tandem repeats (VNTR); and (4) mobile element insertions
(MEI). The fraction of deletions classified as NAHR and NHR are roughly
consistent for deletions with lengths above 500 bp, the size range in which we
had good power to genotype these events (Table S9).

5.17.12 Creation of the specific SV discovery set and FDR estimation
Author: Robert E. Handsaker

The set of 113,649 deletion sites from the sensitive SV discovery set were
filtered prior to genotyping to create a more specific call set and ensure a low
false discovery rate (FDR). This more-specific call set was constructed to have a
FDR below 5%, based on the Omni 2.5 validation results, the only ones available
at the time. Based on the estimated FDR of 1.5% for the Genome STRIiP call set,
all calls made by Genome STRiP were promoted to the specific call set. To this
set, we added sites from any other caller with a rank-sum p-value (p < 0.01)
based on the Omni 2.5 probe intensity. This yielded a more specific set of
candidate deletion sites containing 23,592 sites and this set, by contruction, has
a predicted FDR of less than 5%.

The Omni 2.5 results and subsequent validation experiments using PCR and
Array CGH provide estimate of the FDR for the Genome STRIP calls ranging from
at 1.5% - 4.2%. Assuming a FDR of 1% for the calls promoted based on Omni 2.5
rank-sum p-value (p < 0.01), we used weighted averaging to estimate the FDR for
the 23,592 deletion sites at 1.4% - 3.7%, corresponding to the different FDR
estimates for the Genome STRIiP calls.

An alternative approach to estimating FDR of the specific SV discovery set is to
utilize the PCR and Array CGH results, where the validation sites were selected
independently of the construction of the specific call set. In total, validation was
attempted on 3490 of the 23,592 sites (3404 by Array CGH, 185 by PCR, with 98
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of these sites subject to both validation methods). Discarding sites with
ambiguous or discordant validation results yields unambiguous validation
results for 3415 sites, of which 3343 validated and 72 were invalidated, yielding
an estimated FDR of 2.1%.

The full set of merged deletion sites and the more specific subset are available in
a supplemental data file in VCF format. In this file, the FILTER column is used to
indicate whether each site was included in the more specific deletion set. A
FILTER value of NONVAL indicates sites that did not meet the criteria for
inclusion in the more specific discovery set. A FILTER value of PASS indicates
sites that were genotyped and included in the integrated call set. Other FILTER
values indicates sites that were in the specific discovery set but were not
included in the final list of genotyped sites integrated with SNPs and small indels
because (a) they were not on the autosome or chromosome X (NONAUTX) (b)
there was insufficient data to obtain accurate genotype likelihoods (NONGT) or
(c) after obtaining genotype likelihoods, they were confidently non-polymorphic
(NONVARIANT) or likely redundant calls at the same locus (DUPLICATE).

5.17.13 Structural variation genotyping
Authors: Robert E. Handsaker”, and Steven A. McCarroll
* Corresponding Author

Genotyping was performed on the 23,592 candidate high-specificity deletion
sites using Genome STRiP48 (version v1.04.784) utilizing read depth and
aberrant read pairs to generate genotype likelihoods for 946 samples using
[llumina low coverage sequencing data. Split read alignments to the alternate
alleles described by the assembled breakpoints were not used in calculating the
genotype likelihoods due to the potential for local assembly errors to impact the
genotype likelihoods.

The candidate sites were filtered after genotyping to eliminate poorly
performing sites, sites that were confidently non-polymorphic and sites that
appeared to be redundant calls of the same underlying polymorphism. The filters
utilized both the posterior genotype likelihoods and estimated model
parameters from the Genome STRiP genotyping model for read depth, which fits
a Gaussian mixture model to the normalized read depth for each sample. The
following post-genotyping site filters were applied:

a) (read depth cluster separation) We measured cluster separation by the
mean (across all samples) of the distance between the expected locations
of the copy number 1 and copy number 2 clusters divided by the square
root of the mean of the variances. The cluster separation between the
copy number 1 and copy number 2 clusters was required to be at least
2.0 (atleast 2.5 for deletions larger than 100 kb).

b) (excessively low/high read depth) The estimated centers of each copy
number cluster were required to be between 50% and 150% of the
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expected read depth based on genome-wide average sequencing
coverage.

c) (sufficient uniquely alignable sequence) Each site was required to have
an “effective alignable length” of at least 100 bp, defined as the number of
base positions where a 36 bp window centered over the base position is
unique within the reference genome.

d) (redundant call removal) If two independently called sites had at least
50% reciprocal overlap and none of the genotyped samples had
discordant genotypes where the joint likelihood of discordance for that
sample was more than 99%, then the site with the lowest total posterior
genotype likelihood was eliminated as being a redundant call of the same
polymorphism.

e) (evidence of polymorphism) Sites were removed if the posterior
genotype likelihoods were at least 95% confident homozygous reference
for every sample.

f) (excess heterozygous genotypes) Sites were removed if the inbreeding
coefficient calculated across all samples was < -0.15.

The final set of genotyped sites contained 14,422 deletions on the autosome and
X, each with genotype likelihoods for 946 samples, which were then integrated
with the genotypes for SNPs and short indels.

5.17.14 Structural variation genotyping on chromosome Y
Authors: Robert E. Handsaker”, and Steven A. McCarroll
* Corresponding Author

In addition to the 14,422 deletions genotyped on the autosome and X, an
additional 36 sites were genotyped on chromosome Y. The site selection criteria
and genotyping methods employed were the same as for the autosome with the
following differences:

a) (Y-specific read depth normalization) Read depth normalization was
performed relative to the region Y:1-28780000 rather than relative to the
whole reference genome. This was done to address problem with some
samples that appear to be deficient in Y relative to the rest of the genome
(perhaps due to mosaicism within the cell lines) and to avoid the
repetitive region Yq12.

b) (genotype in males only) Samples labeled as being female were not used
in the genotyping.

c) (remove highly repetitive sites) Sites < 1% uniquely alignable sequence
were not included. Uniquely alignable sequence is defined as the number
of base positions where a 36 bp window centered over the base position
is unique within the reference genome.

The structural variation genotypes for chromosome Y were not included in the
integrated call set, but are available as a separate data file.
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5.18 Integration of SNPs, short indels, and SVs into a single call set
Authors: Hyun Min Kang, and Goncalo Abecasis

Each consensus SNP, indel, and SV call set were merged into a single VCF by
simply considering each variant as a point mutation. The variant is linearly
ordered by the genomic coordinate primarily based on the leftmost position and
secondly the variant type (in the order of SNP, indel, and SV). The ploidy within
the interval of SV was ignored in this integration step.

SNP genotype likelihoods were calculated using the BAM-specific Binomial
Mixture Model (BBMM) described in the Baylor Low coverage SNP calling
section. Indel likelihoods were calculated as described in the Broad Low
coverage Indel calling section. The calculation of deletion genotype likelihoods
was performed using Genome STRiP as described in the earlier description of
structural variant detection.

The merged genotype likelihoods were used as the input to run the BEAGLE
software®> with 50 iterations across all samples together. The resulting
haplotypes were refined using a modified version of the THUNDER software>®
with 300 states chosen by longest matching haplotypes at each iteration in
addition to 100 randomly chosen states. The approach of using BEAGLE-
estimated haplotypes to initialize methods such as THUNDER and IMPUTE2
produces higher quality haplotypes than any of these methods alone (Bryan
Howie, personal communication). Processing all samples together facilitates
downstream analysis, and work in the related field of genotype imputation has
shown that these methods perform well in multi-ethnic datasets>7.8,

For chromosome X calling in the non pseudo-autosomal regions, the male
genotype likelihoods for heterozygous allele were assigned as the minimum
possible value under the diploid model.

5.19 Post-hoc short indel filtering

Authors: Adrian Tan, Hyun Min Kang, Goo Jun, Adam Auton, Scott Devine, Heng Li,
and Goncalo Abecasis

After integration, we identified that a subset of indels from the low coverage data
having very high false positive rates. In particular, 10 samples showed an
excessive number of singleton indels (~1,000 to 23,000) that are mostly 1 bp
insertions. These are individuals NA12144, NA20752, NA18626, NA18627,
NA19313, NA19436, NA19437, NA19439, NA19446, and NA19448. Upon
further investigation, we found that the excessive 1 bp singleton insertions are
due to technical artifacts introduced in a specific cycle of the sequencing step in a
particular run. We removed 162,928 1 bp singleton insertions specific only to
these 10 outlier samples.
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In addition, we found a much higher fraction of frameshift indels in low coverage
specific indels compared to the indels shared between low coverage and exome
data, suggesting that low coverage specific coding indels may have enriched false
positive rates. We removed an additional 3,014 protein-coding frameshift indels
exclusive to low coverage samples to increase the specificity of the protein-
coding indels.

Preliminary evaluations of indel call sets demonstrated high apparent false
positive rate after the above steps (~30% estimated false positive rates
compared to Affymetrix exome array genotypes), and rare indels demonstrated
higher discordance with independent datasets. To extract high quality indels, we
restricted the minimum allele frequency (before integration) to 0.5%, and
additionally applied SVM approach to further filter out potential false positive
indels guided by the indel genotypes from the Affymetrix Axiom exome array
genotyping chip were provided. The SVM was trained using multiple features
including (a) allele balance (b) inbreeding coefficient (c) flanking sequence
complexity (d) homopolymer runs (e) strand bias (f) cycle bias (g) mapping
quality (h) number of supporting non-ref reads, and (i) distance to nearby indels.
After filtering, estimated false positive rates from Affymetrix array were 5.4%
(with the caveat of underestimate due to potential model overfitting).

6 Variant calling on chromosome Y

Authors: Yali Xue, Yuan Chen, Shane McCarthy, Qasim Ayub, Luke Jostins, Richard
Durbin, and Chris Tyler-Smith*

* Corresponding Author

Calls were made on the 525 male samples in the Phase I release, plus an
additional sample belonging to Haplogoup A (NA21313). Calls were made using
samtools?! and bcftools 0.1.17 (r973:277). Samtools was used to generate all-
site, all-sample BCFs (samtools mpileup -DS -C50 -m2 -F0.0005 -d 10000 -P
ILLUMINA). Sites were identified by calling the four continental groups, AMR,
AFR, ASN and EUR, separately with bcftools (bcftools view -p 0.99 -bvcgs), then
combining and recalling at the sites discovered in these four groups. The -s
option in bcftools was used to identify the samples as haploid for calling. Calls
were then merged and filtered (StrandBias 1le-5; EndDistBias le-7; MaxDP
10000; MinDP 2; Qual 3; SnpCluster 5,10; MinAltBases 2; MinMQ 10; SnpGap 3).

A revised version of Yfitter® was used to assign a haplogroup to each sample
based on the variable sites called.

Site filtering and site QC matrix
Subsequent analyses concentrated on unique regions of the Y chromosome:
2,649,807-2,917,723; 6,616,752-7,472,224; 13,870,438-16,095,786; 16,170,614-

17,986,473; 18,017,095-18,271,273; 18,537,846-19,567,356; 21,032,221-
22,216,158; 22,513,120-23,497,661; 28,457,993-28,806,758.
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We used half of the known variable sites reported in the literature>® as gold
standard sites, to produce a distribution of the read depth and genotype quality
for these sites. We then applied a cutoff of read depth of 4-18x and genotype
quality of 16-99 for at least one alternative allele call in that site to filter the sites
in the raw vcf file. Then we used the remaining half of the literature sites to
estimate the false negative rate of the filtered sites. 14 male individuals
overlapped with Complete Genomics sequencing data®. We also used the
Complete Genomics calls to estimate the false negative and false positive rates of
the sites from the discordances between the callsets.

Genotype filtering and genotype QC matrix

Using the haplogroup assigned to each sample, we carried out the filtering steps
described below.

1. For sites that appeared multiple times in one haplogroup but
as singletons in other haplogroups inconsistent with the phylogeny,
we treated the singletons as missing data (bad calls).

2. We treated sites that were found in two or more haplogroups with two or
more calls each, but were inconsistent with the phylogeny, as recurrent
sites and filtered them out when the phylogenetic tree was constructed.

3. We used the overlap with Complete Genomics data to set read depth and
genotype quality cut off filters for bad calls, and treated these as missing
data.

4. Two individuals were outliers in the tree, NA12413 with the highest
proportion of missing data, and NA18603 which for unclear reasons was
placed far from the position expected from its HapMap3 genotype. These
individuals were both filtered out.

286 individuals overlapped with HapMap3 and therefore have Y-SNP genotype
data available. Genotype data were obtained with the Affymetrix Human SNP
array 6.0 (interrogating 1,852,600 genomic sites) and the Illumina Human 1M
single beadchip (1,199,187 genomic sites)®!, and were used to assess the
genotype accuracy.

Results:

In total, 18,699 unique region Y-SNPs were called in the raw VCF file. Only seven
sites were filtered out using the quality cutoff determined using the literature
sites, suggesting that the site calling quality is good. The site false negative rate
was 17.2% (25/145) based on the literature sites, and 17.3% (393/2661) based
on the Complete Genomics calls. The proportion of sites called in the 1000
Genomes analysis but not by Complete Genomics in the overlapping samples
(maximum false positive rate) was 1.72% (142/8,269).

Among the filtered 18,692 Y-SNP sites, an ancestral state could be assigned for

16,679 (the allele matching the Ensembl release 66 chimpanzee Y chromosome
sequence). We identified 720 recurrent sites, which were not included in the
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phylogenetic tree, and assigned 3,263 genotypes (0.03%) as missing data. The
genotype accuracy was estimated at 97.4% (20,687/21,235) by comparison with
the HapMap3 Y genotype calls.

7 Variant calling for mtDNA

Authors: Hanjun Jin, Ki Cheol Kim, Wook Kim, Petr Danecek, Yuan Chen, Qasim
Ayub, Yali Xue, and Chris Tyler-Smith*

* Corresponding Author

For calling variants in the mitochondrion, a custom java script was used to filter
reads based on the NM (number of mismatch) information in the SAM files,
removing reads with >10% mismatch (typically 1~5% of initial reads). Duplicate
reads were removed by MarkDuplicates, implemented in Picard v1.368. For
subsequent analyses, we used the SAMtools package?! to generate pileup files.
Consensus sequences were then generated based on the pileup files by using
SAMtools mpileup, bcftools view and vcfutils.pl vcf2fq commands from the
SAMtools package. Indels were checked manually later. For all samples in this
analysis, positions where the non-reference allele (compared with the revised
Cambridge Reference Sequence (rCRS62) was covered by less than two reads
were considered as ‘N’ (missing site and ambiguous site).

We excluded samples that had more than 1% Ns, or Ns in positions critical for
haplogroup assignment, leaving 1074 samples. Mean coverage for each
individual ranged from 53x to 7,555x and mean coverage for mtDNA sites ranged
from 201x to 2,205x.

Heteroplasmy was called conservatively, with a mean MAF of 33%. The pattern
of heteroplasmy is mostly even along the mtDNA molecule, with peaks within the
control region as noted before®.

8 Variant annotation

8.1 Functional annotation

Authors: Suganthi Balasubramanian, Ekta Khurana, Lukas Habegger, Arif
Harmanci, Cristina Sisu, and Mark Gerstein

Coding annotations are based on the GENCODE7 gene annotation model®3. This
file was parsed to include all transcripts with a CCDS tag, and all transcripts
whose transcript_type was labeled as "protein_coding”" or "polymorphic
pseudogene”. In the latter set, transcripts labeled 'mRNA_start NF' or
'mRNA_end_NF' were not included. Transcripts tagged as candidates for
nonsense-mediated decay were also not included. The annotations were
obtained using Variant Annotation Tool%%.
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Non-coding categories used to annotate the variants include ncRNAs, UTRs,
transcription factor (TF) peaks, TF motifs, enhancers and pseudogenes. ncRNAs
are further divided into miRNA, snRNA, snoRNA, rRNA, lincRNA and
miscellaneous RNA. ncRNAs, UTRs and pseudogenes are obtained from Gencode
v765. TF peaks, motifs and enhancers are obtained from Encode Integrative
paper release®®%’. A conservative set of enhancer elements is used which
consists of intersection of those obtained using combined ChromHMM /Segway
segmentation®® with distal regulatory modules obtained by discriminative
training®s.

8.2 Annotation of ancestral allele
Author: Laura Clarke

The SNP ancestral alleles were derived from the Ensembl 59 comparative 32
species alignment®®. The VCF files were annotated using the VCFtools ‘fill-aa’
script3?, with the ancestral allele recorded using the ‘AA’ INFO tag. The ancestral
allele FASTA files used for this annotation are available for download”°.

9 Validation and data quality

In order to assess the quality of the Phase 1 SNP calls, a series of validation
experiments were performed for both the low coverage and exome call sets.
Multiple independent technologies including PCR-Roche 454 and PacBio RS
sequencers and Sequenom MassARRAY were used so as to ensure that the
results were not skewed by error modes from just a single platform.

9.1 Low Coverage SNP validations
Authors: Danny Challis, Jin Yu, Fuli Yu, and Eric Banks

All three technologies were applied to a selection of 300 SNP loci from
Chromosome 20 that were potentially polymorphic in at least one of eight
samples (HG00321, HGO0577, HG01101, NA20800, NA19313, NA20296,
NA19740, NA18861). These samples were randomly chosen from the collection
of samples available at different production centers. A locus was eligible for
validation only if it had evidence of the alternate allele in at least one sequencing
read among the eight samples. This however does not necessarily mean that the
site was called polymorphic in any of the eight samples. The SNP loci were
randomly selected from eligible sites from the Chr20 of the initial Phase 1 SNP
call set.

9.1.1 Sequenom and Pacific Biosciences validation
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We used the Mass Spectrometry genotyping technology and utilized
AssayDesigner v.3.1 software to design PCR and extension primers for low
multiplex SNP assays. Two sets of validation designs were created, one using 100
base pair PCR amplicons and another set of complementary 600 base pair
amplicons. SNPs were amplified in multiplex PCR reactions consisting of a
maximum of 12 loci each. The volume of the PCR reaction was used in both the
Sequenom MassArray protocol and pooled together for the Pacific Biosciences
sequencing aspect of the validation.

Sequenom: Following amplification, the Single Base Extension (SBE) reaction
was performed on Shrimp Alkaline Phosphatase treated PCR product using
iPLEX enzyme and mass-modified terminators. A small volume (approximately 7
nl) of reaction was then loaded onto each position of a 384-well SpectroCHIP
preloaded with 7 nl of matrix (3-hydroxypicolinic acid). SpectroCHIPs were
analyzed in automated mode by a MassArray MALDI-TOF Compact system with a
solid phase laser mass spectrometer. The resulting spectra were called by the
real-time SpectroCaller algorithm and analyzed by SpectroTyper v.4.0 software
that combines a base caller with the clustering algorithm. 246 sites had usable
Sequenom genotyping data after excluding those assays that failed the design
phase as well as those with call rates of less than 75%. The Sequenom validation
was applied to 383 samples (including the 8 validation target samples).

Pacific Biosciences: The RS sequencer output was processed using the Broad
Institute-GATK PacBio Processing Pipeline (manuscript in review?!). 30 sites
could not be genotyped because the sequencing read coverage was less than 20x
over all eight samples; the average coverage for the remaining 270 sites was
over 500x. Sites were called and genotyped using the GATK Unified Genotyper?2°.
Pacific Biosciences sequencing was performed just for the 8 validation target
samples.

9.1.2 Roche 454 validations

The PCR-Roche 454 validations that were carried out at the Baylor College of
Medicine-Human Genome Sequencing Center (BCM-HGSC) included two
experiments. In the first experiment each SNP locus was validated in a single
sample randomly selected from the subset of the eight samples with direct
evidence of the SNP. This strategy made it possible to validate not only the SNP
but also the genotype in the validation sample. However, this strategy is
susceptible to producing false-negative results if a mismatch is a true SNP in one
of the eight samples (that is, not selected for validation), but a sequencing error
in another sample (which happened to be selected for validations). This issue is
addressed in the second experiment, where the DNA for all eight samples was
pooled and validated across all 300 SNP loci. While this does not allow
determination of genotype or even which sample harbors the SNP, it ensures the
SNP locus will be validated if it is really polymorphic among the eight samples.

Primer design for the PCR-Roche 454 validation experiments were performed

using the Primer3 based BCM Primer Pipeline. For SNPs that Primer3 failed to
design suitable primers, an attempt to manually design the primers was made.
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Using this approach, primers were successfully designed for 273 of the 300 SNPs.
The amplicons had an average length of 377 base pairs. The amplicons were PCR
amplified and the resulting PCR reactions were normalized. The amplified DNA
were then pooled and sequenced on the Roche 454 sequencing platform,
generating 255k reads with an average length of 256 base pairs in the first
experiment, and 260k reads with an average length of 258 base pairs in the
second experiment. After removing sites that failed PCR, the average read depth
coverage for each validation site was approximately 670.

The SNP were then genotyped using the Atlas-SNP pipeline’2. These reads were
mapped to the human reference genome (Build 37) using BLAT’3, and then
aligned to the amplicon sequence using CrossMatch®1. If the total read depth was
less than 5, the site was considered a PCR failure and no call was attempted. If it
was less than 50, the result was flagged for manual review. If the SNP was found
with a variant read ratio above a defined cutoff (10% for single sample
validation, 3% for pooled samples validation) it was considered confirmed,
otherwise the SNP was considered a false positive. Of the 273 SNPs for which
primers were successfully designed, 260 produced good results (that is, 95%)
and 13 were PCR failures in the first experiment. In the second experiment, 264
produced good results (97%) and 9 were PCR failures.

9.1.3 Consolidation of validation genotypes

Once all three validation experiments were completed, the results were
combined to minimize any ambiguity. Any locus that failed to produce reliable
results in one of three experiments was usually reliable in another experiment.
All but 6 of the 300 loci had reliable results in at least one of the experiments
(Table S4).

Although the validation experiment was designed using a preliminary chr20
Phase 1 SNP call set, the results have been applied to the whole genome call set.
Due to adaptations in parameters and filtering used in the SNP calling process
between whole genome and chr20 data, 3 of the 300 validated SNPs are not
included in the final call set. In addition, there are 10 SNPs, which while they had
direct evidence in at least one of the eight samples, were not actually called in
any of the eight samples in the final call set.

