Supporting Information for Improving the comprehensiveness and sensitivity of

sheathless tITP-CE-MS/MS for proteomic analysis with solid-phase

microextraction multistep elution

Supporting Figure 1	Schematic of the SPME-CE-MS/MS platform		
Supporting Figure 2	Effect of electric field on SPME-CE-MS/MS separation		
Supporting Figure 3	Base peak electropherogram for 5-step SPME multistep elution tITP-CE-MS/MS of 100 ng <i>Pfu</i> digest		
Supporting Figure 4	Base peak chromatogram for nLC-MS/MS of 100 ng <i>Pfu</i> digest		
Supporting Figure 5	Venn diagrams of all identified peptides and proteins		
Supporting Figure 6	Histograms of peptide physicochemical properties		
Supporting Figure 7	Comparison of peptide precursor intensity, S/N ratio, and XCorr for 100 ng <i>Pfu</i> digest analysis with CE and nLC		
Supporting Table 1	Description of MS RAW files		

Supporting Figure 1: Schematic of the SPME-CE-MS/MS platform. The SPME column was sandwiched between two pieces of 30 μ m ID capillaries, the frit end was connected to the HSPS through a zero dead volume union and the open end was connected to the inlet capillary with an Upchurch inline microfilter.

Supporting Figure 2: Effect of electric field on SPME-CE-MS/MS separation. The electropherograms of one step elution and CE separation of 16 protein mixture tryptic digests using 190 cm and 30 kV (158 V/cm), 90 cm and 15 kV (167 V/cm), and 90 cm and 30 kV (333 V/cm). The extracted ion electropherograms of 3 representative ions are shown from all three runs. Run conditions: 95 mM acetic acid (HOAc) - 5% methanol (MeOH) pH 3.1 was used as the background electrolyte. Peptides were eluted with 100 nL 95% MeOH - 50 mM NH₄Ac, pH 4.5. 15 or 30 kV was applied at the inlet of both 90 cm and 190 cm capillaries. MS/MS acquisition began upon application of the separation voltage.

Supporting Figure 3: Base peak electropherogram for 5-step SPME multistep elution tITP-CE-MS/MS of 100 ng *Pfu* digest. The *Pfu* digest was first hydrodynamically loaded onto the SPME column followed by the electrokinetic elution by 5 increasing organic strength buffers (10%-10%, 20%-20%, 30%-30%, 40%-40% and 48%-48% MeOH-IPA-50mM NH4Ac, pH 4.5) at 15kV for 2.5min, followed by 35min CE separation at 30kV. The multistep electrokinetic elution and CE separation was repeated until the last organic buffer was injected and separation finished.

Supporting Figure 4: Base peak chromatogram for nLC-MS/MS of 100 ng *Pfu* digest.

Supporting Figure 5: Venn diagrams of identified (A) peptides and (B) proteins combined from duplicate analysis of 5, 25, 50, and 100 ng *Pfu* digests using SPME-tITP-CE (blue) and nLC (red). Identified peptides and proteins for these Venn diagrams are listed in the Supporting Information Excel file.

Supporting Figure 6: Histograms of (A) isoelectric point, (B) molecular weight, and (C) Bull and Breese hydrophobicity index of peptides identified from 5, 25, 50 and 100 ng duplicate runs of *Pfu* using both SPME-tITP-CE(blue) and nLC(red).

Supporting Figure 7: Comparison of peptide precursor intensity, signal-to-noise ratio (S/N), and XCorr from duplicate analysis of 100 ng of *Pfu* tryptic digests using 5-step SPME-tITP-CE-MS/MS and nLC-MS/MS. Correlation plots of changes (CE values – nLC values) in (A) precursor intensity and (B) S/N to changes in XCorr values of peptides identified in both CE and nLC experiments. Distributions of peptide (C) precursor intensities, (D) S/N ratios and (E) XCorr values were plotted for CE (blue) and nLC (red) experiments. Noise was calculated by averaging the peak intensities from the lowest 10% of peaks from the corresponding precursor MS scan. S/N ratios were calculated by dividing peptide precursor intensities by the noise within each scan.