When combining the validation results, 15 of the 300 loci had contradictory
results where one experiment identified the locus as a true SNP and another
identified it as an error. 8 of these contradictions were caused by the locus being
confirmed in one sample in one experiment, and not confirmed in a different
sample in a different experiment. These 8 SNP loci were accepted as true SNPs.
The other 7 contradictions are due to apparent errors in the validation
experiments. These 7 loci were resolved by simple voting, with each validation
experiment giving a single vote on the correct classification. To give a more
accurate estimate of the final call set’s quality the 10 SNPs not called in a
validated sample and the 3 sites not in the final call set have been excluded from
the results.
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9.1.4 Results

Of the 287 remaining SNP loci, 276 of them were confirmed as true SNPs, giving
an estimated FDR of 1.8% (Table S4). The validation results were also analyzed
by minor allele frequency (MAF). Of the common (MAF>0.05) and low frequency
(MAF>0.01) SNPs validated, all 83 were confirmed as being true SNPs, indicating
that the higher MAF SNP calls are extremely reliable. For singleton and rare
(MAF<0.01, excluding singletons) SNPs, the estimated FDR is higher, but is still
below 5%.

The full validation results are available for download’4.

9.2 Exome validation

Authors: Danny Challis, Jin Yu, Fuli Yu, and Eric Banks

9.2.1 Exome SNP validation

Three series of exome SNP validation experiments were carried out at BCM-
HGSC on both the consensus and unique SNPs calls of the three different centers
using single sample PCR-Roche 454 validation as described above in the low
coverage SNP validation. A total of 417 SNPs on chromosome 20 were selected
from these validation experiments and submitted for primer design. 412 of those
were designed successfully. The amplicons had an average length of 302 base
pairs. The amplified DNA were then divided in five pools and sequenced on the
Roche 454 sequencing platform, generating a total of 1419k reads with an
average length of 287 base pairs. After excluding amplicons that failed PCR, the
average read depth of coverage for each amplicon is 1625. After mapping the
reads to the human genome and applying the same quality control steps and
cutoff as in low coverage single sample PCR-Roche 454 validation, a total of 354
sites were genotyped confidently.

The detailed exome SNP validation are available for download’4.

9.2.2 Exome consensus SNPs stratified by allele frequency

100 singleton SNPs, 50 of allele frequency (AF) <1%, and 50 of allele frequency
(AF) >=1% were randomly selected in this validation experiment to represent
the SNP allele frequency distribution of the Phase1 integrated genotypes call set.
At least one and at most 5 samples were chosen for each site to prepare the
sequencing library pools and a total of 188 sites were genotyped confidently. For
this set of SNPs, the overall FDR is estimated to be 1.6% (Table S5). All SNPs in
AF>1% are validated as true positives and the FDR of singleton SNPs is 1.1%.
The SNPs in <1% bins has a higher FDR of 4.1%. This may be explained by the
fact that only a small subset of samples for each SNP were selected in this
validation and imputation errors are more likely to be concentrated in this bin.

9.2.3 Novel exome consensus SNPs
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Since a large portion of exome SNPs are not found in the low coverage SNP calls
or dbSNP135, 100 of these consensus SNPs were randomly selected for
validation. For each site, at least one and at most 2 samples were chosen to
prepare the sequencing library pools and a total of 86 sites were genotyped
confidently. The FDR of this set of SNPs is 2.3% (Table S5).

9.2.4 Center-unique exome SNPs

To assess the SNPs called exclusively by different centers and not selected in the
exome consensus, we randomly selected at most 20 unique SNPs from both the
[llumina and SOLiD platforms of the three centers for validation. For each site, at
least one and at most 2 samples were chosen to prepare the sequencing library
pools and a total of 85 sites were genotyped confidently. The FDR of each set are
shown in Table S5.

9.3 Loss of Function (LoF) SNP validation
Authors: Jin Yu, Mike Jin, and Fuli Yu

To assess the quality of LoF SNPs in the Phase 1 integration release, we first
applied several filters to remove possible annotation artifacts, excluded the sites
that were included in previous experiments and then selected the remaining
ones for single sample PCR-Roche 454 sequencing experiment.

9.3.1 LoF SNP selection

To produce a set of high confidence LoF SNPs, a series of fairly stringent filters
were applied to all SNP sites predicted to create a nonsense codon or to disrupt a
splice site in the Phasel integrated release’>. These filters included: 1) remove
all SNPs with estimated AC=0; 2) remove splice SNPs in non-canonical splice
sites or in introns shorter than 10bp; 3) remove SNPs where the LoF allele is the
same as the inferred ancestral allele; 4) remove SNPs that effect only a subset of
known transcripts and 5) remove nonsense SNPs found in the last 5% of the
coding region of the longest affected transcript. After applying above filters, a
total of 3,697 LoF SNPs of the whole genome were selected, which we identify as
a high confidence LoF SNP set. This set consists of 2,535 nonsense and 1,162
splice-disrupting SNPs. We further excluded the sites that had been selected for
validation in the 1000 Genomes Pilot LoF validation experiments, sites in exome
chip design, and those in dbSNP release 129. The 2,003 remaining LoF SNPs
consisted of 1296 nonsense and 707 splice-disrupting sites.

9.3.2 PCR-Roche 454 validations

We aimed to validate as many of the 2,003 LoF SNPs as possible using single
sample PCR-Roche 454 sequencing validation at Baylor College of Medicine -
Human Genome Sequencing Center (BCM-HGSC). SNPs were validated where
samples were available in the BCM-HGSC DNA inventory. For singleton,
doubleton and tripleton SNPs, we picked all available samples. For SNPs with
higher allele frequencies, we randomly selected one sample from the DNA
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inventory at the BCM-HGSC. In total, 1,481 sites in 642 samples (1183 singletons,
150 doubletons, 35 tripletons, and 113 with Allele Count > 3) were submitted for
primer design.

Primer design for the PCR-Roche 454 validation experiment was performed
using the Primer3 based BCM Primer Pipeline. For SNPs that Primer3 failed to
design suitable primers, an attempt to manually design the primers was made.
Using this approach, primers were successfully designed for 1,405 of the 1,481
SNPs. Amplicons had an average length of 317 base pairs. Three pools were
prepared and sequenced on the Roche 454 sequencing platform, generating a
total of 2,005,944 reads with an average length of 261 base pairs.

Genotypes were called using the BCM-HGSC Atlas-SNP pipeline’2. Of the 1,405
SNPs for which primers were successfully designed, 53 were PCR failures and
1,352 produced good results with an average read coverage depth of 1088
reads/site.

9.3.3 Results

The overall FDR of these 1,352 SNPs is 5.2%. Stratified by allele frequency, most
of the LoF SNPs are singletons and doubletons, which also have the lowest FDRs
of 3.1% and 4.8% respectively. With increasing allele frequency, the number of
LoF SNPs decreases significantly, while both the FDR and ‘No call’ rate increase.
There are only 8 LoF SNPs with allele frequency > 5%, although the FDR is as
high as 80.0% (Table S8). This is in contrast to the results in exome validation
experiments, in which the SNPs with allele frequency > 1% have an estimated
0% FDR (Table S5).

We propose several reasons for this phenomenon: 1) The LoF variants tend to be
rare due to negative selection, the high frequency LoF SNPs are more likely to be
artifacts. The high no call rate of the SNPs in this category also suggests many of
them are in regions with low mappability; 2) Common LoF variants are more
likely to be included in exome chip design and dbSNP129. These sites were
excluded in this validation experiment, and hence the remaining sites are more
likely to contain false positives; 3) As SNPs with allele frequency >=1% were
only validated in one sample, conflation with genotyping error would lead to an
increased false positive rate estimate.

The validation results are available for download74.

9.4 Shortindel Validation

Authors: Guillermo del Angel, Mauricio Carneiro, Eric Banks, Ryan Poplin, Namrata
Gupta, Scott Donovan, Andrew Crenshaw, Liuda Ziaugra, Michelle Cipicchio,
Melissa Parkin, Xinyue Liu, Ankit Maroo, Luke J. Tallon, Jeremy Gollub, Jeanette P.
Schmidt, Christopher . Davies, Brant A. Wong, Teresa Webster, Adrian Tan, Goo
Jun, Hyun Min Kang, Mark DePristo, and Scott E. Devine
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To assess the quality of the genome-wide Phase I indel call set, 93 indel sites
were subjected to validation on three independent platforms: a) Sequenom
mass-spectrometry-based genotyping, b) Pacific Biosciences (PacBio) targeted
re-sequencing, and c) Roche 454 targeted re-sequencing. These three platforms
together provided a more comprehensive view of indel validation than data
collected from any of the single platforms alone. The 93 sites were examined in
eight samples (HG00321, HG00577, HG01101, NA18861, NA19313, NA19740,
NA20296, NA20800). Sites were chosen somewhat randomly with the following
criteria: The site had to be polymorphic in at least one of the eight validation
samples. To prevent a bias towards common alleles, sites also were chosen in a
manner that retained the same allele frequency spectrum as the original input
set. In a separate set of experiments, indels were examined on a custom
Affymetrix Axiom array. A final high quality indel call set (5.4% FDR) was
generated using a series of downstream filtering steps.

9.4.1 Sequenom and PacBio validation

Sequenom and PacBio indel validation was carried out at the Broad Institute.
AssayDesigner v.3.1 software was used to design PCR and extension primers for
low multiplex Sequenom indel assays. Two sets of validation designs were
created, one set using 100 base pair PCR amplicons and the other set using 600
base pair amplicons. Each set of indel amplicons was amplified in multiplex PCR
reactions consisting of a maximum of 12 loci. The 600 bp amplicon PCR reaction
was used not only in the Sequenom MassArray protocol but also was used for the
PacBio sequencing aspect of the validation. Sequenom assays were then analyzed
by SpectroTyper v.4.0 software. The 600 bp amplicons also were used for PacBio
re-sequencing, using target coverage of 120x at each site.

9.4.2 454 validation

454 indel validation was carried out at the Institute for Genome Sciences,
University of Maryland School of Medicine. An independent set of primers was
designed using Primer 3 software’¢ with target melting temperatures of 63°C
and a target PCR amplicon size of 400 to 600 bp. The 93 sites were amplified in
the eight samples plus a negative control that lacked DNA. PCR products were
evaluated on 2% agarose gels to ensure accurate amplicon sizes and to confirm
that the negative controls lacked products. A total of 77/93 (80.5%) of the
attempted PCR assays were successful and yielded robust products of the
expected sizes. The PCR products were labeled with sample-specific bar codes,
pooled, and sequenced with 454 Titanium chemistry. Sequencing yielded an
average depth of 194 reads per indel allele and these were mapped to a library of
all possible alleles to determine the genotype of each indel in the eight samples.
Alignments were manually inspected to evaluate mapping and allele calling.

9.4.3 Results of PCR-based validation

Data from the Sequenom, PacBio, and 454 validation experiments were
integrated and used to calculate a combined FDR of 35% for the exercise
(Supplemental Table S6). Despite the fact that three independent platforms were
used for validating indel calls, 17 indels remained uncalled by any platform.
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These sites generally fell within simple repetitive regions that were difficult to
analyze and/or did not amplify well in the PCR assays. On the basis of these data,
we noted that indels generally fell into two broad categories in humans: 1)
variants in “well-behaved” regions of the genome (regions containing complex
sequences) with high quality mapping, sequencing, and alignment data
underlying the variant calls, and 2) variants in more challenging regions of the
genome (often within simple repeats) where lower quality mapping, sequencing,
and/or alignment data may contribute to incorrect variant calls.

9.4.4 Axiom Exome genotyping array

The Affymetrix® Axiom® Exome Genotyping Array includes glass-bound, 30-
mer oligo probes for 318,983 genetic variants, including SNPs from the Exome
Chip Design Consortium?7, indels discovered in early versions of 1000 Genomes
Phase I exome sequencing and low pass sequencing, as well as additional non
synonymous coding SNPs from the Axiom™ Genomic Database. A total of
260,889 of these variants (including ~17,524 indels in exons and CDS regions)
are expected to cause nonsynonymous changes in protein sequences. An
additional 13,328 variants are predicted to cause synonymous changes. An
additional 17,610 indels were identified in the 50 - 100 bp flanking regions of
exons that were captured for exome sequencing. Additional variants were
selected for significance in previous GWA studies, usefulness as ancestry
informative markers or for calculation of identity by descent, and for other
purposes described on the above website.

A total of 1,249 individuals from 14 populations were genotyped on the array
using the Axiom 2.0 assay, which employs a ligation-based approach to
interrogate whole genome-amplified DNA. Genomic DNA from the HapMap and
1000 Genomes collections was purchased from Coriell (population/DNA plate:
CEU/T01, CHB+JPT/T02, CHS/MPG00002, CLM/MPG00005, FIN/MPG00001,
GBR/MPG00003, IBS/MPG00010, JPT/MPGO00009, LWK/MPG00008,
MXL/MPG00006, PEL/MPG00011, PUR/MPG00004, TSI/MPG00007, YRI/TO03).
Genotyping analysis was performed with Affymetrix Power Tools software
version 1.14.4. Genotype calls are available on the Affymetrix and 1000
Genomes websites.

In order to evaluate the FDR of the indels on the array that were derived solely
from 1000 Genomes Phase I data sets, we limited our analysis to the genotyping
data that was generated from 865 samples (exclusively Phase I data set-derived
samples). Our analyses revealed an FDR of 33% - similar to the 35% FDR
obtained with the PCR-based validations.

9.4.5 Shortindel filtering

The indel validation experiment revealed a subset of indels contributing the
majority of false-positive calls. In order to produce a final high quality indel call
set, the calls were filtered as described in Section 5.19. After filtering, the
estimated FDR for the final integrated low coverage indel call set was 5.4% (with
the caveat of underestimation due to potential model overfitting).
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9.5 SV validation

Three separate methods (SNP array intensity, PCR and aCGH) were used to
validate the deletions in the integrated call set, although only the SNP array
intensity evaluation, described below, was available when initial site selection
for genotyping was made.

9.5.1 SV validation using Omni 2.5 SNP genotyping arrays
Authors: Robert E. Handsaker”, and Steven A. McCarroll
* Corresponding Author

We used intensity data from the Omni 2.5 SNP genotyping arrays, which were
run on every project sample, to perform validation of the putative deletion sites
called by different calling methods. Although arrays (and individual array
probes) can vary in their quantitative response to variation in copy number, the
validation method employed is based on the simple idea that samples with lower
copy number should, on average, exhibit lower signal intensities at a given probe
than samples with higher copy number. Each deletion (or duplication) site is
specified by chromosome and start and end coordinate and a set of samples
thought to carry the deletion (duplication) at that site. The normalized probe
intensities for each SNP were summed to create a single intensity value at each
SNP position. We performed a non-parametric test that computes a Wilcoxon
rank-sum P-value across all array SNP positions that underlie a given deletion or
duplication site. The samples are first ranked separately at each position in
intensity space and then the ranks across all positions underlying the putative
deletion or duplication are used to calculate the Wilcoxon P-value that the
samples carrying the deletion (duplication) have ranks below (above) the
remaining samples. The FDR for a set of deletion or duplication calls was
estimated as two times the fraction of putative deletion or duplication sites for
which we measured a Wilcoxon rank-sum P-value P > 0.5.

In addition to using the SNP genotyping arrays to estimate FDR for sets of
deletion calls, we also used a threshold of P < 0.01 for selection of individual sites
for genotyping.

9.5.2 SV validation using PCR
Authors: Adrian Stiitz, Sarah Lindsay, Matthew Hurles, and Jan Korbel

PCR validation experiments for deletions were designed using a spanning primer
strategy where both primers hybridize to regions flanking the predicted SV.
PCRs resulted in either a band size corresponding to the reference allele, or a
shorter amplicon corresponding to the reference allele band size reduced by the
inferred SV size. Each PCR was carried out along with two controls: NA12892
genomic DNA (control 1) and a pool of five DNAs, corresponding to four human
samples (HG00407 + HGO00689 + NA18507 + NA19314 (Coriell) and a
chimpanzee sample EB176 (JC) (HPA Culture Collections) (control 2).
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9.5.2.1 Design of PCR validation experiments

Random locus selection: To enable the calculation of FDRs for independent SV
callsets, we randomly picked 96 loci from each deletion callset for subsequent
PCR validation experiments. The randomization was carried out by randomly
picking, without replacement, from the entire list of generated calls for each SV
discovery callset. Duplicate primers between different callsets were removed,
yielding 91-96 loci tested per callset.

Primer design: We used an iterative PCR primer design pipeline to ensure the
specific placement of primers into unique regions within 150 bp windows
flanking the inferred SV breakpoint region (extended by the confidence interval,
if available). The primer3 algorithm?¢ was used for primer placement, with the
option to “exclude primers matching onto known repeats”. In-silico PCR7® was
applied (default parameters) with these primers to test for the putative presence
of alternative amplicons with similar, or smaller size. Primer pairs generating
unique amplicons were kept and used in the PCR experiments. If primer pairs
generated more than one amplicon at the given size (or at a smaller size), as
judged by in-silico PCR, the primer positions were masked with ‘N’s, and the
primer design pipeline was re-initiated. If primer3 failed to identify suitable
primers, the windows for primer design were iteratively increased by 150 bp on
either side of the inferred SV.

9.5.2.2 PCR experimental conditions

PCR primers were synthesized by Sigma. PCR was carried out with JumpStart
REDAccuTaq LA DNA polymerase (Sigma-Aldrich) on a PTC-225 DNA Engine
Tetrad Cycler (Bio-Rad) in 25 ul reaction volumes. A first PCR experiment used
the following parameters with 10 ng genomic DNA as template. Initial
denaturation at 96°C for 30 sec; then 28 cycles of 94°C 5 sec, 58°C 30 sec, 68°C 8
min; followed by an additional cycle of 68°C for 30 min. A second, independent
PCR experiment used these modified conditions, with 20 ng genomic DNA as
template. Initial denaturation at 96°C for 1min; 5 cycles of 94°C 15 sec, 64°C 30
sec, 68°C 8 min; 5 cycles of 94°C 15 sec, 62°C 30 sec, 68°C 8 min; followed by 22
cycles of 94°C 15 sec, 60°C 30 sec, 68°C 8 min and an additional cycle of 68°C for
10 min. All PCR products were run on 1% agarose gels for 2h at 150V for band
visualization and compared against the DNA ladders Hyperladder I and IV
(Biolane). Selected PCR reactions were repeated and capillary sequenced with
PCR primers from both ends.

9.5.2.3 Analysis of PCR validation data

Amplicons of both the test and control DNAs were analyzed by comparison to
molecular markers without prior knowledge of expected band sizes. We
recorded instances where only one, or both, alleles were observed, and where
amplicon patterns were identical between sample and controls. Two
independent PCR experiments were carried out and the results were merged.
PCR results were not considered in cases where replicates were contradictory.
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9.5.3 SV validation using custom CGH microarrays
Authors: Marcin von Grotthuss*, Xinghua Mindy Shi, and Ryan Mills
* Corresponding Author

We designed a custom Agilent 2x1M CGH Microarray platform to assess the
specificity of the CNV discovery algorithms. We coalesced the deletion and
duplication calls across a 25-sample subset from the phase 1 sample list and
segmented overlapping calls into Distinct Regions of Overlap (DROs). Each DRO
was allocated 1 to 7 CGH probes depending on the size of the region. Preference
was given to Agilent Catalog probes which fell in each DRO, however in many
cases one or more custom probes were used. Custom probes were designed as
follows: random oligomers of 45-60bp were considered in each region and
scored for an optimal melting temperature (Tm) of 76, absence of simple repeats
and also long homopolymer stretches. Candidate probes that mapped to the
reference genome at more than 10 positions were discarded, as well as those
that fell below an arbitrary minimum score. The remaining best scoring probes
for each region were then utilized up to the maximum considered.

Custom Agilent 2x1M array-CGH DNA microarrays were used to validate
deletions in 25 selected samples. The high-resolution probe design allowed for
the direct interrogation of probes falling into predicted SV candidate regions. All
probe-level data from the array were normalized using the default settings of
Agilent’s Feature Extraction 10.10 software. Probes with saturated or varied
reference signal intensity across array-CGH experiments were masked out as
potentially non-specific or noisy. Such probes were identified if the mean log2
reference signal intensity was >16 or if the standard deviation of these log2
values was >0.6. Additionally, we excluded probes with high reference signal
intensity and low log2-ratios across all samples, since such probes were likely
also saturated and non-specific. The cut-offs used for the identification of these
probes were derived empirically and are as follow: mean log2 reference signal
intensity >10, absolute mean log2-ratio <0.4, and standard deviation of the log2-
ratios <0.25. Log2-ratios values of non-masked-out probes were normalized by
GC-content and each chromosome's median-shift. Deletion calls containing only a
single probe post-filtering were omitted and did not contribute to the FDR
calculation. For each other deletion, we selected a subset of probes that were
deemed the most suitable to validate a call. This step was necessary, as the
boundaries of some calls may have been overestimated resulting in the incorrect
usage of distal probes that would be inappropriate for a call validation. We
estimated that optimal probes were those that (i) had variable log2- ratios across
the samples, which would reflect copy number differences, and (ii) whose log2-
ratios were correlated in probe pairwise comparisons, which would indicate a
coherent signature of a copy number variation. Therefore, for each deletion call
probes were hierarchically clustered with the goals of maximizing both 58 the
range of mean log2-ratios between the samples as well as the average pairwise
Pearson correlation of the log2-ratio values of probes clustered. The clustering
score was defined as the product of the first factor multiplied by the second. We
considered a cluster of probes to be representative for a call if it contained 50%
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or more post-filtered probes and if the average pairwise correlation of the log2-
ratio values was >0. If none of the clusters met these two requirements, the call
was marked as "NA" and was not used for the FDR estimation. If two or more
clusters of probes could be considered as representative, all such clusters were
used independently in the next step and the final decision as to which was most
optimal was determined at the end of the validation process. The validation was
performed by genotyping each locus and comparing our results with the ones
provided in discovery sets. The following rules were applied to determine copy
number variations:

* If, regardless of a cluster of probes used, the maximum of absolute mean
log2-ratios was <0.5, we assigned two copies to all samples, unless the
next rule was true.

* [f the maximum of absolute mean log2-ratios was within the range of
[0.35, 0.5), and the site was supported only by 3 or less post-filtered
probes, the deletion call was marked as "NA", since it was likely the signal
was not significant enough due to limited number of probes.

* [f the maximum of absolute means was =0.5, sigmoid transformations of
the means were modeled by k-means clustering (with k=2) and the
means, within each cluster, were subjected to an Anderson-Darling
normality test (using empirically derived alpha=0.01). The limited
number of samples (25) precluded the modeling of the probes at each
locus as a mixture of Gaussian densities. The sigmoid transformation, also
known as a hyperbolic tangent (tanh), was applied to reduce the influence
of extreme means on modeling, while the Anderson-Darling test was used
to avoid the modeling of nonnormal densities. Copy number states [1, or
2] were assigned respectively to the samples.

* [f the range of mean log2-ratios was 21.0, then the rule above was used
but with k=3, and [0, 1, or 2] copy number clusters assignments.

* [ftwo or more alternative models were created, that were differed by the
k value and/or set of probes used, we chose as the most likely the model
with the lowest clustering score. The clustering score was defined as a
root mean square deviation of tanh mean log2-ratios from the cluster
centers.

FDRs were calculated per-sample and were defined as the number of false
discoveries over the sum of false and correct ones. If a deletion call was

genotyped by us as a homozygous or heterozygous variant, then the call was
evaluated as a true discovery; otherwise we marked it as a false discovery.

10 Analysis

10.1 Quantifying the Phase 1 dataset

Author: Mark DePristo
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For the data presented in Table 1, the Phase 1 integrated haplotypes were first
partitioned into variants present in the autosomes or the X
chromosome. Variants were categorized as SNPs if they represent single base
length-preserving substitutions with respect to the reference allele, indels if they
imply a change in the size of the genome sequence of 50 bp or less, and CNVs
otherwise. Per-sample averages for each variant type were determined by
considering a variant present in a sample if its corresponding genotype included
at least one non-reference allele in the reference panel. SNPs and indels were
identified as synonymous, non-synonymous, and nonsense or in-frame or
frameshifting, respectively, according to their corresponding functional
annotations (nonsense includes annotations prematureStop or removedStop,
while frameshift includes only deletionFS or insertionFS versus deletionNFS and
insertionNFS). SNP and indels were considered novel if their left-aligned start
position did not overlap with an variant in dbSNP 135 (excluding sites uniquely
identified in the preliminary 1000 Genomes Phase I release included in build
135). CNVs were considered novel if the CNVs has <50% reciprocal overlap in its
start and end position on the genome with any CNVs classified as human,
germline SVs in dbVAR (March, 2012).

10.2 Assessment of power of variant discovery and genotype accuracy

Author: Hyun Min Kang

The assess the power to detect variants in Phase 1, individual genotypes from
Omni2.5M SNP array are compared to the Phase 1 integrated genotypes. The
power is defined as [# variants with positive 1000 Genomes variant count]/[#
variants with positive Omni2.5 variant count], grouped by the Omni2.5 variant
count among 1,092 individuals. Whole genome power was evaluated across the
genome. To avoid the underestimation of power in the exome data, the exome
power was evaluated within consensus target using the genotypes concordant
between Omni 2.5M SNP array and Affymetrix Exome Array genotypes. The
resulting estimates are show in Figure 1a.

We estimated that 98.3% of SNPs for each individual are included in the
integrated callset by comparing with OMNI2.5 genotypes. This estimate was
obtained by first estimating the expected allele frequency spectrum (AFS) across
whole genome from the AFS of synonymous variants within the consensus target
region, after adjusting for the false negative rate evaluated by OMNI2.5 (as
shown in Figure 1a). We then calculated the per-individual SNP discovery rate by
comparing OMNI2.5 SNP genotypes with whole genome integrated genotypes,
weighted by the ratio of expected to observed whole-genome AFS across all
possible variant count.

To estimate genotype accuracy, the squared Pearson's correlation coefficient (r?)
between Omni2.5 array genotypes (observed variant count per individual) and
the genotype dosages (expected variant count per individual) was calculated for
each SNP across the 1,092 individuals. The average r? value (among 1,092
individuals) was calculated across the genome (WGS), and within the consensus
target (Exome). The genotype dosages were calculated from the posterior
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probability of the MaCH/Thunder haplotyping software (with LD), or from
posterior probability computed from genotype likelihood and estimated allele
frequency (without LD). The resulting estimates are shown in Figure 1b.

10.3 Variant discovery by low coverage and exome sequencing
Author: Erik Garrison

To assess the relative contribution of the low coverage and exome sequencing
towards variant discovery in the exome capture targets (Figure 14), we first
extracted from the integrated callset the subset of sites contained within the
exome consensus targets. The integrated calls retain information describing the
experiment from which each variant was discovered, either exome, low
coverage, or both. We used this source information to plot the relative fractions
of the contribution of the exome and low-coverage sequencing projects to the
integrated set by alternate allele count in the 1092 genomes.

10.4 Assessment of the accessible genome in Phase 1

Author: Goncalo Abecasis

Due to the nature of short-read sequencing, the sequencing depth varies along
the length of the genome. As such, not all regions of the genome will have equal
power for variant discovery. To assess provide an assessment of the regions of
the genome that are accessible to the next-generation sequencing methods used
in Phase 1, we created two genome masks.

Most project analysis did not use these hard masks for calling. Instead, the
project used the VQSR algorithm (implemented in GATK) to distinguish variants
likely to be true positives from others more likely to be false positives. However,
the masks are useful for (a) comparing accessibility using current technologies to
accessibility in the pilot project, and (b) population genetic analysis (such as
estimates of mutation rate) that must focus on genomic regions with very low
false positive and false negative rates.

Two sets of masks are available - a ‘Pilot-style’ mask and a ‘Strict’ mask. Each
base in the genome is coded as follows:

* N -thebaseisan N in the reference genome GRCh37

* L - depth of coverage is much lower than average

* H - depth of coverage is much higher than average

* 7 -too many reads with zero mapping quality overlap this position
* Q- the average mapping quality at the position is too low

* P -the base passed all filters

* 0-anoverlapping base was never observed in aligned reads

Regions marked as N, L, H, Z, or Q are less accessible to short reads. Although
they can still be analyzed they are more prone to false positives.
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The Pilot-style mask was produced using the same definition as used in the 1000
Genomes Project Pilot Paper®. This definition excludes the portion of the genome
where depth of coverage (summed across all samples) was higher or lower than
the average depth by a factor of 2-fold. It also excludes sites where >20% of
overlapping reads had mapping quality of zero. The average total depth of
coverage across Phase I samples is 5132. Thus, sites with a depth of coverage of
<2566 or >10264 were excluded. Since approximately one half of project
samples are males, depth of coverage is generally lower on the X chromosome.
Coverage thresholds on the X were adjusted by a factor of 3 /4.

Overall, this Pilot-style mask results in about 6.6% of bases marked as N, 1.4%
marked L, 0.4% marked H and 3.9% marked Z. The remaining 87.8% of passed
are marked passed (P) - and correspond to 94.0% of non-N bases.

As the name suggests, the Strict mask uses a more stringent definition. This
definition uses a narrower band for coverage, requiring that total coverage
should be with 50% of the average, that no more than 0.1% of reads have
mapping quality of zero, and that the average mapping quality for the position
should be 56 or greater. This definition is quite stringent and focuses on the
most unique regions of the genome. In the regions that are marked as passed by
this mask, only ~2% of sites called in an initial analysis are marked as likely false
positives by VQSR. The average total depth of coverage across Phase I samples is
5132. Thus, sites with a depth of coverage of <2566 or >7698 were excluded.

Overall, this strict mask results in about 6.6% of bases marked N, 1.4% marked L,
0.9% marked H, 22.1% marked Z, and 1.6% marked Q. The remaining 67.5% of
passed are marked passed (P) - corresponding to 72.2% of the non-N bases.

Each mask is summarized in both a FASTA-style file and a BED-style file, which
are available for download?”®.

10.5 Haplotype estimation from OMNI data
Authors: Olivier Delaneau and Jonathan Marchini

Haplotypes were estimated from the [llumina OMNI genotypes on 2,123 samples
in the following way.

The genotypes were converted to PED/MAP format using VCFtools3’. SNPs with
the following entries in the FILTER column were excluded: amb, dup, id10, id20,
id5, id50, refN. Family relationships were derived from the files in the sample
pedigree file80.

The resulting dataset contained 327 trios, 42 duos and 1,058 unrelated to give a
total of 2,123 individuals at 2,177,885 SNPs. A detailed breakdown of the
numbers of trios, duos and unrelated samples in each population is given in
Table S3.
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We found two trios with very high Mendel error rates on specific chromosomes.
The CEU trio parent NA06984 has very low heterozygosity (0.00086 in the
region approx. 70-80Mb of chr18) and the ASW trio child NA19918 has very low
heterozygosity (0.00015 in region approx. 0-7Mb of chr17). This is likely due to
uniparental disomies in the cell line DNAs of these samples. When phasing chr17
and chr18 we ignored the familial relationships between the samples in these
two trios.

The program SHAPEIT®! was used to phase this dataset one chromosome at a
time. This program can handle trios, duos, and unrelateds at the same time and
has been shown to provide highly accurate solutions compared to all the most
widely used phasing programs. The resulting files were converted to VCF format,
and are available for download®2.

10.6 Imputation using the Phase 1 data
Author: Bryan Howie

To evaluate the utility of the Phase 1 haplotypes as a genotype imputation
resource, we performed cross-validations in external datasets genotyped with
different technologies. We measured imputation accuracy at SNPs, short
insertion/deletion polymorphisms (indels), and large deletions from the
reference sequence (structural variants, or SVs).

10.6.1 SNP and indel evaluation with Complete Genomics data

We assessed accuracy at SNPs and indels with high-coverage, whole-genome
sequence data made publicly available by Complete Genomics, Inc. (CGI). Of the
69 individuals in this resource, 20 are neither included in Phase 1 nor related to
Phase 1 samples. These include 9 individuals of African ancestry (3 LWK, 4 MKK,
2 YRI), 3 individuals of admixed American ancestry (3 MXL), 4 individuals of
European ancestry (3 CEU, 1 TSI), and 4 individuals of south Asian ancestry (4
GIH).

To emulate a typical imputation analysis in an association study, we masked the
CGI genotypes at all sites not included on an Illumina 1M SNP array and then
imputed the masked genotypes from the pseudo-array scaffold and the Phase 1
integrated variant haplotypes. Imputation was performed by supplying the 20
CGI-sequenced individuals and the full set of Phase 1 haplotypes to IMPUTE283,
which chooses a custom reference panel for each study individual in each 5-Mb
segment of the genome. We set the knsp parameter of IMPUTE2 (the number of
reference haplotypes to use when imputing each individual) to 1500 since pilot
experiments showed that this value provided high accuracy in all populations. All
other software settings followed the default values of IMPUTE v2.2.2.

This experiment produced estimated genotype probabilities for all SNPs and

indels in the Phase 1 reference panel. We measured imputation accuracy by
comparing these estimates with the CGI genotypes at shared variants. Following
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standard practice in the genotype imputation field, we defined accuracy as the
squared correlation between imputed allele dosages, which take values in [0,2],
and masked CGI genotype calls, which take values in [0,1,2]. Imputed variants
were assigned to bins according to the allele frequency of each continental group
in the Phase 1 callset; since there are no south Asians in Phase 1, we calculated
the frequencies for this group as a weighted sum of the European (w = 0.67) and
east Asian (w = 0.33) frequencies at each variant. For each variant type, allele
frequency bin, and ancestry group, we computed the squared Pearson
correlation (R?) between the aggregate dosages and masked genotypes. This
differs from the standard approach of computing variant-wise correlations and
taking the average within each frequency bin. Aggregate statistics are more
stable than variant-wise means in small sample sizes like the ones used here, and
our experiments show that aggregate correlations for small samples are similar
to variant-wise average correlations for large samples (data not shown).

We used the CGI results to create allele frequency vs. imputation accuracy curves
for three variant classes in each ancestry group: genome-wide SNPs, exome-wide
SNPs, and genome-wide indels (Figures 5a, S14). Exome SNPs were defined as
those that fall within consensus target regions of the capture arrays used for
Phase 1 exome sequencing. We excluded 83 exome SNPs from this analysis due
to excess heterozygosity (inbreeding statistic less than -0.95 across all Phase 1
individuals), which is a hallmark of spurious variants caused by segmental
duplications that are not present in the reference sequence.

Our initial results showed that the apparent imputation accuracy of indels was
consistently lower than that of SNPs. Comparisons with array-based indel
genotypes suggest that this effect is driven by the difficulty of calling indel
genotypes from short sequence reads in both the Phase 1 and CGI datasets (data
not shown). To generate a comparison set enriched for variants that were called
well in both datasets, we restricted the indel results to sites not located within
the Phase 1 sequence mask.

10.6.2 SV evaluation with Conrad et al. data

We evaluated the imputation accuracy of large deletions (SVs) by comparing
against tiling array genotypes from a Ilarge study of copy number
polymorphism84. We simulated a SNP array by using HapMap 3 genotypes at
sites on the Illumina 1M platform. The HapMap 3 and Conrad et al. datasets
share 74 YRI (AFR) and 76 CEU (EUR) individuals who are not included among
or related to Phase 1 samples. For these 150 individuals, we imputed 1,956 SVs
that were genotyped in both Phase 1 and the Conrad et al. study and had at least
80% reciprocal sequence overlap. The imputation procedure followed the same
parameters outlined above. We measured imputation accuracy as the aggregate
squared correlation between masked Conrad et al genotypes and imputed
dosages within each allele frequency bin. The results are plotted in Figure 5a and
S14, and they show that SVs can be imputed with accuracy similar to that of
SNPs.
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While this experiment mimics the imputation of SVs from the Phase 1 reference
panel into an external dataset (e.g., an association study cohort), we can also
evaluate SVs that were imputed within the Phase 1 data set. When genotype
likelihoods were constructed for variant integration, the likelihoods for SVs were
calculated only for individuals with Illumina sequencing data, comprising 944 of
the 1,092 samples in the Phase 1 set. For the remaining 148 individuals, the
genotypes in the integrated call set were imputed from the genotype likelihoods
for nearby SNPs and INDELs. For 24 of these individuals (12 AFR, 6 EUR, 6
E.ASN), we assessed the accuracy of the genotypes in the integrated call set by
comparing against array-based genotypes from Conrad et al. We measured the
accuracy of within-Phase 1 imputation using the same 1,956 SVs described
above.

The results are shown in Figure S14c, which shows the aggregate squared
correlation (R?) between Conrad et al. genotypes and Phase 1 genotypes as a
function of Phase 1 allele frequency. As with imputation into an external dataset,
we find that accuracy is high for common SVs imputed within the Phase 1
samples: all populations have R? > 0.8 for SVs with frequency greater than 5%
and R? > 0.9 for SVs with frequency greater than 10%. This high level of
agreement suggests that the variant integration process was generally successful
for large deletions.

10.6.3 Comparison of Phase 1 haplotypes with benchmark haplotypes

To further evaluate the utility of the Phase 1 haplotypes as a genotype
imputation resource, we compared them against a set of high-quality benchmark
haplotypes. The benchmark haplotypes were generated by genotyping all Phase
1 individuals on the Illumina Omni 2.5 M SNP array, together with a number of
family members and unrelated individuals collected for later phases of the
project; 1,856 samples were genotyped in total. These array genotypes were
phased across entire chromosomes by SHAPEIT®!, which can handle a mixture of
unrelateds, duos, and trios. Of the 1,092 Phase 1 individuals, 380 were phased as
trio parents (95 AFR, 169 AMR, 100 ASN, 16 EUR), 35 as duo parents (34 AFR, 1
AMR), and 679 as unrelateds (117 AFR, 11 AMR, 186 ASN, 363 EUR). The entire
set of 1,856 samples was phased together while using transmission information
from all known family relationships.

The SNP array genotypes have been shown to be accurate, and the genotyped
family members in this sample set should yield high-quality phasing, so the
phased Omni haplotypes provide a useful benchmark for assessing the Phase 1
haplotypes. For an apples-to-apples comparison, we reduced both datasets to the
same set of individuals (1,092 Phase 1 samples) and variants (52,114
chromosome 20 SNPs typed on the Omni 2.5 M array and called in Phase 1). We
then used each of these haplotype sets as a reference panel to impute masked
genotypes in the remaining unrelated individuals typed on the SNP array; these
included 46 AFR, 103 AMR, 88 E.ASN, 108 EUR, and 76 S.ASN samples.
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When imputing the non-Phase 1 individuals, we masked every 25t Omni SNP in
sliding windows, such that the SNPs were effectively imputed from a 2.5 M array
scaffold and every Omni SNP was imputed exactly once. We imputed each
masked SNP from two reference panels: the Phase 1 haplotypes and the Omni
benchmark haplotypes. The masked genotypes were imputed by IMPUTE2
(version 2.1.2) on default settings.

The imputation accuracy (mean R? between masked array genotypes and
imputed allele dosages) is shown in Figure S14b as a function of non-reference
allele frequency for each broad ancestral group. The solid and dotted lines show
the accuracy obtained when imputing from the Phase 1 and benchmark
reference panels, respectively.

As expected, the Omni benchmark haplotypes provide higher imputation
accuracy across most populations and allele frequencies. Nonetheless,
imputation from the Phase 1 haplotypes achieves competitive accuracy in all
cases, which is striking because these haplotypes were inferred primarily from
low-coverage sequence data and without the benefit of genotyped family
members. These results suggest that the Phase 1 haplotypes are of high quality
and can be viewed as a reliable reference panel for genotype imputation in
association studies.

It is possible to take advantage of the family-informed OMNI haplotypes when
calling genotypes and phasing haplotypes from sequence data8s. Subsequent
imputation from such haplotype reference panels can lead to a substantial boost
in imputation accuracy at rare variants.

10.7 Analysis of private and cosmopolitan variants by frequency
Authors: Adam Auton and Gil McVean

To generate Figure 2b, we extracted the alternative allele counts for all variants
in the Phase 1 release. For each variant, we also calculated the alternative allele
count in each population or continental grouping (AFR: ASW, LWK, YRI; AMR:
CLM, MCL, PUR; ASN: CHB, CHS, JPT; EUR: CEU, FIN, GBR, TSI). Using this data,
we determined if the alternative allele was private to a specific population /
continent, or shared across multiple populations or continents (‘cosmopolitan’).
Figure 2b shows the fraction of sites restricted to single populations/groups and
the fraction shared across each group/population.

Because rare variants will (whatever the true degree of differentiation) typically
be found in only one or a few populations, we also calculated a metric of allele
sharing within and between populations that can detect the excess of
differentiation relative to chance. Specifically, we compute, for each group of
populations, the probability of sampling (without replacement) two
chromosomes carrying the variant allele if the chromosomes are drawn from the
same population (weighted by the number of sample-pairs within each
population).  This is divided by the probability of sampling (without
replacement) two chromosomes carrying the variant allele if the chromosomes
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are drawn from the entire pool of populations. If the number of copies of an
allele in population i is a;, the number of haploid genomes in that population is n;,
the total number of copies of the allele across the group is a and the total number
of haploid genomes is n, then the statistic is
Yiai(ai—1 a(a-1
F= (Zinigni—li) / (ngn—li)'
For a given value of a, the statistic is averaged over all sites in which the allele
count in the group is a. This statistic was used to calculate the excess sharing
shown in Figure S6a. The statistic can also be computed between groups (by
pooling all sampling within a group), to give the black line in Figure S6a. The
statistic can also be computed for a single population:
aij(ai—1 a(a—-1
Fy = (nigni—li) / (nEn—li)'
Again, the statistic can be averaged over all sites where the allele count in the
wider group is a. These plots are shown in Figure S6b.

10.8 Density of variants as a function of derived allele frequency
Authors: Adam Auton and Gil McVean

In Figure 2c, we plotted the density of the expected number of variants per
kilobase carried by a genome drawn from each population (i.e., the integral of
this function gives the average number of variants (per kb) carried by a haploid
genome drawn from the population. This expectation was calculated for a given
allele count, j, as éj = 1000%jn;/(Gap), where G is the genome size (taken as
2.85Gb), « is the fraction accessible (0.94), p is the fraction of variants where
ancestral allele status can be assigned with high confidence (0.86), and n;is the
number of variants with frequency j.

10.9 Analysis of highly differentiated sites

Authors: Vincenza Colonna, Yali Xue, Yuan Chen, Qasim Ayub, and Chris Tyler-
Smith*

* Corresponding Author

Derived allele frequencies (DAF) were calculated for each population or
continent using data from the final integrated call set. Continents were AFR:
ASW, LWK, YRI; ASN: CHB, CHS, JPT; EUR: CEU, FIN, GBR, TSI. We excluded
populations with small sample size (IBS) and extensive admixture (CLM, MXL,
PUR). For each pair of populations or continents ADAF was calculated for each
SNP as the absolute difference between DAFs in each population or continent.

Highly differentiated (HD) sites tend to cluster in the genome. However, most
likely only one or a few SNPs in each cluster have functional consequences that
have driven the observed extreme differentiation. Therefore, from the highest
1% of each ADAF distribution a subset of sites was chosen according to two
criteria: each SNP is the most highly differentiated SNP in every 1000 SNPs from
non-overlapping chromosome intervals, and it must have ADAF > 0.7 or = 0.25
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for continental and population comparisons, respectively. The filtered subset
should be enriched for sites with functional consequences, and depleted of sites
that do not contribute directly to the phenotype.

Validation was performed using two approaches. First, Complete Genomics (CG)
data from five overlapping populations (ASW, LWK, YRI, CEU, CHB) with 868
overlapping sites was used to evaluate consistency of ADAF values. Fifty CG
individuals were used after excluding closely related ones. Thirty-nine of them
overlap with Phase I samples. Due to the small CG sample size, populations were
pooled into continents (AFR, 2n=18; ASN, 2n=8; EUR, 2n=24) and we limited this
comparison to the continental level. Second, the most highly differentiated HD
sites from continental and population comparisons (n=696 sites) compatible
with Sequenom assay design was chosen and genotyped in 362 Phase I
individuals using a Sequenom assay, and used to evaluate genotype concordance,
expressed as the ratio between concordant and total calls.