Supporting Table 1: Description of MS RAW files.

We have provided all analyzed RAW data files for this work at: <u>http://fields.scripps.edu/published/SPME-CE2012/</u>

The file structure is the same as figure structures where .RAW files are placed in the appropriately named folder of the figure annotation (i.e. data for Figures 1A & B is in folder structure Figure1/AB/). For some consecutive CE runs we continuously acquired MS data files and later parsed them into their corresponding runs at the .MS2 file level. The following table describes the time windows in the .RAW files for which their data was extracted.

Figure descriptions	Website link structures	.RAW file names	Time windows analyzed	
Figure 1A and 1B:	Figure1	110520_CEMS_16PM_95MeOH_50NH	17 27 min	
90 cm capillary	AB	4Ac_30kV_90cm.raw	17 – 37 11111	
Figure 1C and 1D:	Figure 1	110520_CEMS_16PM_95MeOH_50NH	22 92 min	
190 cm capillary	CD	4Ac_30kV_190cm.raw	33 – 63 Min	
Figure 2: Direct Injection	Figure 2			
Replicates	DCE		Entire run/file	
	Replicate1	120802_CEMS_16PM_DCE_1.raw	Entire fun/lite	
	Replicate2	120802_CEMS_16PM_DCE_2.raw		
Figure 2: 95% MeOH	Figure 2	110606_CEMS_16PM_95MeOH_50NH		
Replicates	95%MeOH	4Ac_30kV_190cm.raw	Entire run/file	
	Replicate1	110705_CEMS_16PM_95MeOH_50NH		
	Replicate2	4Ac_30kV_190cm.raw		
	Replicate3	110706_CEMS_16PM_95MeOH_50NH		
		4Ac_30kV_190cm.raw		
Figure 2: 85% MeOH –	Figure 2	110713_CEMS_16PM_85MeOH_10IPA		
10% IPA Replicates	85%MeOH-10%IPA	_50NH4Ac_30kV_190cm.raw		
	Replicate1	110715_CEMS_16PM_85MeOH_10IPA	Entire run/file	
	Replicate2	_50NH4Ac_30kV_190cm.raw		
	Replicate3	110721_CEMS_16PM_85MeOH_10IPA		
		_50NH4Ac_30kV_190cm.raw		

Figure 2: 48% MeOH – 48% IPA Replicate 1 & 2	Figure2 48%MeOH-48%IPA Replicate1 Replicate2	110727_CEMS_16PM_48MeOH_48IPA _50NH4Ac_30kV_190cm.raw 110801_CEMS_16PM_48MeOH_48IPA _50NH4Ac_30kV_190cm.raw	Enti	re run/file
Figure 2: 48% MeOH – 48% IPA Replicate 3	Figure2 48%MeOH-48%IPA Replicate3	110803_CEMS_16PM_48MeOH_48IPA _50NH4Ac_30kV_190cm.raw	40 -	- 100 min
Figure 3: 10 kV elution; 50 mM BGE; 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 5 min elution times	Figure3 50mM_BGE_10kV	111017_CEMS_16PM_48MeOH_48IPA _95mMBGE_10kV_190cm.raw	1 min: 1.5: 2: 2.5: 3: 3.5: 4: 4.5: 5:	$\begin{array}{l} 0 - 70 \text{ min} \\ 105 - 175 \\ 220 - 290 \\ 340 - 410 \\ 450 - 520 \\ 560 - 630 \\ 670 - 740 \\ 780 - 850 \\ 890 - 960 \end{array}$
Figure 3: 15 kV elution; 50 mM BGE; 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 5 min elution times	Figure3 50mM_BGE_15kV	111017_CEMS_16PM_48MeOH_48IPA _95mMBGE_15kV_190cm.raw	1 min: 1.5: 2: 2.5: 3: 3.5: 4: 4.5: 5:	$\begin{array}{l} 0-70 \text{ min} \\ 105-175 \\ 220-290 \\ 320-390 \\ 430-500 \\ 540-610 \\ 880-950 \\ 770-840 \\ 655-725 \end{array}$
Figure 3: 10 kV elution; 95 mM BGE; 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 5 min elution times	Figure3 95mM_BGE_10kV	111017_CEMS_16PM_48MeOH_48IPA _50mMBGE_10kV_190cm.raw	0.5 min: 1: 1.5: 2: 2.5: 3: 3.5: 5:	$\begin{array}{r} 0 - 70 \text{ min} \\ 110 - 180 \\ 220 - 290 \\ 330 - 400 \\ 440 - 510 \\ 550 - 620 \\ 660 - 730 \\ 770 - 840 \end{array}$