We identified between 17 and 343 HD sites in population comparisons and
between 190 and 348 in continental comparisons (Table S12). Validation using
CG data showed that ADAF values obtained from the CG dataset were
consistently correlated with those calculated from the Phase I call set (Pearson's
product-moment correlation EUR-ASN, r?=0.81, p-value < 2.2e-16; AFR-ASN,
r2=0.79, p-value < 2.2e-16; AFR-EUR, r2=0.79, p-value < 2.2e-16). Validation
using Sequenom showed an average per-locus genotype concordance rate of
95% after removing sites where the Sequenom assay failed (n=604 sites
remaining). The highest discordance rate was found in homozygote alternative
calls (8.2%; 3.7% for homozygous reference; 4.8% for heterozygous).

There were no fixed differences between any pair of continents or populations, a
finding we interpret as a likely consequence of shared ancestry and recent
genetic exchanges either at population and continental level. ADAF values
between populations were generally higher in AFR (median range: AFR = 0.16-
0.19; EUR = 0.10-0.17; ASN = 0.10-0.15), and CEU-GBR have the lowest number
of HD sites. These findings largely reflect population sampling choices, which
took population similarity into account to different degrees in different
continents, rather than biological properties.

The highest ADAF value at each level is found at a site already known to be
highly differentiated and under selection: 0.98 between ASN-EUR at rs1426654
in the SLC24A5 gene, causal for light skin in Europeans at the continental level;
0.63 at rs4988235 located in the MCM6 gene, and the promoter of the Lactase
(LCT) gene associated with lactose intolerance at the population level. Besides
these two, a number of other ‘known’ sites were identified, among which were
DARC, EXOC6B, DOK5, SLC24A5, SLC45A2, EDAR, and TLR1.

10.10 Rare allele sharing within and between populations

Authors: Adam Auton and Gil McVean
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In Figure 3a, we investigated patterns of allele sharing for variants with very low
frequencies. Specifically, we identified all variants with a minor allele count of
exactly 2 across the entire Phase 1 sample, corresponding to a frequency
estimate of 0.09%. We refer to these as f> variants. For each f; variant, we
tabulated the populations in which the two copies of the variant were contained,
allowing estimation of the relative proportion of rare allele sharing between
populations. Figure 3a summarises the results in a graphical form.

10.11 Shared haplotype length as a function of allele frequency
Authors: Dionysia K. Xifara and Gil McVean

To investigate the extent of haplotype sharing between variants of differing
frequencies (Figure 3b), we performed the following analysis. We isolated 196
regions of length 1Mb, randomly sampled along the genome. For every
segregating site within these regions, excluding the first and last 100 kb, we
considered up to 15 pairs of haplotypes from the same population, randomly
selected among all haplotypes that carried that variant (excluding samples
identified as cryptically-related; see Table S10). We determined the distance
from the current position to the kth site at which the haplotypes differed in
either the 5’ and 3’ direction, recording the total length of the shared chunk.
Experiments showed that while increasing k from 1 to 2 roughly doubled the
length of shared haplotype (as expected if the ‘break’ is due to a genotyping
error), increasing k from 2 to 3 had a much smaller effect, suggesting that at k =
2, haplotype identity is lost either through true breaks in identity, phasing switch
errors or clusters of incorrect genotypes and false SNPs. We therefore report
haplotype length to the second different allele between haplotypes. For each
allele count, we report the median shared chunk length over all the regions,
weighted by the number of SNPs that had been considered. Figure 3b illustrates
the reduction in shared chunk length as allele frequency increases, for each
population. Genetic distances were estimated from the combined-population
fine-scale genetic maps estimated from the HapMap2 data (The International
HapMap Consortium 2007). The expected curve for genetic distance (Figure S7a
inset) was obtained assuming a coalescent model with exponential population
growth, starting 10,000 years ago and increasing the effective population size
from 10,000 to 4 million (after Nelson et al. 2012).

10.12 Local ancestry inference
Authors: Eimear E. Kenny’, Claire Churchhouse, Anjali Gupta Hinch, Amy Williams,
Yael Baran, Simon Gravel, Brian Maples, Fouad Zakharia, Eran Halperin, Simon

Myers, Jonathan Marchini, and Carlos D. Bustamante

* Corresponding Author

For African American (ASW, n=61), Mexican (MXL, n=66), Puerto Rican (PUR,
n=55) and Colombian (CLM, n=60) individuals, we inferred the continent of
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origin for each base pair along the genome using a common panel of African
(AFR), European (EUR), and Native American (NAT) individuals serving as
proxies for the ancestral populations. The AFR reference panel (n=198)
comprised individuals from Yoruba (YRI, n=101) and Luhya (LKK, n=97), the
EUR reference panel (n=395) comprised individuals from Great Britain (GBR,
n=99), Tuscany (TSI=100), Iberia (IBS=97) and the CEPH-panel (CEU, n=99), and
a NAT reference panel (n=45) was from Mao et al.8¢. To produce a ‘high accuracy’
call set for each admixed population we considered calls that were a consensus
across multiple local ancestry inference method; LAMP-LD8’, HAPMIX88
(personal communication, S. Myers), RFMIX (personal communication
Bustamante) and MULTIMIX®°. The resulting consensus set of local ancestry tract
calls for all TGP phase 1 admixed individuals was generated for the project and is
available from the FTP site®0.

Local ancestry inference calls were made using the OMNI 2.5M genotype data
and low pass sequencing SNP calls available at the interim release of June 2011.
Each local ancestry inference method takes as input phased genotype data for
both admixed individuals and the putative ancestral panels. The SHAPEIT
algorithm with default parameters® was used to phase all haplotypes. Local
ancestry inference in ASW individuals used the EUR and AFR panels and the
OMNI 2.5M genotypes. A third reference panel of NAT typed on the Affymetrix
6.0 genotype chip were used for local ancestry inference of MXL, CLM and PUR
individuals, and we therefore constructed a set of genotype calls at Affy6 sites for
all MXL, CLM, PUR, EUR and AFR individuals using TGP data. First, genotypes at
Affy6 sites were extracted from the low-pass sequencing SNP calls and then
merged with the subset of OMNI 2.5M genotypes that were at Affy6 sites. Trio
structures can vastly improve phasing, so the children of the MXL, PUR and CLM
trios were included, albeit just using the subset of OMNI 2.5M genotypes at Affy6
sites (therefore, the children of each trio had non-negligible quantity of missing
data). Genotypes used for calling MXL, CLM and PUR are available on the FTP
site. Finally, local ancestry tracts were called by each method for both
haplotypes of each chromosome per admixed individual using the following
parameters (i) LAMP-LD87 using S=25 and W=100, (ii) HAPMIX88 with default
parameters for ASW and, for MXL, PUR and CLM, an extended version of HAPMIX
that uses a constraint solver to combine results from three two-way runs, (iii)
RFMIX using window sizes of 0.2 cM and assuming 8 generations since
admixture and (iv) MULTIMIX with default parameters.

In order to generate the set of consensus calls, the per-chromosome haplotypes
were collapsed at each genotyped site (Affy6 or OMNI 2.5M) to give single
diploid call per site (probabilistic calls were rounded to 0 or 1) in all admixed
individuals across all four methods. Diploid calls were generated to avoid errors
in haploid calls due to switch errors in phasing. Calls across four methods were
compared at every site to generate the ‘high accuracy’ consensus calls; where 3
or 4 of the methods agreed, the majority call was set as the consensus call, if
there was a tie, 3- or 4-way disagreement between methods, the site was set to
‘unknown’. Sequential diploid calls along chromosomes were collapsed to give
diploid call tracts of base pair length the distance between the first and last SNP
in the tract. Base pairs between the SNP at the end of one tract and the first SNP
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at the beginning of the next tract were labeled ‘undetermined’. Regions at the
start and end of each chromosome flanking the first and last SNP sites used in
the calling are also listed as ‘undetermined’. Global proportions of EUR, AFR or
NAT ancestry in ASW, MXL, PUR and CLM admixed individuals and the
proportion called as ‘unknown’ were calculated by averaging over all diploid
ancestry called tracts (excluding ‘undetermined’ tracts; Figure S9a).

Once local ancestry assignments had been performed, we obtained the
proportion of novel SNPs, heterozygous sites, and nonsynonymous-to-
synonymous ratio at non-reference sites as a function of the diploid ancestry
(AFR/AFR, AFR/EUR, NAT/NAT etc.). The proportion of heterozygous sites in
each ancestry category (Figure S9b) was calculated among sites with sufficient
data and passed quality filters (specifically using the Pilot-style mask described
in section 10.4)7°. The proportion of novel SNPs in each population (Figure 3c)
was calculated with respect to the list of SNPs in dbSNP version 135 but pruned
for SNPs that were previously discovered and reported by the 1000 Genomes
Project. Finally, the rate of nonsynonymous-to-synonymous SNPs in each
ancestry category (Figure S9c) was calculated over all sites that were not
homozygous for the reference allele.

10.13 Estimation of Fs;

To compare the level of genetic differentiation between populations, we
calculated the commonly used statistic, Fst. There are many possible estimators
of Fsr, each of which can give differing results. We note that the estimated values
of Fst can be quite sensitive to choice of estimator and the inclusion of rare
variation.

10.13.1 Weir and Cockerham, HapMap estimators
Author: Adam Auton

We estimated Fsr for each pairwise population comparison for both the Weir and
Cockerham®? and the HapMap??® estimators. This was achieved by using
VCFtools37 for each autosome separately. For a given estimator, the estimates
were very similar for each chromosome, and we therefore calculated a combined
estimate by averaging the per-chromosome values. The results are shown in
Table S11. Although the two estimators provide different estimates, the relative
ordering of pairwise comparisons is largely consistent, with the exception of the
IBS population, which has a small sample size in Phase 1. These estiamtes can be
demonstrated by the removal variants with MAF < 5% in the combined sample
resulting in significantly different estimates (also shown in Table S11).

10.13.2 Hudson ratio of averages
Authors: Gaurav Bhatia, Nick Patterson, Alkes L. Price
We computed Fsr estimates using the definition of Hudson et al.?4, equivalent to

an earlier definition of Nei?>. Estimates were computed using a ratio of averages,
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as opposed to an average of ratios?®. Results are displayed in Table S11. In
sequencing data with many rare variants, discrepancy between approaches for
calculating Fst can become very large, as rare population-private SNPs with low
Fsr will cause large decreases in Fst. We recommend that estimates of Fst be
computed using the ratio of averages approach?®, as this approach is robust to
the inclusion of rare variants.

10.14 Quantifying potentially functional variants in the Phase 1 dataset

For the analysis presented in Table 2, we calculated the average number per
individual of variant sites belonging to different potentially functional classes
(detailed in the following sections), based on sites discovered in the low
coverage genome-wide sequence data. These numbers are expressed as the
mean per population, and the population range is given. Numbers are broken
down into rare (<0.5%), low frequency (0.5-5%), and common (>5%) according
to global derived allele frequency in the Phase 1 samples.

10.14.1 Coding variant classes

Authors: Yali Xue, Yuan Chen, Suganthi Balasubramanian, Lukas Habegger, Mark
Gerstein, Chris Tyler-Smith

The coding variants included synonymous, nonsynonymous, stop-loss and indel-
non-frameshift based on the annotation from GENCODE v7. Since variants may
receive multiple annotations because of their consequences for alternative
transcripts, a hierarchy stop-loss > nonsynonymous > synonymous was used,
such that a variant was only counted once at its highest level in the hierarchy.
Two sets of numbers were calculated: one for all sites, and a second for sites with
GERP score >2, except for indels where GERP scores are not available and loss-
of-function (LoF) variants which were considered damaging irrespective of the
GERP score of the variant nucleotide(s). Potential LoF variants received
additional annotation and curation, described below.

10.14.2 Identification and filtering of loss-of-function variants

Authors: Daniel MacArthur, Suganthi Balasubramanian, Mike Jin, Adam Frankish,
Jennifer Harrow, Mark Gerstein, Chris Tyler-Smith

We examined SNV and short indel calls for variants predicted to result in the
complete loss-of-function (LoF) of protein-coding genes. Annotations were
performed using the Variant Annotation Tool%4.
LoF variants were defined as:

1. SNVs predicted to create a premature stop codon (stop_gained);

2. SNVs predicted to disrupt an essential splice site, i.e. variants found in the
2bp at either end of a spliced intron (splice_site);
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3. Small insertions or deletions in a coding region that had a length that was
not a multiple of 3, and were thus expected to disrupt the normal reading
frame (frameshift_indel).

We next applied filters to these variants to remove likely sequencing and
annotation artifacts, using similar approaches to those described in a recent
analysis of LoF variants®? that were identified as part of the 1000 Genomes pilot
project. Variants satisfying any of the following criteria were regarded as likely
artifactual:

1. Variants included in the phase 1 site list, but for which no individuals
were explicitly called as carrying the non-reference allele (no_alt_calls);

2. Variants where the LoF allele was also inferred to be ancestral, based on
comparison with non-human primate genomes (lof_anc);

3. Predicted truncating variants found in the first or last 5% of the coding
sequence (near_start, near_stop);

4. Variants identified as likely artifacts through manual reannotation
performed as part of the 1000 Genomes pilot project (pilot_filt);

5. Splice variants found in a noncanonical splice site, i.e. a site in the
reference that did not follow the standard GT-AG rule (noncanonical);

6. Splice variants where the other splice site in that intron was noncanonical
(other_noncanonical);

7. Variants found in an intron with a total length of less than 15 bp
(short_intron);

8. Multiple indels in the same coding sequence with evidence for genetic
linkage, which in combination would be expected to restore reading
frame (linked_indel);

In addition to applying these criteria to all candidate LoF variants, we manually
inspected the annotation evidence supporting all novel LoF variants with a
global allele frequency above 5%, and removed those with poor transcript
support, or for which other criteria supporting an annotation artifact were
observed (manual_annot).

10.14.3 HGMD-DM and COSMIC SNPs

Authors: Yali Xue, Yuan Chen, Qasim Ayub, Edward V. Ball, Peter D. Stenson, David
N. Cooper, and Chris Tyler-Smith

The set of SNPs overlapping between 1000 Genomes Phase 1 and the HGMD DM
(Damaging Mutation) class (HGMD®® version 2010.4) or the COSMIC?® base
substitutions (v56) were picked based on correspondence between the
chromosome coordinate and allele. The overlapping sets of variants were then
filtered by GERP score >2.

10.14.4 Non-coding variant classes

Authors: Xinmeng Jasmine Mu, Ekta Khurana, Yali Xue, Yuan Chen, Arif Harmanci,
Cristina Sisu, Chris Tyler-Smith, and Mark Gerstein
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The following non-coding variant categories were included: UTRs (5’ and 3’),
non-coding RNAs (lincRNA, miRNA, miscRNA, rRNA, snoRNA, snRNA), motif gain
in TF peak, and motif loss in TF peak. The categories are based on the non-coding
annotations derived from the GENCODE®> v7 and ENCODE Integrative paper
release®®7, The counts are redundant - i.e. no hierarchy was used and a variant
was counted multiple times if it received multiple annotations.

The motif gain and loss analysis investigated SNPs that fall into TF-binding
motifs for the 121 TFs assayed by ChIP-seq experiments in the ENCODE project.
Data from all cell types were used for this analysis. The motif gain variant
category is defined as a SNP whose derived allele has a higher frequency in the
Position Weight Matrix (PWM) of the bound motif than the ancestral allele; the
motif loss variant category is defined as a SNP whose derived allele has a lower
frequency in the PWM of the bound motif than the ancestral allele.

All non-coding variant numbers were calculated for all variants and for variants
with GERP >2.

10.14.5 Other conserved variants

Authors: Yali Xue, Yuan Chen, Xinmeng Jasmine Mu, Ekta Khurana, Mark Gerstein,
and Chris Tyler-Smith

All sites with GERP score >2 were considered as ‘Total conserved’ sites, and all
sites with GERP score > 2 but not in the above categories as ‘Other conserved’
sites.

10.15 Rare variant proportion for variants with functional consequences
Author: Tuuli Lappalainen

Figure 4a shows the correlation between evolutionary conservation and allele
frequency in different functional annotation categories. This analysis was done
on SNPs found in the low coverage data to have comparable data from coding
and non-coding variants. Conservation of the SNP sites was measured by the
mammalian GERP scorel%, Derived allele frequency was calculated across the
entire sample, and the plot shows the proportion of sites with frequency < 0.5%.
Sites without GERP score or ancestral allele information were excluded. The
functional annotation is described in Section 8.1; additionally, the null category
consists of 2 million random low coverage SNP sites that do not belong to any
annotation category. In the figure, the lines represent medians of bins of size
adjusted according to the number of SNPs in each annotation category, with 75%
overlap between adjacent bins. The crosses adjacent to the axes show the overall
medians of the annotation categories.

10.16 Estimation of excess nonsynonymous variants in KEGG pathways

Author: Adam Auton

72



Gene pathways were obtained from the KEGG databasel0l, We selected pathways
with more than 5 genes, giving a total of 186 pathways. For each pathway, we
estimated the number nonsynonymous (NSyn) SNPs to synonymous (Syn) SNPs,
separately for SNPs with minor allele frequency > 0.5% and < 0.5%. For each
pathway, we estimated the excess of NSyn SNPs at low frequencies by
calculating:

Excess rare NSyn = #NSynwmar<o.5% - (#Synmar<o.59% X #NSynmar-0.5% / #Synmar>0.5%)

This formula provides an estimate of the excess number of rare nonsynonymous
SNPs on the basis of the number expected from the NSyn/Syn ratio of common
SNPs. The resulting estimates are compared to the conservation GERP scorel00
in Figure S11 and Table S13.

10.17 Nucleotide diversity around CTCF binding motifs
Author: Adam Auton

We identified all copies of a putative CTCF-binding motif CCMYCTNNNGG, which
was selected on the basis of consensus between previous studies!02103, [n total,
we identified 386,528 such motifs. Of these, we identified 17,970 motifs that
intersected with peaks in the ENCODE CTCF-binding annotation in the GM12878
cell line, obtained from the UCSC genome browser (CTCF Binding Sites by ChIP-
seq from ENCODE/University of Washington, peaks replicate 1, although results
are similar using a different replicate)>3104, For each motif in a peak, we tried to
identify an identical motif outside of a peak (without replacement). This could be
achieved for 17,485 motifs (97.3%).

We identified the SNPs at every base in each motif, and summed across all
motifs, with the resulting plot shown in Figure 4c, partitioned by SNP frequency.
Motifs contained within CTCF-bound regions show lower levels of polymorphism
than those outside of these regions, and the SNPs within CTCF-bound motifs tend
to be less common than those outside binding sites, indicating an increased level
of constraint on CTCF-bound loci.

10.18 Population differentiation of functional SNPs
Authors: Adam Auton and Gil McVean

To produce Figure S13, we first partitioned variants on the basis of their allele
count within each population. For each allele-count within each population, we
estimated Fsr to all other populations using just nonsynonymous variants, and
separately using just synonymous variants. We then plotted the proportion of
estimates with a larger nonsynonymous estimate as a function of allele count in
the target population. Although estimates of Fst are sensitive to allele frequency,
we do not expect nonsynonymous and synonymous sites (which are also
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interleaved) to show systematic differences in differentiation unless selection is
operating differently on the different variant types. The systematically higher
differentiation of nonsynonymous variants at low frequencies is therefore
consistent with the effects of purifying selection. At higher frequencies the
difference between nonsynonymous and synonymous variants decreases,
perhaps because higher-frequency nonsynonymous variants are less likely to be
under strong purifying selection than rarer ones.

10.19 Variants in linkage disequilibrium with focal GWAS SNPs
Author: Hyun Min Kang

The average number of variants in linkage disequilibrium to focal SNPs identified
in GWAS for each SNP in the GWAS catalog (as of May 16, 2012)195, the |D’| and r?
with 1000G variants within 1Mb window on each side was evaluated within each
continental population or across all the individuals. For each distance threshold
bin, the number of SNPs with r2 >=5 (or |D’|=1) beyond the distance was
counted, and averaged across all GWAS catalog SNPs. Control SNPs are selected
among the SNPs assayed in Affymetrix 500k SNP arrays to account for potential
ascertainment bias, and matched by European allele frequency, and the distance
to the nearest gene. Trans-ethnic fine mapping was evaluated by taking the
minimum r? or |D’| across the four continental populations. The counts are
refined by different categories, such as HapMap 2+3 variants only, variants found
in the 1000G pilot study, all 1000G variants, non-synonymous coding variants,
variants with GERP conservation score 2 or greater, and variant type. The results
are shown in Figure 5b and Table S15.

10.20 Comparison of 1000 Genomes Phase 1 to UK10K study
Author: Klaudia Walter

The UK10K project, a collaboration between the Wellcome Trust Sanger Institute
and multiple research centres in the UK and Finland, aims to research the
relationship between genetic variants of a broad frequency range and measures
of health and disease status in a variety of study designs using 4,000 whole low-
coverage genomes and 6,000 high-coverage exomes.

The December 2011 UK10K release (REL-2011-12-01) contains 2432 low-
coverage genomes. The percentage of variable sites shared between this UK10K
release and the Phase 1 release of the 1000 Genomes Project is 46.0% at a minor
allele frequency (MAF) of 0.1%, 95.8% at 1% and 97.7% at 5%. The MAF was
estimated from the allele counts in the UK10K data, and the percentage was
computed for each reported MAF allowing a small range of +/- 10%.

10.21 Comparison of 1000 Genomes Phase 1 to SardiNIA study

Author: Goncalo Abecasis
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The SardiNIA Medical Sequencing Discovery Project is a study of the genetics of
age-related traits including blood lipid levels and personality in a Sardinian
population cohort. As of June 2012, the genomes of 2120 individuals had been
sequenced to 3.5X coverage by this project at the CSR4 research institute, in Pula,
Sardinia, and at the University of Michigan. Samples have been sequenced using
[llumina GAII and HiSeq 2000 instruments with 100 - 120 bp paired-end reads.

We performed a comparison of the SardiNIA dataset to the 1000 Genomes
Project Phase 1 release. Sites within the ‘population-genetics mask’ (see Section
10.4: chosen so as to minimize the effects of between-project differences in
variant detection algorithms) with variants at minor allele frequency of 0.1% in
the SardiNIA study were also variable in the 1000 Genomes dataset 23.7% of the
time, rising to 76.9% and 99.3% for variants with MAF of 1.0% and 5.0%
respectively.

11 Accessing 1000 Genomes data

Authors: Laura Clarke, Xiangqun Zheng-Bradley, and Richard E. Smith

A full description of data management and community access can be found in
Clarke et al.19¢ The 1000 Genomes Project has two mirrored FTP sites that follow
the same basic structure.

* Europe: ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/
* USA: ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/

A description of the FTP structure can be found in the README file contained in
the top-level directory.

Tutorials explaining recommended methods for accessing and using the data
have been made available at: http://www.1000genomes.org/using-1000-
genomes-data

Finally, support for using the 1000 Genomes Project data can be obtained via
email: info@1000genomes.org
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Table S1 Low-coverage sequence coverage

Estimated Mean

Population  Platform Sample Number  Total Raw Base Pairs Total Base Pairs Mapped Base Pairs Coverage (*)
ASW ILLUMINA 50 1,089,813,717,972 968,854,526,076 860,327,970,070 6.07
ASW SOLID 11 500,286,849,800 342,449,243,700 216,331,285,800 6.94
ASW all 61 1,590,100,567,772 1,311,303,769,776 1,076,659,255,870 6.22
CEU ILLUMINA 79 1,502,960,787,784 1,294,604,937,320 1,094,649,530,588 4.89
CEU LS454 13 146,488,692,190 131,480,819,959 98,961,124,472 2.68
CEU all 85 1,649,449,479,974 1,426,085,757,279 1,193,610,655,060 4.95
CHB ILLUMINA 81 1,265,574,070,165 1,134,008,661,926 984,021,701,292 4.28
CHB SOLID 16 630,769,366,650 417,614,608,100 244,511,888,650 5.39
CHB all 97 1,896,343,436,815 1,551,623,270,026 1,228,533,589,942 4.47
CHS ILLUMINA 92 1,418,189,794,341 1,299,646,744,020 1,071,501,746,928 411
CHS SOLID 8 200,584,536,300 128,336,437,000 84,922,544,700 3.74
CHS all 100 1,618,774,330,641 1,427,983,181,020 1,156,424,291,628 4.08
CLM ILLUMINA 50 1,081,008,434,634 997,880,714,716 809,514,266,283 5.71
cLM SOLID 10 499,995,107,550 326,310,219,800 205,501,075,700 7.25
cLM all 60 1,581,003,542,184 1,324,190,934,516 1,015,015,341,983 5.97
FIN ILLUMINA 75 1,138,524,186,998 1,044,187,677,032 836,323,008,056 3.93
FIN SOLID 18 608,575,692,700 445,003,405,050 293,354,088,000 5.75
FIN all 93 1,747,099,879,698 1,489,191,082,082 1,129,677,096,056 4.28
GBR ILLUMINA 70 1,215,027,872,642 1,101,288,886,042 824,982,280,523 4.16
GBR SOLID 19 746,168,251,800 525,113,156,350 340,810,710,650 6.33
GBR all 89 1,961,196,124,442 1,626,402,042,392 1,165,792,991,173 4.62
I1BS ILLUMINA 6 91,768,475,800 86,301,704,300 79,602,973,565 4.68
IBS SOLID 8 365,162,926,050 240,650,750,400 160,414,631,900 7.07
IBS all 14 456,931,401,850 326,952,454,700 240,017,605,465 6.05
JPT ILLUMINA 78 1,934,078,557,132 1,700,345,329,015 1,396,406,178,908 6.31
JPT SOLID 11 469,831,458,750 312,859,319,500 180,345,872,950 5.78
JPT all 89 2,403,910,015,882 2,013,204,648,515 1,576,752,051,858 6.25
LWK ILLUMINA 83 1,618,796,704,250 1,488,826,665,046 1,308,949,191,963 5.56
LWK SOLID 14 632,314,850,250 430,833,584,700 236,644,976,100 5.96
LWK all 97 2,251,111,554,500 1,919,660,249,746 1,545,594,168,063 5.62
MXL ILLUMINA 54 1,092,715,400,556 1,013,311,530,884 863,106,820,709 5.64
MXL SOLID 12 541,920,312,100 372,689,964,700 232,992,623,250 6.85
MXL all 66 1,634,635,712,656 1,386,001,495,584 1,096,099,443,959 5.86
PUR ILLUMINA 52 1,201,929,599,317 1,089,276,083,789 807,903,247,949 5.48
PUR SOLID 3 54,314,001,150 40,579,894,850 29,324,996,900 3.45
PUR all 55 1,256,243,600,467 1,129,855,978,639 837,228,244,849 5.37
TSI ILLUMINA 98 1,432,811,860,807 1,333,997,141,749 1,234,369,684,334 4.44
TSI all 98 1,432,811,860,807 1,333,997,141,749 1,234,369,684,334 4.44
YRI ILLUMINA 76 1,422,168,538,822 1,237,450,311,835 1,060,031,524,163 4.92
YRI SOLID 12 534,037,533,950 349,126,967,950 193,688,013,900 5.69
YRI all 88 1,956,206,072,772 1,586,577,279,785 1,253,719,538,063 5.02
Total ILLUMINA 944 17,505,368,001,220 15,789,980,913,750 13,231,690,125,331 4.94
Total LS454 13 146,488,692,190 131,480,819,959 98,961,124,472 2.68
Total SOLID 142 5,783,960,887,050 3,931,567,552,100 2,418,842,708,500 6.01
Total all 1092 23,435,817,580,460 19,853,029,285,809 15,749,493,958,303 5.09

* Assuming an accessible genome of 2.84Gb




Table S2 Exome sequence coverage

Estimated Mean

Population  Platform  Sample Number Total Base Pairs Mapped Base Pairs Mapped to Target Coverage in Target (*)
ASW ILLUMINA 49 481,145,063,324 364,701,630,723 104,015,041,744 72.14
ASW SOLID 9 132,601,206,696 98,844,286,498 12,777,136,555 48.25
ASW all 58 613,746,270,020 463,545,917,221 116,792,178,299 68.43
CEU ILLUMINA 55 781,710,583,271 611,783,336,621 162,444,963,408 100.37
CEU SOLID 26 548,672,944,700 382,456,472,127 50,535,591,941 66.05
CEU all 81 1,330,383,527,971 994,239,808,748 212,980,555,349 89.36
CHB ILLUMINA 70 811,460,564,028 656,573,012,363 208,394,101,425 101.17
CHB SOLID 23 381,992,713,440 280,204,262,734 37,342,955,772 55.18
CHB all 93 1,193,453,277,468 936,777,275,097 245,737,057,197 89.79
CHS ILLUMINA 90 857,138,087,206 714,503,886,102 251,302,974,303 94.89
CHS SOLID 10 156,047,716,700 114,921,715,511 14,521,688,209 49.35
CHS all 100 1,013,185,803,906 829,425,601,613 265,824,662,512 90.34
CLM ILLUMINA 41 431,647,861,041 335,038,858,436 93,040,137,384 77.12
CLM SOLID 19 297,290,521,550 213,373,947,718 27,039,889,718 48.36
cLM all 60 728,938,382,591 548,412,806,154 120,080,027,102 68.01
FIN ILLUMINA 75 716,066,832,301 584,073,449,816 199,492,310,600 90.39
FIN SOLID 17 270,302,462,280 199,112,568,168 25,641,811,876 51.26
FIN all 92 986,369,294,581 783,186,017,984 225,134,122,476 83.16
GBR ILLUMINA 60 771,096,882,996 602,232,267,940 169,836,973,098 96.19
GBR SOLID 26 443,801,705,735 318,174,886,647 44,696,071,194 58.42
GBR all 86 1,214,898,588,731 920,407,154,587 214,533,044,292 84.77
JPT ILLUMINA 68 964,872,725,317 748,071,660,429 237,137,258,342 118.51
JPT SOLID 19 376,101,495,295 274,988,883,452 33,233,029,976 59.44
JPT all 87 1,340,974,220,612 1,023,060,543,881 270,370,288,318 105.61
LWK ILLUMINA 24 303,943,651,024 228,078,920,282 74,710,024,695 105.79
LWK SOLID 62 987,305,907,096 740,239,916,698 91,749,291,260 50.29
LWK all 86 1,291,249,558,120 968,318,836,980 166,459,315,955 65.78
MXL ILLUMINA 54 572,707,204,495 429,456,560,453 114,487,895,932 72.05
MXL SOLID 11 164,258,975,400 123,917,538,096 15,551,396,516 48.04
MXL all 65 736,966,179,895 553,374,098,549 130,039,292,448 67.99
PUR ILLUMINA 48 890,850,110,179 679,446,353,545 161,346,605,090 114.23
PUR all 48 890,850,110,179 679,446,353,545 161,346,605,090 114.23
TSI ILLUMINA 60 701,190,245,690 547,862,286,112 157,297,411,348 89.09
TSI SOLID 35 585,031,422,890 413,598,481,830 62,757,299,612 60.93
TSI all 95 1,286,221,668,580 961,460,767,942 220,054,710,960 78.72
YRI ILLUMINA 71 1,066,578,885,883 826,820,770,280 243,135,647,582 116.37
YRI SOLID 17 304,701,577,167 220,513,527,517 26,860,376,444 53.69
YRI all 88 1,371,280,463,050 1,047,334,297,797 269,996,024,026 104.27
Total ILLUMINA 765 9,350,408,696,755 7,328,642,993,102 2,176,641,344,951 96.69
Total SOLID 274 4,648,108,648,949 3,392,004,935,418 442,706,539,073 54.91
Total all 1039 13,998,517,345,704 10,720,647,928,520 2,619,347,884,024 85.67

* Assuming a exome target size of 29.4Mb




Table S3 Samples with OMNI 2.5M genotypes available, phased using family data available

POP # duos # trios # unrelateds Total samples
ACB 2 21 31 98
ASW 20 12 21 97
CDX 0 0 100 100
CEU 0 2 98 104
CHB 0 0 100 100
CHD 0 0 1 1
CHS 0 50 0 150
CLM 1 34 3 107
FIN 0 0 100 100
GBR 1 0 99 101
GIH 0 0 93 93
IBS 1 48 1 147
JPT 0 0 100 100
KHV 2 19 57 118
LWK 1 0 98 100
MKK 0 0 31 31
MXL 1 29 11 100
PEL 0 34 2 104
PUR 0 35 6 111
TSI 0 0 100 100
YRI 13 43 6 161
Total 84 981 1058 2123

Note this includes samples beyond Phasel (and not all Phase 1 samples)
Haplotypes can be found at
http://ftp.1000genomes.ebi.ac.uk/voll/ftp/phasel/analysis results/supporting/omni_haplotypes/




Table S4 Low-coverage SNP validation

No call rate (%)

Total
Singletons
MAF<0.01

0.01<MAF<0.05

MAF>0.05

O O N W
w o N

2.1

2.9

0.7
0
6

A total of 287 SNP sites were included in the final SNP validation results. True and false SNPs are those
confirmed or rejected by the consensus of the four validation experiments. “No call” SNPs did not
produce a reliable result in any of the validation experiments. The false discovery rate (FDR) is calculated
by dividing the number of false SNPs by the sum of the true and false SNPs. The no call rate is the no call
SNPs divided by the total SNPs. The data has also been split by minor allele frequency (MAF). The

MAF<0.01 category does not include singleton SNPs.

Results for each SNP can be found at

ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/phasel/analysis results/experimental validation/snps/




Table S5 Exome SNP validation

Novel exome consensus SNP validation

Total True SNP False SNP No call FDR (%) No call rate (%)
Total 200 185 3 12 1.6 6
singleton 100 92 1 7 1.1 7
AF<1% 50 47 2 1 4.1 2
AF>1% 50 46 0 4 0 8
Novel 100 84 2 14 2.3 14
Center-unique exome SNP validation
In Notin Total True SNP  False SNP No call FOR (%) O call rate

consensus consensus  validated (%)
Hllumina
BC Unique 28 74 20 2 4 14 67% 70
BCM Unique 77 157 20 13 2 28% 10
UM Unique 175 74 20 13 6 7% 30
SOLiD
BC Unique 63 28 17 6 7 4 54% 23.5
BCM Unique 238 200 20 4 14 2 78% 10
UM Unique 83 117 20 0 16 4 100% 20

A total of 417 SNP sites were included in three exome SNP validation experiments. Table S5a shows the validation results of
exome consensus SNPs stratified by allele frequency and novelty. The AF<0.01 category does not include singleton SNPs. SNPs
are considered novel if they are not found in the low coverage SNP call set or in dbSNP135. Table S5b shows the results of
different centers’ unique exome SNP calls that were not included in the exome consensus set. In both tables, true and false
SNPs are those confirmed or rejected by PCR-Roche 454 validation. “No call” SNPs did not produce a reliable result in the
validation experiment. The false discovery rate (FDR) is calculated by dividing the false SNPs by the sum of the true and false
SNPs. The no call rate is the no call SNPs divided by the total SNPs.

Results for each SNP can be found at
ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/phasel/analysis results/experimental validation/snps/




Table S6. Low-coverage INDEL validation summary

No call rate AFFY-FDR- AFFY-FDR-
Total True INDEL False INDEL No call FDR (%)
(%) BEFORE-SVM AFTER-SVM
Total 93 49 27 17 35.5 18.3 125 5.4
MAF<0.01 15 4 10 1 71.4 7.1 13.8 8.1
0.01<MAF<0.10 36 22 6 8 27.3 22.2 121 5.2
MAF>0.10 42 23 11 8 324 19 12.2 3.7

A total of 93 INDEL sites were included in the INDEL validation study. True and false SNPs are
those confirmed or rejected by the consensus of the three validation experiments. “No call” SNPs
did not produce a reliable result in any of the validation experiments (some were not amplified by
PCR, others did not produce reliable sequencing calls). The false discovery rate (FDR) is calculated
by dividing the number of false INDELs by the sum of the true and false INDELs. The no call rate is
the number of no call INDELs divided by the total number of INDELs. AFFY-FDR-BEFORE-SVM and
AFFY-FDR-AFTER-SVM are the estimated false discovery rate before and after applying SVM
filtering calculated as a proportion of monomorphic sites genotyped in Affymetrix Exome Array.
The data has also been split by minor allele frequency (MAF).

Individual results for each indel can be found at
ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/phasel/analysis results/experimental validation/indels/

A list of indel sites excluded in the post-hoc filtering can be found at

ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/phasel/analysis results/supporting/excluded indel sites/




Table S7 SV call sets, estimated False Discovery Rate (FDR), and number of sites/samples evaluated

Algorithm Variants called Estimated per algorithm FDR from initial Selection criterion for Number in Inferred FDR of discovery
g after merging validation promotion to discovery set discovery set set
Validation Method
Omni 2.5 PCR Array CGH
BreakDancer 20,388 14.1% 12.0% 13.9% calls validated by Omni 2.5 5,914 1% (assumed)
n=6,959 n=75 n=11,417 (p<0.01)
CNVnator 20,062 74.1% 29.6% * 38.2% calls validated by Omni 2.5 2,084 1% (assumed)
n=5,097 n=27 n=58,293 (p<0.01)
Delly 38,758 57.2% 0.0% 2 15.9% calls validated by Omni 2.5 5,073 1% (assumed)
n=10,822 n=78 n=4,092 (p<0.01)
1.5% - 4.2%
Genome STRIP 18,912 1.5% 2.9% 4.2% all calls 18,912 A
across validation methods
n=10,386 n=70 n=12,187
Pindel 41,370 83.0% 40.0%* 47.9% calls validated by Omni 2.5 1,294 1% (assumed)
n=6,619 n=10 n=57,504 (p<0.01)
Non-redundant total 113,649 23,594 1.4% -3.7%
Genotyped set ® 14,422 1.4% - 3.7%

Summary of implied FDR of discovery set after construction *

Experimental method

aCGH PCR Both aCGH and PCR Union aCGH and PCR
Sites attempted 3,305 87 98 3,490
Sites validated 3,186 64 93 3,343
Sites invalidated 70 2 0 72
Sites inconclusive or discordant 49 21 5 75
Estimated FDR 2.1% 3.0% 0.0% 2.1%

Notes

! For CNVnator and Pindel, the calls for PCR validation were originally selected from a more sensitive superset.

The reported FDR is based on a more stringent subset used in the other validation experiments and subsequent analyses.

2 For Delly, the calls for PCR validation were selected on a per-observation (frequency weighted) basis sampled disproportionately from sites with high deletion allele frequency.

The resulting FDR estimate is not comparable to the other call sets where calls were selected on a per-site basis, independent of deletion allele frequency.

3 Sites were genotyped if sufficient data was available to calculate accurate genotype likelihoods; additional non-polymorphic and redundant sites were removed during genotyping.

4 Array CGH and PCR validation sites were selected randomly from the calls in the individual call sets from each method, not the promoted discovery set.

The array CGH and PCR validation results were not available when the promoted discovery set was created.

Omni 2.5 validation uses SNP array probe intensities and is more sensitive for longer deletion events.

Array CGH validation was performed in 25 selected samples and only tests sites discovered in those samples.

Merged discovery sets are available as a supplementary data file.

Results for each site can be found at

ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/phasel/analysis results/experimental validation/sv/




Table S8 LOF SNPs validation results

Frequency Class Total True SNP False SNP No Call FDR (%) No Call rate (%)
Singleton 1183 1078 34 71 3.1 6
Doubleton 150 129 8 13 5.8 8.7
Tripleton 35 25 3 7 10.7 20

<1% (3Q=0.4%) 88 46 17 25 27 28.4

1% -5% 17 3 4 10 57.1 58.8

>5% 8 1 4 3 80 37.5

Total 1481 1282 70 129 5.2 8.7

A total of 1,481 SNP sites were included in LOF PCR-Roche 454 validation. True and false SNPs are those confirmed
or rejected by PCR-Roche 454 validation. “No call” SNPs did not produce a reliable result. The false discovery rate
(FDR) is calculated by dividing the false SNPs by the sum of the true and false SNPs. The no call rate is the no call
SNPs divided by the total SNPs. The data has been split by allele frequency (AF). The AF<0.01 category does not
include singleton, doubleton and tripleton SNPs.

Results for each variant can be found at
ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/phasel/analysis results/experimental validation/snps/




Table S9 Formation mechanisms of large deletions

Mechanism <500bp 500-1000bp 1kb-10kb 10 kb + All

NAHR 9(2.6%) 294 (23.3%) 1420 (22.6%) 255 (24.7%) 1978 (22.1%)
NHR 284 (82.8%) 889 (70.4%) 4642 (73.7%) 748(72.4%) 6563 (73.5%)
MEI 47 (13.7%) 67 (5.3%) 124 (2.0%) 0(0%)  238(2.7%)
VNTR 2 (0.6%) 7 (0.6%) 64 (1.0%) 23 (2.2%) 96 (1.1%)
Undefined 1(0.3%) 6 (0.5%) 45 (0.7%) 7 (0.7%) 59 (0.7%)
Total 343 (100%) 1263 (100%) 6295 (100%) 1033 (100%) 8934 (100%)

NAHR: Non-allelic homologous recombination

NHR: non-homologous rearrangements (including non-homologous end-joining and microhomology-mediated break-induced replication)

VNTR: variable number of tandem repeats
MEI: mobile element insertion




Table S10 Cryptic relationships identified by genome-wide SNP analysis

Population Sample 1 Sample 2  Relationship IBDO IBD1 IBD2
ASW NA19713 NA19985 Sibling 0.3 0.51 0.19
ASW NA20289 NA20341 Sibling 0.23 0.53 0.24
ASW NA20334 NA20336 Sibling 0.24 0.51 0.25
ASW NA19625 NA20414 Second-order 0.43 0.57 0
ASW NA20359 NA20363 Second-order 0.52 0.48 0
MXL NA19660 NA19685  Parent/Child 0 1 0
MXL NA19661 NA19685  Parent/Child 0 1 0
MXL NA19675 NA19678  Parent/Child 0 1 0
MXL NA19675 NA19679 Parent/Child 0 1 0
MXL NA19660 NA19672 Sibling 0.24 0.48 0.28
MXL NA19657 NA19753 Second-order 0.47 0.51 0.02
MXL NA19660 NA19664 Second-order 0.57 0.43 0
MXL NA19664 NA19672 Second-order 0.46 0.54 0
MXL NA19672 NA19685 Second-order 0.44 0.56 0
MXL NA19726 NA19738 Second-order 0.49 0.51 0
CHS HG00656 HG00702  Parent/Child 0 1 0
CHS HG00657 HG00702  Parent/Child 0 1 0
CHS HG00501 HG00512 Sibling 0.28 0.48 0.24
CHS HG00501 HG00524 Sibling 0.24 0.5 0.26
CHS HGO00512 HG00524 Sibling 0.2 0.52 0.28
CHS HGO00577 HG00584 Sibling 0.21 0.55 0.24
CHS HG00578 HG00581 Sibling 0.19 0.54 0.27
CHS HG00578 HG00635 Sibling 0.22 0.55 0.23
CHS HG00581 HG00635 Sibling 0.26 0.55 0.19
CHS HG00418 HG00427 Second-order 0.49 0.51 0
LWK NA19313 NA19331  Parent/Child 0 1 0
LWK NA19381 NA19382  Parent/Child 0 1 0
LWK NA19445 NA19453  Parent/Child 0 1 0
LWK NA19469 NA19470  Parent/Child 0 1 0
LWK NA19331 NA19334 Sibling 0.29 0.48 0.23
LWK NA19347 NA19352 Sibling 0.23 0.52 0.25
LWK NA19373 NA19374 Sibling 0.24 0.5 0.26
LWK NA19396 NA19397 Sibling 0.23 0.53 0.24
LWK NA19434 NA19444 Sibling 0.27 0.51 0.22
LWK NA19443 NA19470 Sibling 0.26 0.49 0.25
LWK NA19313 NA19334 Second-order 0.51 0.49 0
LWK NA19380 NA19382 Second-order 0.43 0.57 0
LWK NA19434 NA19453 Second-order 0.59 0.41 0
LWK NA19443 NA19469 Second-order 0.54 0.46 0
LWK NA19444 NA19453 Second-order 0.47 0.53 0

Additional information can be found at
ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/phasel/analysis results/supporting/cryptic relation analysis/




Table S11 Pairwise estimates of FST

Weir and Cockerham Estimator

LWK
YRI
ASW
CL™M
MXL
PUR
CEU
FIN
GBR
I1BS
TSI
CHB
CHS
JPT

LWK

YRI

ASW

0.56%
0.65%

0.56%

0.57%

0.65%
0.57%

0.51%
0.34%
0.98%
1.19%
0.99%
0.42%
0.98%
3.51%
3.63%
3.54%

Weir and Cockerham Estimator (MAF > 5%)

LWK
YRI
ASW
Cm
MXL
PUR
CEU
FIN
GBR
I1BS
TSI
CHB
CHS
JPT

HapMap Estimator

LWK
YRI
ASW
Cm
MXL
PUR
CEU
FIN
GBR
I1BS
TSI
CHB
CHS
JPT

HapMap Estimator (MAF > 5%)

LWK
YRI
ASW
™M
MXL
PUR
CEU
FIN
GBR
IBS
TSI
CHB
CHS
JPT

LWK

YRI

ASW

0.75%
1.25%

LWK

1.31%

1.25%
1.31%

CLM

0.92%
0.52%
1.58%
1.81%
1.58%
1.07%
1.59%

CLM

0.90%
1.22%
0.93%
0.25%
0.85%

0.37%
0.37%
2.84%
3.88%
2.19%

0.13%

LWK

0.46%
3.95%

3.20%

0.58%

YRI

3.25%

2.41%

-0.86%

0.36%
1.02%

3.00%

1.09%

3.77%

2.84%
3.95%
3.25%

0.63%
0.34%
1.33%
1.55%
1.34%
-0.33%
1.41%

Hudson Definition/Estimator, Ratio of Averages

LWK
YRI
ASW
Cm
MXL
PUR
CEU
FIN
GBR
I1BS
TSI
CHB
CHS
JPT

LWK

YRI

ASW

CLM

0.79%
1.04%

0.79%

0.92%

1.04%
0.92%

PUR

0.48%
0.06%
0.51%
0.21%

CEU

1.35%
1.96%
1.34%
0.33%

FIN

0.33%
0.39%

0.19%
0.20%

1.16%
2.00%
1.07%
0.03%
0.34%

0.12%
0.20%

GBR

1.49%
3.64%
1.07%
0.06%

0.68%

2.82%
0.42%
1.69%
0.25%
0.51%
1.11%
0.38%

0.35%

0.13%
0.58%
-0.86%
-0.33%
0.94%
-0.77%
0.27%
0.38%
0.19%

1.59%
3.35%
1.15%
0.32%
1.13%
0.39%
0.35%

1.41%
2.03%
1.47%
0.15%
0.60%
0.20%
0.15%

0.16%

0.35%
0.47%

3.00%
3.77%
1.77%
-0.07%
1.06%
-0.35%
0.17%
0.32%
0.12%

0.08%
3.38%
3.43%
3.67%

1.20%
2.03%
1.05%
0.17%
0.62%
0.20%
0.08%

1BS

TSI

CHS

JPT




Table S12A  Summary of sites showing high levels of population differentiation

# of Highly
LEVEL POP_PAIR diferentiated * i"re‘:::;[i““
SNPs
AFR ASW-LWK 258 46.8
AFR LWK-YRI 251 50.2
AFR ASW-YRI 213 45.8
ASN CHS-JPT 275 48.1
ASN CHB-JPT 176 437
ASN CHB-CHS 79 38.7
EUR FIN-TSI 343 226
EUR CEU-FIN 201 407
EUR FIN-GBR 197 43.2
EUR GBR-TSI 100 389
EUR CEU-TSI 57 53.8
EUR CEU-GBR 17 143
CON AFR-EUR 348 522
CON AFR-ASN 317 52.6
CON ASN-EUR 190 53.4

* Within Gene_START-Gene_END interval
Table $12B Within-ancestry group high di

LEVEL

POP_PAIR

CHR

POS

RSID

AA

DDAF
FUNC_ANN
HGNC_symbol
Ensemlb_GENE_ID
GENE_START_bp
GENE_END_bp
GENE_PRODUCT

SNPs (top 10 shown for each comparison)

AFR=Africa; EUR=Europe; ASN=Asia; GLO=global sample
Populations pair

Chromosome

Chromosome position (GRCh37/hg19)

dbSNP ID (Build 135)

Ancestral allele (uppercase=high confidence; lowercase=low confidence)
Derived allele frequencies absolute difference
Functional annotation(s)

HUGO gene name

Ensembl gene ID

Gene base start

Gene base end

Gene product

LEVEL POP_PAIR CHR POS RSID AA DDAF FUNC_ANN HGNC_symbol Ensemlb_GENE_ID  GENE_START_bp GENE_END_bp GENE_PRODUCT
AFR ASW-LWK 8 42,253,960 rs7818866 G 0.432 UTR VDAC3 ENSG00000078668 42,249,142 42,263,415 protein_coding
AFR ASW-LWK 11 4,054,405  rs6578434 t 0.421 UTR STIM1 ENSG00000167323 3,875,757 4,114,439 protein_coding
AFR ASW-LWK 1 188,792,890 rs73068734 T 0.416 - - - - - -

AFR ASW-LWK 19 56,074,189 rs34551970 T 0.399 - - - - - -

AFR ASW-LWK 13 25,919,996  rs9507502 T 0.397 TFPEAK NUPL1 ENSG00000139496 25,875,662 25,923,938 protein_coding
AFR ASW-LWK 2 227,973,892 rs73082223 T 0.397 - COL4A4 ENSG00000081052 227,867,427 228,028,829 protein_coding
AFR ASW-LWK 22 45,279,529  rs3747226 a 0.395 - PHF21B ENSG00000056487 45,277,042 45,405,880 protein_coding
AFR ASW-LWK 1 110,201,699  rs506008 t 0.394 SYNONYMOUS GSTM4 ENSG00000168765 110,198,703 110,208,118 protein_coding
AFR ASW-LWK 7 83,018,986 rs10232760 T 0.386 - SEMA3E ENSG00000170381 82,993,222 83,278,479 protein_coding
AFR ASW-YRI 2 237,044,077  rs7603279 A 0.389 - - - - - -

AFR ASW-YRI 12 22,499,621  rs7960970 [o 0.381 TFPEAK ST8SIAL ENSG00000111728 22,216,707 22,589,975 protein_coding
AFR ASW-YRI 20 59,984,746  rs6061352 G 0.376 - CDH4 ENSG00000179242 59,827,559 60,512,307 protein_coding
AFR ASW-YRI 2 227,973,892 rs73082223 T 0371 - COL4A4 ENSG00000081052 227,867,427 228,028,829 protein_coding
AFR ASW-YRI 11 23,719,654 rs12274304 G 0.365 - - - - - -

AFR ASW-YRI 5 147,654,463  rs6887885 A 0.364 - SPINK13 ENSG00000214510 147,647,743 147,665,817 protein_coding
AFR ASW-YRI 9 125,694,610  rs1868590 C 0.359 TFPEAK - - - - -

AFR ASW-YRI 3 101,814,628  rs6441645 G 0.359 TFMOTIF - - - - -

AFR ASW-YRI 5 175,177,421 rs6556222 A 0.359 - - - - - -

AFR ASW-YRI 10 27,973,632  rs1907373 A 0.357 - MKX ENSG00000150051 27,961,803 28,034,989 protein_coding
AFR LWK-YRI 12 22,499,621  rs7960970 C 0.475 TFPEAK ST8SIAL ENSG00000111728 22,216,707 22,589,975 protein_coding
AFR LWK-YRI 6 39,709,730  rs307491 t 0.444 - - - - - -

AFR LWK-YRI 20 14,163,707 rs62208177 A 0.424 - MACROD2 ENSG00000172264 13,976,015 16,033,842 protein_coding
AFR LWK-YRI 16 213,139 rs61420932 G 0.420 PGENE HBM ENSG00000206177 203,891 216,767 protein_coding
AFR LWK-YRI 1 143,470,807  rs7522380 a 0.419 - - - - - -

AFR LWK-YRI 2 8,209,226  rs2058754 C 0.408 - - ENSG00000235665 8,062,556 8,418,214 lincRNA
AFR LWK-YRI 6 113,191,754  rs2086502 A 0.407 - - - - - -

AFR LWK-YRI 11 34,974,109 rs10734430 G 0.397 - PDHX ENSG00000110435 34,937,376 35,042,138 protein_coding
AFR LWK-YRI 20 42,501,897  rs4812748 A 0.388 - - - - - -

AFR LWK-YRI 22 36,663,213 rs58384577 t 0.374 UTR APOL1 ENSG00000100342 36,649,056 36,663,576 protein_coding
ASN CHB-CHS 18 32,247,638  rs1240972 G 0.380 - DTNA ENSG00000134769 32,073,254 32,471,808 protein_coding
ASN CHB-CHS 6 39,709,730  rs307491 t 0.348 - - - - - -

ASN CHB-CHS 10 81,512,832  rs3964382 g 0.334 - - - - - -

ASN CHB-CHS 1 43,370,522 rs61777700 t 0.333 TFMOTIF - - - - -

ASN CHB-CHS 11 39,780,072  rs9667766 A 0.333 - - - - - -

ASN CHB-CHS 12 40,177,313 rs4385961 T 0.330 - C120rf40 ENSG00000180116 40,019,969 40,302,102 protein_coding
ASN CHB-CHS 6 79,962,805  rs4706087 G 0.329 - - - - - -

ASN CHB-CHS 9 30,999,670 rs10970027 G 0.326 - - - - - -

ASN CHB-CHS 4 48,867,222  rs12645497 t 0.325 - - - - - -

ASN CHB-CHS 6 70,154,873 rs2479987 C 0.323 - - - - - -

ASN CHB-JPT 11 133,531,655 rs11223548 C 0.423 - - - - - -

ASN CHB-JPT 8 143,764,879  rs2976398 G 0.377 TFPEAK - - - - -

ASN CHB-JPT 7 134,452,557 rs77943343 C 0.339 TFMOTIF CALD1 ENSG00000122786 134,429,003 134,655,479 protein_coding
ASN CHB-JPT 2 41,366,779  rs77703766 A 0.336 TFMOTIF - - - - -

ASN CHB-JPT 8 106,509,300 rs60855925 g 0.332 UTR ZFPM2 ENSG00000169946 106,330,920 106,816,760 protein_coding
ASN CHB-JPT 16 435,529 rs186934484 t 0.330 - TMEMS8A ENSG00000129925 420,773 437,113 protein_coding
ASN CHB-JPT 19 49,092,551  rs10401347 A 0.327 ENHANCER SULT2B1 ENSG00000088002 49,055,429 49,102,683 protein_coding
ASN CHB-JPT 9 104,385,873 rs10115450 C 0.325 - GRIN3A ENSG00000198785 104,331,635 104,500,862 protein_coding
ASN CHB-JPT 8 500,785 rs12545856 A 0.314 TFPEAK - - - - -

ASN CHB-JPT 3 69,463,899  rs4428188 G 0.314 - FRMD4B ENSG00000114541 69,219,141 69,591,734 protein_coding
ASN CHS-JPT 14 106,205,022 rs12147642 g 0.543 TFPEAK IGHG1 ENSG00000211896 106,202,680 106,209,408 IG_C_gene
ASN CHS-JPT 14 106,019,779 rs28771143 g 0.406 - - - - - -

ASN CHS-JPT 4 124,549,928 rs75958653 G 0.404 - - - - - -

ASN CHS-JPT 3 69,419,614 rs34266487 C 0.390 TFPEAK FRMD4B ENSG00000114541 69,219,141 69,591,734 protein_coding
ASN CHS-JPT 2 197,586,085 rs10172319 T 0.388 TFMOTIF CCDC150 ENSG00000144395 197,504,278 197,628,214 protein_coding
ASN CHS-JPT 5 88,187,764  rs304142 C 0.387 - MEF2C ENSG00000081189 88,013,975 88,199,922 protein_coding
ASN CHS-JPT 3 83,851,186  rs4380420 C 0.387 - - - - - -

ASN CHS-JPT 11 133,541,783 rs11223554 T 0.384 - - - - - -

ASN CHS-JPT 2 41,366,779 rs77703766 A 0.380 TFMOTIF - - - - -

ASN CHS-JPT 18 76,985,839 rs12605374 G 0.380 - ATP9B ENSG00000166377 76,829,394 77,138,278 protein_coding
EUR CEU-FIN 11 39,781,515  rs9795509 A 0.404 - - - - - -

EUR CEU-FIN 8 7,281,213 rs139624327 T 0.383 - - - - - -

EUR CEU-FIN 1 17,116,355 rs151218067 G 0.378 - - - - - -

EUR CEU-FIN 2 112,190,331 rs149528480 T 0.356 TFMOTIF - ENSG00000172965 111,965,353 112,252,677 processed_transcript
EUR CEU-FIN 14 19,606,909 rs28477704 C 0.355 - - ENSG00000258314 19,606,385 19,643,377 lincRNA
EUR CEU-FIN 17 4,812,470  rs9905341 G 0.347 TFPEAK - - - - -

EUR CEU-FIN 7 153,687,489 rs144996581 A 0.346 - DPP6 ENSG00000130226 153,584,182 154,685,995 protein_coding
EUR CEU-FIN 6 166,660,967  rs9356455 c 0.343 - - - - - -

EUR CEU-FIN 15 50,612,659  rs1972701 C 0.338 - GABPB1 ENSG00000104064 50,569,389 50,647,605 protein_coding
EUR CEU-FIN 12 8,131,189  rs7300229 C 0.326 - NECAP1 ENSG00000089818 7,926,148 8,250,367 protein_coding
EUR CEU-GBR 12 22,499,621  rs7960970 c 0.316 TFPEAK ST8SIAL ENSG00000111728 22,216,707 22,589,975 protein_coding
EUR CEU-GBR 14 19,606,909 rs28477704 [o 0.309 - - ENSG00000258314 19,606,385 19,643,377 lincRNA
EUR CEU-GBR 1 17,116,355 rs151218067 G 0.290 - - - - - -

EUR CEU-GBR 1 149,583,516 rs141282873 T 0.283 - - ENSG00000232151 149,575,482 149,651,107 processed_transcript
EUR CEU-GBR 11 39,780,083 rs189303654 G 0.280 - - - - - -

EUR CEU-GBR 9 41,909,186 rs140215685 C 0.279 - - - - - -




EUR CEU-GBR 12 9,648,921 rs11051289 a 0.276 - - ENSG00000214776 9,620,148 9,728,864 pseudogene
EUR CEU-GBR 2 87,929,798 rs56324656 A 0.276 ENHANCER - - - - -
EUR CEU-GBR 6 10,229,201  rs9465613 c 0.275 - - - - - -
EUR CEU-GBR 7 4,441,248  rs10155898 G 0.269 - - - - - -
EUR CEU-TSI 2 136,608,646  rs4988235 G 0.610 TFPEAK MCM6 ENSG00000076003 136,597,196 136,633,996 protein_coding
EUR CEU-TSI 2 135,837,906  rs7570971 A 0.597 TFMOTIF RAB3GAP1 ENSG00000115839 135,809,835 135,933,964 protein_coding
EUR CEU-TSI 15 28,365,618 rs12913832 A 0.336 - HERC2 ENSG00000128731 28,356,186 28,567,298 protein_coding
EUR CEU-TSI 2 137,622,347  rs1649569 C 0.321 - THSD7B ENSG00000144229 137,523,115 138,435,287 protein_coding
EUR CEU-TSI 3 166,540,488  rs6779741 t 0.320 - - - - - -
EUR CEU-TSI 13 98,264,304  rs4349012 T 0.286 - - - - - -
EUR CEU-TSI 16 88,727,519  rs4782395 T 0.284 - MVD ENSG00000167508 88,718,343 88,729,569 protein_coding
EUR CEU-TSI 8 27,418,443 rs2640722 G 0.280 TFMOTIF GULOP ENSG00000234770 27,417,791 27,446,590 pseudogene
EUR CEU-TSI 7 126,107,032  rs7807889 T 0.279 - GRM8 ENSG00000179603 126,078,652 126,893,348 protein_coding
EUR CEU-TSI 15 56,879,880 rs12898998 C 0.279 - - ENSG00000260392 56,835,150 56,921,790 sense_overlapping
EUR FIN-GBR 13 103,855,868  rs9518951 C 0.358 - - - - - -
EUR FIN-GBR 12 32,349,938  rs4931618 T 0.352 TFMOTIF BICD1 ENSG00000151746 32,259,769 32,536,567 protein_coding
EUR FIN-GBR 20 9,021,020 rs6118441 C 0.351 - - - - - -
EUR FIN-GBR 2 54,738,392 rs17045941 C 0.341 - SPTBN1 ENSG00000115306 54,683,422 54,896,812 protein_coding
EUR FIN-GBR 7 76,505,546  rs7789280 A 0.338 - UPK3B ENSG00000243566 76,139,745 76,648,340 protein_coding
EUR FIN-GBR 20 5,493,842  rs6038189 C 0.330 - - - - - -
EUR FIN-GBR 5 79,416,511  rs6867810 G 0.328 - SERINCS ENSG00000164300 79,407,050 79,551,898 protein_coding
EUR FIN-GBR 21 28,721,810  rs7280320 C 0.327 TFMOTIF - - - - -
EUR FIN-GBR 9 803,158 rs10976679 A 0.327 - - - - - -
EUR FIN-GBR 2 68,349,118 rs11126179 T 0.326 - - - - - -
EUR FIN-TSI 2 136,138,627  rs3940549 a 0.505 - ZRANB3 ENSG00000121988 135,894,486 136,288,806 protein_coding
EUR FIN-TSI 2 136,608,646  rs4988235 G 0.484 TFPEAK MCM6 ENSG00000076003 136,597,196 136,633,996 protein_coding
EUR FIN-TSI 15 28,365,618 rs12913832 A 0.475 - HERC2 ENSG00000128731 28,356,186 28,567,298 protein_coding
EUR FIN-TSI 1 17,116,355 rs151218067 G 0.451 - - - - - -
EUR FIN-TSI 10 5,063,728 rs28375324 A 0.423 TFMOTIF - - - - -
EUR FIN-TSI 2 98,557,575 rs142238274 G 0.420 - TMEM131 ENSG00000075568 98,372,799 98,612,388 protein_coding
EUR FIN-TSI 2 98,342,323 rs34149969 C 0.416 - ZAP70 ENSG00000115085 98,330,023 98,356,325 protein_coding
EUR FIN-TSI 6 86,047,899  rs7764454 T 0.403 - - - - - -
EUR FIN-TSI 20 48,501,606  rs645544 G 0.394 TFPEAK SLC9A8 ENSG00000197818 48,429,250 48,508,779 protein_coding
EUR FIN-TSI 8 7,280,445  rs3958991 G 0.394 TFMOTIF - - - - -
EUR GBR-TSI 2 136,608,646  rs4988235 G 0.634 TFPEAK MCM6 ENSG00000076003 136,597,196 136,633,996 protein_coding
EUR GBR-TSI 2 135,755,629  rs1530559 G 0.476 - YSK4 ENSG00000176601 135,722,061 135,805,038 protein_coding
EUR GBR-TSI 2 136,991,517 rs12986776 C 0.412 - - - - - -
EUR GBR-TSI 15 28,365,618 rs12913832 A 0.397 - HERC2 ENSG00000128731 28,356,186 28,567,298 protein_coding
EUR GBR-TSI 11 39,780,083 rs189303654 G 0.395 - - - - - -
EUR GBR-TSI 6 99,536,850  rs6918521 T 0.378 - - - - - -
EUR GBR-TSI 10 5,063,728 rs28375324 A 0.366 TFMOTIF - - - - -
EUR GBR-TSI 1 17,116,355 rs151218067 G 0.364 - - - - - -
EUR GBR-TSI 8 7,764,420 rs142721326 G 0.329 - - - - - -
EUR GBR-TSI 1 167,582,966 rs146150591 a 0.327 - - - - - -

Note IBS excluded due to small sample size

Table $12C Between-continental group sites shown high di (top 10 shown for each comparison)
LEVEL POP_PAIR CHR POS RSID AA  DDAF FUNC_ANN HGNC_symbol Ensemlb_GENE_ID  GENE_START_bp GENE_END_bp GENE_PRODUCT
CON AFR-ASN 20 53,252,640 rs6014096 A 0.951 - DOKS5 ENSG00000101134 53,092,136 53,267,710 protein_coding
CON AFR-ASN 2 72,826,665 rs1596930 A 0.944 - EXOC6B ENSG00000144036 72,403,113 73,053,177 protein_coding
CON AFR-ASN 15 55,936,935 rs12903208 G 0.944 - PRTG ENSG00000166450 55,903,744 56,035,288 protein_coding
CON AFR-ASN 1 159,174,683  rs2814778 T 0.943 TFPEAK,TFMOTIF DARC ENSG00000213088 159,173,097 159,176,290 protein_coding
CON AFR-ASN 2 72,501,137  rs2192015 T 0.941 - EXOC6B ENSG00000144036 72,403,113 73,053,177 protein_coding
CON AFR-ASN 22 46,500,164 rs11702897 C 0.931 TFPEAK - ENSG00000197182 46,449,749 46,509,808 protein_coding
CON AFR-ASN 5 119,745,984  rs6862601 C 0.928 - - - - - -
CON AFR-ASN 20 62,175,996 rs10854170 T 0.927 TFPEAK SRMS ENSG00000125508 62,172,163 62,178,857 protein_coding
CON AFR-ASN 6 105,883,147  rs9486092 G 0.926 - - - - - -
CON AFR-ASN 16 87,404,088  rs889603 C 0.922 TFPEAK FBX031 ENSG00000103264 87,362,942 87,425,748 protein_coding
CON AFR-EUR 1 159,174,683  rs2814778 T 0.940 TFPEAK,TFMOTIF DARC ENSG00000213088 159,173,097 159,176,290 protein_coding
CON AFR-EUR 15 48,392,165  rs1834640 G 0.920 - - - - - -
CON AFR-EUR 5 33,951,693 rs16891982 C 0.919 NON_SYNONYMOUS SLC45A2 ENSG00000164175 33,944,721 33,984,835 protein_coding
CON AFR-EUR 1 116,935,068 rs10924081 G 0.901 TFPEAK ATP1A1 ENSG00000163399 116,915,290 116,952,883 protein_coding
CON AFR-EUR 4 3,666,494 rs58827274 C 0.896 - - - - - -
CON AFR-EUR 8 145,639,681 rs1871534 G 0.884 NON_SYNONYMOUS SLC39A4 ENSG00000147804 145,635,126 145,642,279 protein_coding
CON AFR-EUR 11 19,620,227 rs11025189 C 0.880 TFPEAK NAV2 ENSG00000166833 19,372,271 20,143,144 protein_coding
CON AFR-EUR 15 54,976,332  rs2414360 G 0.867 - - - - - -
CON AFR-EUR 17 58,610,478  rs1197095 C 0.867 - - ENSG00000259349 58,603,654 58,628,159 antisense
CON AFR-EUR 9 4,859,106  rs172447 T 0.864 - RCL1 ENSG00000120158 4,792,869 4,861,064 protein_coding
CON ASN-EUR 15 48,426,484  rs1426654 G 0.982 NON_SYNONYMOUS SLC24A5 ENSG00000188467 48,413,169 48,434,869 protein_coding
CON ASN-EUR 5 33,951,693 rs16891982 [o 0.963 NON_SYNONYMOUS SLC45A2 ENSG00000164175 33,944,721 33,984,835 protein_coding
CON ASN-EUR 6 2,745,352 rs6927195 G 0.926 TFPEAK MYLK4 ENSG00000145949 2,663,863 2,751,200 protein_coding
CON ASN-EUR 2 109,543,883 rs922452 C 0.902 - EDAR ENSG00000135960 109,510,927 109,605,828 protein_coding
CON ASN-EUR 20 568,696 rs6053171 G 0.890 - - - - - -
CON ASN-EUR 3 108,192,751  rs4365635 T 0.846 - MYH15 ENSG00000144821 108,099,216 108,248,169 protein_coding
CON ASN-EUR 10 78,894,351  rs2574799 T 0.846 - KCNMA1 ENSG00000156113 78,637,355 79,398,353 protein_coding
CON ASN-EUR 2 26,113,913  rs78404020 A 0.844 - - - - - -
CON ASN-EUR 15 28,187,772 rs1545397 A 0.843 - OCA2 ENSG00000104044 28,000,021 28,344,504 protein_coding
CON ASN-EUR 17 4,400,392 rs11657785 C 0.842 TFMOTIF - - - - -

Afull list of sites can be found at

differentiated_sites,




Table S13 Conservation and polymorphism in KEGG pathways

% SNPs with % Syn SNPs with % NonSyn SNPs with Excess NonSyn / kb
KEGG Category Number of Genes GERP / bp MAF < 0.5% MAF < 0.5% MAF < 0.5% SNPs / kb LOF / kb with MAF < 0.5%
Graft-versus-host disease 41 -0.0201 52.41% 50.00% 53.65% 6.8976 0.2540 0.3322
Asthma 30 0.0270 53.04% 52.58% 53.27% 11.1484 0.5273 0.1089
Metabolism of xenobiotics by cytochrome P450 69 0.0336 66.65% 61.00% 69.56% 6.8326 0.2911 0.9890
Ribosome 87 0.0872 72.67% 71.89% 73.62% 2.2008 0.0512 0.0617
Drug metabolism - cytochrome P450 71 0.1228 66.35% 63.46% 67.85% 7.5365 0.3359 0.5966
Steroid hormone biosynthesis 54 0.1850 65.88% 57.86% 70.37% 7.0934 0.2496 1.3494
Glycosphingolipid biosynthesis - globo series 14 0.1922 68.28% 62.26% 72.22% 4.0304 0.2707 0.6429
Linoleic acid metabolism 29 0.2121 71.48% 67.02% 73.96% 7.2881 0.3233 0.9860
Allograft rejection 37 0.2504 54.43% 54.62% 54.30% 7.1729 0.1881 -0.0309
Autoimmune thyroid disease 52 0.2705 64.15% 60.45% 66.13% 10.1083 0.2240 0.9452
Other glycan degradation 16 0.3221 72.13% 71.89% 72.29% 7.3826 0.2213 0.0642
alpha-Linolenic acid metabolism 19 0.3371 76.77% 71.59% 80.23% 5.3494 0.2437 0.9743
Primary immunodeficiency 35 0.3829 71.20% 67.66% 73.95% 6.4307 0.0926 0.7039
Intestinal immune network for IgA production 48 0.3878 65.57% 67.06% 64.57% 5.7722 0.1543 -0.2616
Arachidonic acid metabolism 53 0.4022 72.58% 67.10% 75.89% 7.7552 0.2632 1.2917
Glutathione metabolism 44 0.4045 68.09% 64.33% 71.02% 4.9126 0.1181 0.5180
Hematopoietic cell lineage 87 0.4295 71.98% 68.98% 73.95% 6.8845 0.1866 0.6658
Drug metabolism - other enzymes 51 0.4304 66.96% 63.89% 68.74% 8.1855 0.3098 0.6956
Retinol metabolism 64 0.4461 67.51% 65.28% 68.72% 8.2191 0.3381 0.5277
Complement and coagulation cascades 68 0.4541 73.16% 68.10% 76.28% 8.4874 0.1874 1.3453
Ascorbate and aldarate metabolism 25 0.4616 64.75% 58.62% 68.20% 8.7159 0.2977 1.2914
Folate biosynthesis 11 0.4975 63.24% 56.79% 68.27% 5.5394 0.0599 0.8273
Tyrosine metabolism 41 0.5052 74.67% 69.71% 77.85% 6.6317 0.1431 1.0860
Glycosaminoglycan degradation 21 0.5269 70.86% 70.43% 71.16% 5.6035 0.2245 0.0799
One carbon pool by folate 17 0.5403 75.84% 76.64% 75.31% 5.3992 0.0803 -0.1847
Oxidative phosphorylation 129 0.5446 74.37% 70.30% 77.03% 4.3440 0.1240 0.5949
Steroid biosynthesis 17 0.5475 73.40% 67.57% 79.06% 5.7648 0.1533 1.0375
Cytosolic DNA-sensing pathway 56 0.5589 73.08% 70.74% 74.64% 6.4460 0.1976 0.5158
Histidine metabolism 28 0.5673 73.15% 68.80% 75.72% 6.3994 0.2059 0.8921
Cytokine-cytokine receptor interaction 265 0.5791 73.33% 70.38% 75.42% 5.7901 0.1324 0.5767
Glycerolipid metabolism 49 0.5870 74.18% 67.70% 79.11% 4.6746 0.1179 0.9373
Glycosphingolipid biosynthesis - ganglio series 15 0.5895 71.65% 64.81% 76.47% 3.2585 0.0999 0.6328
Butanoate metabolism 34 0.5936 72.31% 70.72% 73.27% 5.7034 0.1692 0.3084
Biosynthesis of unsaturated fatty acids 22 0.5984 75.83% 73.68% 77.48% 3.6264 0.0738 0.2953
Pentose and glucuronate interconversions 28 0.6001 64.25% 57.08% 68.61% 8.0256 0.3033 1.3406
Parkinson's disease 126 0.6272 75.26% 70.99% 78.07% 4.5324 0.1070 0.6659
Glycosphingolipid biosynthesis - lacto and neolacto series 26 0.6298 75.35% 70.44% 78.67% 4.6232 0.1287 0.7672
Primary bile acid biosynthesis 16 0.6348 71.71% 70.99% 72.12% 5.8184 0.1467 0.1437
Fatty acid metabolism 42 0.6457 76.09% 71.36% 78.98% 6.2898 0.1983 1.0393
Sulfur metabolism 13 0.6577 69.23% 68.97% 69.39% 4.9102 0.1469 0.0420
Porphyrin and chlorophyll metabolism 41 0.6585 68.82% 63.87% 71.82% 7.6972 0.1709 1.0545
Nicotinate and nicotinamide metabolism 24 0.6835 75.98% 70.93% 79.40% 4.6301 0.2060 0.8048
PPAR signaling pathway 69 0.6868 77.43% 72.36% 81.00% 5.7948 0.1937 1.0637
Tryptophan metabolism 40 0.6961 74.86% 72.10% 76.70% 7.0455 0.2072 0.6955
Amino sugar and nucleotide sugar metabolism 44 0.6964 74.83% 70.84% 78.03% 4.4905 0.1165 0.6144
Antigen processing and presentation 85 0.6991 62.13% 62.47% 61.89% 5.8430 0.1661 -0.0526
Glycerophospholipid metabolism 77 0.6995 74.50% 69.78% 78.07% 4.3266 0.0984 0.6760
Lysosome 121 0.7024 73.87% 71.41% 75.66% 5.6914 0.1150 0.4910
NOD-like receptor signaling pathway 62 0.7255 75.66% 71.24% 78.87% 5.1817 0.1153 0.7965
Fructose and mannose metabolism 34 0.7261 73.80% 67.26% 79.72% 5.8778 0.1315 1.1738
Phenylalanine metabolism 17 0.7403 70.47% 67.22% 72.80% 8.1204 0.0755 0.8034
RIG-I-like receptor signaling pathway 71 0.7558 74.13% 73.11% 74.83% 4.6367 0.1284 0.1752
Glycolysis / Gluconeogenesis 61 0.7708 75.39% 70.27% 79.19% 6.7050 0.1603 1.1562
Type | diabetes mellitus 43 0.7716 63.55% 58.60% 67.11% 6.6060 0.1288 0.7888
Pyrimidine metabolism 95 0.7720 74.81% 70.47% 78.50% 4.8542 0.1140 0.7146
Valine, leucine and isoleucine degradation 44 0.7738 76.05% 71.71% 78.90% 5.1769 0.1626 0.7948
Pentose phosphate pathway 27 0.7792 75.39% 66.97% 82.97% 7.3695 0.1887 1.8794
SNARE interactions in vesicular transport 37 0.7861 75.66% 74.14% 76.60% 3.0855 0.0812 0.1813
Glycosylphosphatidylinositol (GP1)-anchor biosynthesis 25 0.7917 73.86% 69.67% 76.79% 5.5284 0.1305 0.7637
Riboflavin metabolism 16 0.7967 71.85% 62.16% 77.43% 6.6554 0.1808 1.7043
beta-Alanine metabolism 22 0.8052 75.70% 70.89% 78.48% 6.1797 0.1626 1.0211
Terpenoid backbone biosynthesis 15 0.8059 73.73% 68.38% 78.26% 4.2603 0.1002 0.7207
Regulation of autophagy 34 0.8105 72.47% 67.00% 76.19% 4.2222 0.0769 0.6998
Pantothenate and CoA biosynthesis 16 0.8115 74.34% 71.08% 76.22% 5.2944 0.2577 0.5954
0-Glycan biosynthesis 30 0.8121 75.40% 70.83% 78.67% 4.7068 0.1259 0.7371
Pyruvate metabolism 40 0.8181 75.02% 70.06% 78.89% 6.1095 0.1254 1.0124
Apoptosis 87 0.8227 75.16% 71.65% 77.79% 4.5141 0.0748 0.5578
Toll-like receptor signaling pathway 102 0.8251 73.02% 69.32% 75.99% 4.8741 0.1043 0.5885
Leishmania Infection 72 0.8435 70.24% 66.56% 73.44% 5.2868 0.1259 0.5815
Base excision repair 33 0.8530 73.31% 68.70% 76.12% 7.7649 0.2543 1.1442
Sphingolipid metabolism 39 0.8560 72.85% 69.19% 75.69% 5.6615 0.1187 0.6718
Limonene and pinene degradation 10 0.8635 77.27% 78.26% 76.74% 6.4597 0.1468 -0.2936
Peroxisome 78 0.8692 76.86% 72.66% 79.64% 6.0333 0.1452 0.9265
Propanoate metabolism 32 0.8853 75.48% 71.61% 78.18% 5.5815 0.1076 0.7604
Systemic lupus erythematosus 135 0.8868 68.77% 65.31% 71.83% 5.6810 0.1569 0.5664
Renin-angiotensin system 17 0.8880 76.55% 72.29% 79.52% 7.4264 0.1715 1.1418
Nitrogen metabolism 23 0.8999 73.38% 70.33% 75.74% 4.5559 0.1420 0.4686
Selenoamino acid metabolism 25 0.9014 76.06% 72.77% 78.80% 4.2893 0.0745 0.5191
Glycine, serine and threonine metabolism 31 0.9054 74.05% 67.07% 78.52% 7.9198 0.1603 1.6775
Natural killer cell mediated cytotoxicity 133 0.9093 71.40% 66.72% 75.12% 5.2649 0.1137 0.7390
Glyoxylate and dicarboxylate metabolism 16 0.9284 74.74% 71.95% 76.75% 5.6202 0.1147 0.5598
Ether lipid metabolism 33 0.9306 75.10% 66.67% 80.38% 5.0831 0.1599 1.2858
Homologous recombination 28 0.9369 76.78% 71.65% 79.72% 6.5608 0.0802 1.1874
p53 signaling pathway 68 0.9386 73.23% 69.06% 76.50% 3.9781 0.0669 0.5363
Nucleotide excision repair 44 0.9485 78.96% 72.61% 83.46% 6.0749 0.1176 1.4084
Jak-STAT signaling pathway 155 0.9627 75.28% 73.44% 76.72% 5.2934 0.0948 0.3669
Cysteine and methionine metabolism 34 0.9661 73.67% 68.59% 78.24% 4.9437 0.1079 0.7998
Purine metabolism 158 0.9758 75.15% 70.39% 78.99% 5.2612 0.1086 0.8452
Starch and sucrose metabolism 52 0.9784 69.77% 67.25% 71.47% 7.4653 0.2496 0.5750
RNA polymerase 29 0.9798 73.28% 71.93% 74.80% 4.7201 0.1138 0.2277
DNA replication 35 0.9828 79.21% 72.18% 84.19% 7.0908 0.1106 1.7917
Glycosaminoglycan biosynthesis - keratan sulfate 15 0.9845 77.02% 75.81% 78.38% 3.4780 0.0740 0.1746




Glycosaminoglycan biosynthesis - chondroitin sulfate
Adipocytokine signaling pathway

Cell adhesion molecules (CAMs)

Valine, leucine and isoleucine biosynthesis
Alanine, aspartate and glutamate metabolism
Glycosaminoglycan biosynthesis - heparan sulfate
Arginine and proline metabolism

Vibrio cholerae infection

Galactose metabolism

Epithelial cell signaling in Helicobacter pylori infection
Fc epsilon Rl signaling pathway

Bladder cancer

N-Glycan biosynthesis

Neuroactive ligand-receptor interaction
Olfactory transduction

Aminoacyl-tRNA biosynthesis

VEGF signaling pathway

Taurine and hypotaurine metabolism
Progesterone-mediated oocyte maturation
Chemokine signaling pathway
Alzheimer's disease

Citrate cycle (TCA cycle)

Non-small cell lung cancer

Protein export

Endocytosis

mTOR signaling pathway

Pancreatic cancer

Leukocyte transendothelial migration
Circadian rhythm - mammal
Huntington's disease

ABC transporters

Fc gamma R-mediated phagocytosis
Vascular smooth muscle contraction

B cell receptor signaling pathway

Prion diseases

Mismatch repair

Chronic myeloid leukemia

Lysine degradation

Melanoma

Proximal tubule bicarbonate reclamation
Non-homologous end-joining

GNnRH signaling pathway

Proteasome

Dorso-ventral axis formation

Glioma

Insulin signaling pathway
Aldosterone-regulated sodium reabsorption
T cell receptor signaling pathway
Neurotrophin signaling pathway

Thyroid cancer

Oocyte meiosis

Small cell lung cancer

Taste transduction

Amyotrophic lateral sclerosis (ALS)
Regulation of actin cytoskeleton
Maturity onset diabetes of the young
Phosphatidylinositol signaling system
Calcium signaling pathway

Pathways in cancer

Basal transcription factors

Pathogenic Escherichia coli infection

Cell cycle

Melanogenesis

ECM-receptor interaction

Acute myeloid leukemia

Colorectal cancer

MAPK signaling pathway

Cardiac muscle contraction

ErbB signaling pathway

Tight junction

Endometrial cancer

Prostate cancer

Notch signaling pathway

Gap junction

Focal adhesion

RNA degradation

Inositol phosphate metabolism
Long-term depression

Renal cell carcinoma

Type Il diabetes mellitus

Ubiquitin mediated proteolysis
Adherens junction

Viral myocarditis

Long-term potentiation

Wnt signaling pathway

Basal cell carcinoma
Vasopressin-regulated water reabsorption

Arrhythmogenic right ventricular cardiomyopathy (ARVC)

Axon guidance

Hedgehog signaling pathway
Spliceosome

[TGF-beta signaling pathway

Dilated cardiomyopathy
Hypertrophic cardiomyopathy (HCM)

2
67
132
11
32
26
54
54
26
68
79
42
46
271
382
0
76
10
85
189
163
30
54
23
181
52
70
115
13
177
a4
9%
115
75
35
23
73
44
70
2
13
101
44
24
65
137
42
108
126
29
112
84
51
51
211
25
76
177
324
35
54
124
101
84
57
62

77
87
131
52
88
47
89
199
56
54
70
70
47
134
73
70
70
150
55
24
74
129
56
124
85
%0
83

0.9866
1.0085
1.0274
1.0365
1.0465
1.0501
1.0515
1.0572
1.0600
1.0623
1.0665
1.0806
1.0841
1.0877
1.0905
1.1020
1.1127
1.1166
1.1167
1.1259
1.1469
1.1529
1.1557
1.1611
1.1739
1.1829
1.1879
1.1906
1.1934
1.2018
1.2030
1.2233
1.2399
1.2490
1.2599
1.2617
1.2625
1.2651
1.2677
1.2683
1.2691
1.2747
1.2819
1.2917
1.2943
1.2999
1.3044
1.3076
1.3087
1.3094
1.3109
1.3144
1.3236
1.3290
1.3379
1.3509
1.3514
1.3536
1.3568
1.3641
1.3658
1.3745
1.3761
1.3930
1.4002
1.4035
1.4086
1.4167
1.4172
1.4200
1.4222
1.4256
1.4403
1.4459
1.4481
1.4499
1.4548
1.4718
1.4865
1.4881
1.4933
1.5145
1.5208
1.5580
1.5742
1.5831
1.6037
1.6068
1.6074
1.6267
1.6316
1.6711
1.7720
1.8657

69.11%
77.17%
72.29%
78.60%
72.45%
73.30%
72.59%
73.45%
74.30%
75.32%
73.93%
75.29%
73.29%
73.35%
61.95%
76.40%
75.28%
71.19%
75.50%
75.89%
74.75%
71.80%
73.87%
73.48%
74.89%
76.77%
76.29%
74.47%
75.83%
76.07%
75.51%
74.30%
74.67%
73.00%
74.67%
74.48%
75.41%
75.30%
75.69%
74.91%
78.91%
74.35%
72.09%
71.91%
74.06%
75.55%
73.31%
74.76%
74.39%
76.99%
74.08%
75.63%
72.67%
74.44%
76.14%
71.96%
74.70%
74.17%
75.73%
72.30%
72.41%
76.86%
77.29%
74.32%
76.24%
75.32%
75.41%
73.26%
74.54%
75.50%
74.36%
77.45%
73.23%
74.99%
74.99%
75.70%
75.45%
74.67%
76.25%
73.88%
75.98%
76.36%
73.23%
75.30%
75.54%
76.21%
77.58%
75.98%
74.87%
74.05%
72.76%
76.47%
75.36%
74.90%

65.15%
71.09%
68.14%
67.29%
68.45%
65.17%
67.90%
69.23%
71.50%
71.00%
68.01%
71.26%
69.37%
68.18%
61.41%
70.91%
69.48%
64.21%
68.64%
70.01%
69.58%
67.49%
69.64%
71.32%
70.04%
71.91%
72.61%
68.91%
72.51%
73.96%
70.83%
69.37%
70.05%
66.82%
70.71%
70.30%
71.31%
72.21%
69.53%
73.36%
81.01%
68.16%
66.29%
65.53%
68.48%
71.07%
68.16%
69.27%
69.10%
73.68%
68.84%
70.84%
68.91%
67.90%
70.87%
69.23%
66.62%
69.12%
71.86%
67.72%
69.82%
73.33%
73.17%
68.19%
73.74%
69.82%
70.11%
69.66%
71.40%
69.86%
68.26%
73.46%
67.93%
68.81%
69.60%
73.06%
67.00%
68.19%
73.49%
68.74%
71.71%
71.45%
69.24%
70.45%
71.16%
72.84%
74.37%
69.94%
69.18%
70.55%
69.76%
73.67%
69.47%
68.57%

72.36%
82.63%
75.79%
85.39%
75.78%
80.17%
76.39%
77.39%
76.94%
78.97%
80.18%
79.53%
76.42%
77.52%
62.18%
80.20%
80.75%
75.89%
83.16%
81.42%
79.63%
75.40%
78.53%
75.33%
79.24%
82.90%
79.97%
79.77%
78.44%
77.83%
78.52%
78.89%
79.10%
79.25%
78.02%
76.94%
79.69%
77.67%
82.32%
76.51%
77.55%
80.73%
78.17%
78.10%
80.48%
79.94%
78.98%
80.51%
79.80%
80.50%
79.86%
79.39%
75.71%
80.39%
81.07%
74.49%
82.36%
79.34%
79.22%
76.22%
75.62%
79.85%
81.73%
78.84%
79.20%
80.69%
80.91%
77.51%
78.06%
80.45%
80.62%
81.73%
78.40%
82.40%
79.73%
77.91%
82.65%
82.33%
79.66%
80.08%
80.48%
81.44%
76.50%
81.75%
80.11%
79.47%
80.89%
81.28%
80.24%
77.15%
77.38%
79.10%
80.14%
79.79%

5.4593
4.5105
6.2160
6.5327
5.0135
4.0657
6.1549
5.6519
7.2196
4.3264
3.9882
4.5657
4.8872
6.3871
16.9448
6.4340
4.2553
5.5573
3.9256
4.5618
4.8773
7.0320
3.4838
3.1403
5.0552
3.6746
3.6996
5.0713
5.9257
4.9509
9.8768
4.7385
5.0336
4.2512
6.4623
7.9493
3.5633
57411
3.3856
6.2701
5.9237
4.8717
3.3977
5.8588
3.6480
4.8142
4.5925
4.0328
3.7210
4.0868
3.9404
6.8443
8.8760
4.4108
5.3839
3.9900
5.1850
6.0295
5.4476
5.2090
4.6576
4.3522
4.2687
10.0136
3.5782
4.0290
4.4701
5.2025
3.9630
5.9718
4.2673
4.1382
6.0744
4.9384
7.0446
3.7303
5.7267
5.1857
3.5419
4.9770
4.2878
5.1530
9.3327
4.0585
4.0333
5.7745
4.8000
6.6280
5.3155
5.8334
3.5500
4.2332
6.7394
6.8656

0.0652
0.0709
0.0964
0.1605
0.0791
0.0385
0.1361
0.0972
0.1750
0.0946
0.0750
0.0806
0.0926
0.1260
0.5508
0.0743
0.0894
0.0235
0.0534
0.0650
0.0858
0.1498
0.0296
0.0338
0.0744
0.0448
0.0645
0.0840
0.0247
0.0855
0.3322
0.0727
0.0831
0.0503
0.1411
0.2107
0.0467
0.1106
0.0597
0.1320
0.1029
0.0805
0.0329
0.1105
0.0459
0.0677
0.0516
0.0448
0.0482
0.0369
0.0478
0.0692
0.2274
0.0858
0.0870
0.1056
0.0814
0.0844
0.0689
0.1063
0.0797
0.0570
0.0475
0.1393
0.0474
0.0574
0.0571
0.0938
0.0674
0.0928
0.0503
0.0527
0.0551
0.0579
0.0945
0.0556
0.1008
0.0923
0.0369
0.0408
0.0610
0.0674
0.2142
0.0552
0.0402
0.0471
0.0615
0.1140
0.0620
0.0637
0.0665
0.0410
0.0954
0.1022

0.6205
0.9479
0.8085
2.2581
0.6360
0.9490
0.8992
0.7755
0.7101
0.6450
0.7387
0.6402
0.6245
1.0363
0.2341
1.2150
0.8086
1.0832
0.8590
0.8956
0.8286
0.9326
0.4854
0.2364
0.8181
0.6357
0.4974
0.9073
0.7160
0.4017
1.5848
0.7625
0.7755
0.7921
0.8734
1.1178
0.5091
0.6374
0.6848
0.3662
-0.6566
0.9478
0.5851
1.0837
0.6455
0.7459
0.7438
0.7198
0.6367
0.5138
0.6622
1.1232
1.0715
0.8994
0.9740
0.3536
1.2553
0.9859
0.7484
0.7394
0.3995
0.5763
0.6545
1.9306
0.3408
0.7352
0.7932
0.6178
0.4346
1.1170
0.8197
0.6226
1.0041
0.9779
1.2483
0.3652
1.4663
1.0563
0.3685
0.8180
0.6472
0.8853
1.2103
0.6662
0.6122
0.7174
0.6023
1.3319
0.9819
0.6942
0.3523
0.4502
1.3019
1.3815




Table $14 Average numbers of potentially functional variants per individual in each population

) African European Asian American Summary
With GERP >2 ASW LwK YRI CEU FIN GBR 18S TSI CHB CHS JPT am MXL PUR Min Max
synonymous DAF <0.5% 97 17 103 34 30 33 28 40 41 43 47 42 37 44 28 117
DAF0.5-5%| 337 399 418 102 103 102 103 104 85 82 86 125 108 139 82 418
DAF >5% 1312 1274 1255 1393 1394 1390 1390 1394 1401 1399 1400 1405 1402 1394 1255 1405
nonsynonymous DAF <0.5% 326 404 351 175 162 165 131 193 204 212 221 189 184 202 131 404
DAF 0.5-5% 747 874 905 318 321 320 318 312 251 236 248 361 320 377 236 905
DAF >5% 2470 2383 2329 2739 2737 2739 2711 2748 2732 2719 2728 2744 2740 2715 2329 2748
Stop-loss DAF <0.5% 11 12 10 1.0 11 10 10 10 11 12 11 10 10 10 10 12
DAF 0.5-5%| 15 19 18 11 10 12 1.0 11 10 12 1.0 11 10 12 1.0 19
DAF >5% 25 27 27 26 27 26 28 26 22 21 21 23 22 25 21 28
HGMD DM DAF <0.5% 38 33 39 48 39 a5 34 5.1 25 25 28 38 31 43 25 5.1
DAF 0.5-5% 14 15 17 8.1 85 76 9.1 7.4 4.8 4.9 4.9 8.5 8.0 87 4.8 17
DAF >5% 16 18 15 1 12 12 12 1 16 16 16 13 13 13 1 18
cosmic DAF <0.5% 16 20 17 14 13 15 13 15 14 13 18 15 15 15 13 20
DAF05-5%| 4.2 5.1 45 19 21 19 19 18 18 22 19 21 19 22 18 5.1
DAF >5% 9.0 10 9.1 5.6 5.2 5.6 6.1 6.0 6.4 6.7 6.9 5.9 6.2 6.0 52 10
UTR DAF<0.5% | 341 122 144 157 158 123 122 121 169 430 140 166 134 367 121 430
DAF0.5-5%| 1175 403 317 304 484 409 402 417 314 1355 423 527 397 1421 304 1355
DAF >5% 3701 3968 3937 3927 3973 3977 3973 3956 3924 3530 3950 3951 3971 3492 3530 3977
Non-coding RNA DAF <0.5% 13 17 14 4.0 a1 39 42 43 5.1 59 62 5.4 5.0 55 39 17.4
DAF05-5%| 58 65 70 18 18 18 17 18 15 14 15 2 19 24 137 69.8
DAF >5% 187 185 179 194 195 192 190 191 191 193 191 196 193 194 1786 196
Motif_gain_in_TF_peak |DAF <0.5% 1 14 12 5.1 47 5.0 5.0 5.4 49 49 58 59 53 6.6 4.7 14
DAF05-5%| 51 58 59 25 25 25 27 24 23 24 24 28 26 29 23 59
DAF >5% 174 173 173 171 172 172 168 171 170 169 166 174 167 173 166 174
Motif_loss_in_TF_peak |DAF <0.5% 54 69 59 18 19 18 22 22 21 22 27 24 21 26 18 69
DAF0.5-5%| 244 281 301 84 84 86 80 81 7 72 73 101 87 109 7 301
DAF >5% 615 589 584 650 650 650 647 654 637 643 636 649 637 651 584 654
Other conserved DAF <0.5% 7,641 9,936 8,057 2,026 2,200 2,152 2,510 2,217 2,479 2,821 3,066 3,003 2,600 3,256 2,026 9,936
DAF 0.5-5% 32,196 37,221 39,359 8,567 8,625 8,620 9,015 8,673 7,162 7,096 7,123 11,048 9,584 12,565 7,096 39,359
DAF >5% 128,100 124,101 122,904 | 133200 133,978 133,431 133045 133363 | 133,341 133,059 132,760 | 134,155 133,981 133941 | 122,904 134,155
Total conserved DAF <0.5% 8,391 10,871 8,861 2,337 2,500 2,453 2,783 2,564 2,844 3,209 3,483 3,377 2,942 3,652 2,337 10,871
DAF 0.5-5%| 34,543 39,946 42,216 9,399 9,465 9,454 9,862 9,496 7,829 7,739 7,788 12,040 10,453 13,630 7,739 42,216
DAF >5% 139,994 135684 134371 | 145666 146481 145905 145475 145843 | 145779 145468 145164 | 146,657 146442 146,378 | 134371 146,657
N ) ‘African European Asian American Summary
Without GERP filter ASW LWK YRI CEY FIN GBR 18S TSI CHB CHS JPT am MXL PUR Min Max
synonymous DAF<0.5% | 506 642 547 175 166 167 139 203 218 226 240 215 194 237 139 642
DAF0.5-5%| 2005 2359 2468 594 594 591 586 592 497 478 500 740 641 810 478 2468
DAF >5% 12650 12309 12190 13237 13243 13216 13196 13232 13077 13058 13067 13284 13246 13232 12190 13284
nonsynonymous DAF<0.5% | 645 806 697 298 279 280 224 331 355 365 387 340 320 357 224 806
DAF 0.5-5%| 1954 2278 2377 709 717 711 715 703 563 540 571 833 740 892 540 2377
DAF >5% 10496 10195 10056 11173 11170 11183 11130 11198 11026 11008 11012 11171 11104 11124 10056 11198
Indel-non-frameshift | DAF <0.5% 11 10 10 11 1.0 10 1.0 11 11 1.0 11 1.0 13 11 1.0 13
DAF05-5%| 19 2 23 6.4 7.1 66 63 56 53 5.1 5.1 83 7.0 84 5.1 23
DAF >5% 79 73 74 88 88 89 88 87 84 83 84 85 84 86 73 89
Stop-loss DAF <0.5% 15 17 13 11 11 12 13 11 12 13 13 11 11 11 11 17
DAF0.5-5%| 3.2 39 43 15 14 14 13 14 11 12 11 15 13 17 11 43
DAF >5% 38 37 37 38 38 39 37 38 38 38 38 39 40 39 37 40
Stop-gain DAF <0.5% 838 10 96 5.0 a7 46 39 55 5.7 5.8 55 5.8 48 5.8 39 10
DAF 0.5-5% 16 19 18 6.4 6.5 6.3 6.5 6.6 5.8 53 5.8 75 72 7.2 53 19
DAF >5% 25 27 25 2 27 27 24 2 27 27 27 28 28 26 24 28
Indel-frameshift DAF <0.5% 10 1.0 10 10 11 11 0.0 10 10 10 1.0 10 10 10 0.0 11
DAF 0.5-5%| 15 18 19 5.6 5.8 65 7.0 6.0 55 5.8 5.8 5.7 5.2 73 52 19
DAF >5% 26 25 25 28 28 29 28 29 26 26 26 27 26 29 25 29
Splice site donor DAF <0.5% 29 36 3.0 21 17 18 17 23 20 24 23 19 19 21 17 36
DAF 0.5-5% 5.6 7.2 6.6 29 27 28 3.0 25 24 25 24 35 36 34 24 7.2
DAF >5% 3.4 33 26 4.2 4.4 39 3.1 4.4 5.1 4.9 5.2 43 43 44 26 5.2
Splice site acceptor [ DAF <0.5% 22 29 25 17 17 18 15 19 18 18 16 15 17 20 15 29
DAF05-5%| 3.6 38 40 17 15 15 18 17 17 15 17 18 16 18 15 40
DAF >5% 22 27 21 33 33 34 34 33 4.6 43 4.6 39 3.6 32 21 4.6
HGMD-DM DAF <0.5% 62 5.7 63 72 66 72 5.0 77 37 38 45 53 4.6 63 37 7.7
DAF05-5%| 28 32 33 15 16 16 17 15 1 10 1 16 15 17 10 33
DAF >5% 39 43 40 28 29 29 30 29 34 34 34 31 30 31 28 43
cosmic DAF <0.5% 29 38 29 18 18 17 16 18 20 21 3.0 22 18 22 16 38
DAF05-5%| 12 15 14 43 38 38 4.0 38 37 39 42 46 37 49 37 15
DAF >5% 32 32 31 28 28 28 29 28 29 29 30 28 29 29 28 32
UTR DAF <0.5% 1612 2099 1740 493 498 487 514 559 584 635 715 674 586 714 487 2099
DAF0.5-5%| 7277 8472 8889 2087 2132 2099 2184 2007 1701 1665 1721 2642 2323 2953 1665 8889
DAF >5% 42816 41488 41139 24839 44905 44854 44824 44873 44201 44141 44152 44898 44746 44895 41139 44905
Non-coding_RNA DAF <0.5% 160 210 173 44 46 44 47 51 52 57 65 61 54 64 44 210
DAF0.5-5%| 770 898 934 207 210 212 225 212 166 159 170 269 236 313 159 934
DAF >5% 5007 4880 4826 5208 5222 5229 5227 5217 5143 5152 5136 5240 5183 5240 4826 5240
Motif_gain_in_TF_peak [DAF <0.5% 132 148 136 91 91 90 91 93 92 93 98 96 93 99 90 148
DAF 0.5-5% 592 650 657 382 389 384 388 383 371 371 374 404 394 419 371 657
DAF 5% 3779 3829 3823 3329 3333 3331 3330 3350 3342 3341 3336 3429 3389 3471 3329 3829
Motif_loss_in_TF_peak [DAF <0.5% | 328 421 349 125 127 124 134 142 136 146 162 157 139 163 124 421
DAF 0.5-5% 1674 1944 2028 539 557 544 555 533 455 459 465 656 596 732 455 2028
DAF >5% 5160 5042 4989 5179 5189 5173 5165 5199 5120 5116 5111 5234 5197 5265 4989 5234
all_nonfunction_sites |DAF<0.5% [ 113,190 148364 119,718 | 29,023 31,919 30960 35173 32271 | 34875 39689 43,686 43,872 37,491 47501 | 29,023 148364
DAF05-5%| 545984 634,101 667,345 | 140,60 142,839 142,951 151,307 142,224 | 116542 115084 116942 | 184,452 159,504 209,087 | 115084 667,345
DAF >5% 3,652,026 3,545,318 3,519,625 | 3,774,613 3,794,886 3,783,796 3,775,778 3,776,575 | 3,733,106 3,724,728 3,717,790 | 3,789,739 3,776,944 3,787,751 [ 3,519,625 3,794,886
all_sites DAF<0.5% | 116,216 152,267 122,978 | 30,034 32,918 31,944 36,129  33425| 36081 40974 45107 | 45184 38654 48892 | 30,034 152,267
DAF05-5%| 558996 649,303 683,239 | 143,987 146,737 146802 155270 146,066 | 119,668 118137 120,115 | 189,257 163737 214430 | 118137 683,239
DAF>5% | 3,728,104 3,619,039 3,502,643 | 3,854,212 3,874,781 3,863,507 3,855,295 3,856,263 | 3,811,719 3,803,199 3,796,180 | 3,869,561 3,856,430 3,867,461 | 3,592,643 3,874,781
Functional annotations for variants can be found at
ftp://ftp.1000; bi.ac.uk/vol1/ftp/phasel/analysis_results/function vefs,

Conservation scores for variants can be found at
ftp://ftp.1000; bi.ac.uk/vol1/ftp/phase1/analysis I

ting/variant_gerp_scores,

Alist of genome annotations used for assigning functional consequence can be found at
ftp://ftp. bi.ac.uk/voll/ftp/phasel/analysis_results/functional i

sets,




Table S15 Number of variants in linkage disequilibrium (LD) with the SNPs in GWAS catalog

Avg. # Variants in LD

LD Criteria - %GERP>2
HapMap Pilot Phase 1
r’ 2.5 in Africans (n=185) 8.3 18 22.6 4.7
r’ > .5 in Americans (n=242) 13.3 28.6 35.7 4.7
r’ 2.5 in Asians (n=286) 21.3 46.2 58 4.7
r’ > .5 in Europeans (n=379) 20.5 44.7 55.8 4.6
r’ 2.5 in all individuals (n=1,092) 14 29.4 36.2 4.8
r’ 2.5 in each continental population 59 11.8 14.4 4.7
|D’|=1 in each continental population 10.9 36.3 73 4.7
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Figure S1. Overview of data generation, processing and analysis

Flowchart summarising steps involved in generating the 1000 Genomes Project Phase 1 release.
Boxes indicate steps in the process and numbers indicate the corresponding section(s) within the
supplementary material.
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Figure S2. 1000 Genomes Project Phase | populations

Populations collected as part of the HapMap Project (blue) and the 1000 Genomes Project (green)
include: Europe (IBS (lberian Populations in Spain), GBR (British from England and Scotland ), CEU
(Utah residents with ancestry from northern and western Europe), FIN (Finnish in Finland), TSI
(Toscani in Italia)); East Asia (JPT (Japanese in Tokyo, Japan), CHB (Han Chinese in Beijing, China),
CHS (Han Chinese South)); Africa (ASW (African Ancestry in SW USA), YRI (Yoruba in Ibadan,
Nigeria), LWK (Luhya in Webuye, Kenya)); Americas (MXL (Mexican Ancestry in Los Angeles, CA,
USA), PUR (Puerto Ricans in Puerto Rico), CLM (Colombians in Medellin, Colombia)). A — Total
number of samples sequenced; B — Source of DNA (blood (bld) or LCL); C — Gender composition
(Male/Female); D — Number that are part of mother-father-child trios (t), parent-child duos (d) or
singletons (s); for trios and duos, only parent samples were sequenced.
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Figure S3. Sequencing depth and genotyping accuracy

The relationship between average sequencing depth (low-coverage data) and genotype
discordance between Phase 1 release genotypes and estimates from the OMNI SNP array
data at heterozygous sites (identified from the array). Colours indicate the population for
each individual.
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Figure S4. Geography and technology stratify patterns of genetic variation.

PCA plots (15t and 2" components: estimated from release genotypes, see Methods) for all
samples (left hand side) and those within EUR (right hand side). In the top row individuals are
coloured by population of origin. In the bottom row samples are coloured by primary technology
from which low-coverage data have been generated. At the continental level, the PCA plots mirror
previous observations regarding to the relationships between groups. Within Europe, however,
technology is an important component driving differentiation between the release haplotypes.
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Figure S5. Errors in haplotype estimation.

Distributions of median distance between phase ‘switch errors’ at common SNPs in Phase 1
haplotypes as estimated from comparison to SNP array genotypes (OMNI) genotyped in trios,
where haplotypes can be determined by transmission. Trio genotypes were available for 97
individuals from AFR (24 ASW, 73 YRI), 169 individuals from AMR (60 CLM, 54 MXL, 55 PUR), 100
individuals from EAS (100 CHS), and 16 individuals from EUR (2 CEU, 14 IBS).
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Figure S6. Geographical differentiation of rare variants.

a, Excess within-population (compared to wider ancestry-based grouping — see Figure 2a for a
definition of which populations are in which group) allele sharing as a function of variant frequency
within the group. Metric defined as the ratio of the probability of picking (without replacement) two
chromosomes that share a variant within a population (weighted by the number of pairs within each
population) compared to the same probability across the wider group (see Supplement). Dotted line
indicates the excess within-continent (ancestry-group) sharing. b, As for part a, but the excess within-
population sharing metric is calculated separately for each population within its ancestry-based
group. The statistic for MXL samples drops below 1 for variants between 0.5% and 5%, indicating a
relative dearth of variants in this allele frequency range (across the ancestry group) within the
population.
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Figure S7. The length of shared haplotypes around variants of different frequencies.

a, Median genetic length of shared haplotype identity for pairs of chromosomes carrying variants of
different frequency in each population (removing cryptically-related samples, singleton variants and
allowing for up to two genotyping errors). The inset shows the expectation from a model of explosive
recent population growth (Nelson et al. 2012) in which an effective population size of 10,000 has
grown to 4 million in the last 10,000 years (assuming a generation time of 25 years). b, The
distribution of physical (left) and genetic (right) shared haplotype lengths for variants of frequency 2%
in the GBR population. ¢, The fraction of shared haplotypes that extend over 1Mb as a function of
variant frequency in each population.
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Figure S8. Shared haplotype length around f2 variants shared within and between populations.
Summary of median physical length of haplotypes around variants present exactly twice across the
sample, broken down by the population origin of the chromosomes sharing the variant. Bar
heights are normalised to the maximum across the graph (within FIN; 140 kb).
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Figures S9. Properties of genetic variation in regions of different inferred ancestry within the
populations sampled from the Americas.

a, Estimated ancestry proportions for individuals in the ASW, MXL, CLM and PUR populations (blue:
European, light-brown: African, red: Native American, black: unassigned regions). b, Average per
base heterozygosity. ¢, Ratio of nonsynonymous to synonymous variants within the same regions.
Error bars estimated from bootstrap re-sampling.
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Figure S10. Conservation and variation by sequence annotation and variant type.

a, The fraction of sites at each codon position (C1-C3), and at sites showing different types of variant,
where the evolutionary conservation (GERP) score is greater than 2. b, Boxplots showing the
distribution of GERP scores within part A. Note that GERP scores are a function of the site, not the
variant type. ¢, The fraction of sites within noncoding features of different types at all sites (white)
and sites showing variation (grey). d,. Boxplots showing the distribution of scores for part c. Apart
from pseudogenes, those sites at which variation is observed show a consistently lower level of
conservation than the class as a whole.
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Figure S11. Excess rare nonsynonymous variants by KEGG pathway.

a, The relationship between evolutionary conservation and load of rare NonSyn variants in KEGG
pathways estimated from , where N and S are the number of NonSyn and Syn variants across a
pathway respectively and R and C represent rare (<0.5%) and common (20.5%) variants respectively.
Negative values arise from a higher NonSyn:Syn ratio among common than rare variants. Dot area is
proportional to the number of genes in the KEGG pathway. b, Excess rare nonsynonymous mutations

in KEGG gene pathways for each ancestry-based group of populations (defined as in Figure 2A).
Selected KEGG pathways are identified.
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Figure S12. Analysis of SNP density and allele frequency around CTCF motifs.
SNP density and allele frequencies around the CTCF-binding motifs shown in Figure 4c. a, SNP density
stratified by global allele frequency. b Fraction of SNPs in each frequency class.
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Figure S13. Difference between nonsynonymous and synonymous variants in population
differentiation.

The fraction of pairwise population comparisons where nonsynonymous variants show greater
differentiation, as measured by F¢;, than synonymous variants, at each allele frequency. The red line
shows a smoothed estimate to highlight the trend.
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Figure S14 Accuracy of variant imputation.
a, Accuracy of imputation into 3 individuals from AMR (MXL), 4 individuals of European ancestry (3
CEU and 1 TSI) and 4 individuals of South Asian ancestry (Gujarati from Houston: GIH). Lines as for
Fig. 5b. None of the imputed samples were sequenced in the current phase of the project.
b, Comparison of imputation of high quality SNP genotypes from a backbone of haplotypes
estimated using family information (a mixture of duos and trios) to imputation from the Phase 1
release haplotypes, as a function of variant frequency. In each population group imputation from
the Phase 1 haplotypes is only slightly worse than from the benchmark data, indicating that variant
frequency and haplotype structure are the primary determinants of imputation performance. c,
Accuracy of large deletion imputation for samples within Phase 1 arising from the fact that SV
genotype likelihoods were only calculated for samples with lllumina sequencing data (see
Supplement for details). Concordance measured against genotypes from Conrad et al. (2006).
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Figure S15. SNP discovery from low-coverage and targeted exome data.

Within the target exome consensus (24.3 Mb spanning 194,041 exons of 15,412 genes; see
Supplementary Information), the plot shows the fraction of SNPs that were identified from both
low-coverage and exome data (purple), exome-data only (red) and low-coverage data only (blue) as
a function of the estimated variant count from the integrated haplotype release. About 60% of
singleton variants were detected only from the exome data. At higher frequencies, about 10% of
SNPs are discovered using only one approach, reflecting differences in the processing, analysis and
filtering of variants from the different data sources. These will reflect a mixture of true and false
positives from each approach. Details on the consensus target for the exome analysis can be found
at:

ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/phasel/analysis results/supporting/exome pull down/.