Figure 3: 15 kV elution; 95	Figure3	111017_CEMS_16PM_48MeOH_48IPA	0.5 mir	1: 40 – 110 min
mM BGE; 0.5, 1, 1.5, 2,	95mM_BGE_15kV	_50mMBGE_15kV_190cm.raw	1:	147 – 217
2.5, 3, 3.5, and 5 min			1.5:	260 - 330
elution times			2:	370 – 440
			2.5:	480 – 550
			3:	595 - 665
			3.5:	710 – 780
			5:	820 - 890
Figure 4: 15 kV elution for	Figure4	111025_CEMS_16PM_48MeOH_48IPA	0 mM:	520 – 580 min
2.5 min with;0, 25, 50, 75,		_30kV_190cm_tITP.raw	25:	620 - 680
and 100mM NH₄OAc			50:	720 – 780
			75:	820 - 880
			100:	920 - 980
Figure5: Replicate 1 of Pfu	Figure5	111026_CE_Successive_5_25_50_100	5 ng:	0 – 190 min
dilution series (5, 25, 50,	CE	ng_Pfu_180min.raw	25:	220 – 410
100 ng starting mass)	Replicate1		50:	435 – 625
			100:	655 – 845
Figure5: Replicate 2 of Pfu	Figure5	111027_CE_Successive_5_25_50_100	5 ng:	20 – 220 min
dilution series (5, 25, 50,	CE	ng_Pfu_180min.raw	25:	240 - 440
100 ng starting mass)	Replicate2		50:	460 - 660
			100:	680 - 880
Figure 5: Replicates 1 and	Figure5			
2 of <i>Pfu</i> dilution series (5,	nLC			
25, 50, 100 ng starting	5ng			
mass) from nLC analysis	Replicate1	111006_nLC_5ng_Pfu_180min.raw		
	Replicate2	120118_nLC_5ng_Pfu_180min.raw		
	25ng		En	tiro run/filo
	Replicate1	120111_nLC_25ng_Pfu_180min.raw		
	Replicate2	120118_nLC_25ng_Pfu_180min.raw		
	50ng			
	Replicate1	120113_nLC_50ng_Pfu_180min.raw		
	Replicate2	120119_nLC_50ng_Pfu_180min.raw		
	100ng			

	Replicate1	120118_nLC_100ng_Pfu_180min.raw	
	Replicate2	120113_nLC_100ng_Pfu_180min.raw	
Figure 5: Replicate 1 and	Figure 5		
2 of 5 ng <i>Pfu</i> with direct	DCE		Entiro run/filo
injection CE	Replicate1	120718_DCE_5ng_Pfu_1.raw	Entire run/me
	Replicate2	120718_DCE_5ng_Pfu_2.raw	
Supporting Figure 2:	SupportingFigure2		
	190cm30kV	120628_CEMS_16PM_95MeOH_50NH	
		4Ac_30kV_190cm.raw	
	90cm15kV	120628_CEMS_16PM_95MeOH_50NH	Entire run/file
		4Ac_15kV_90cm.raw	
	90cm30kV	120628_CEMS_16PM_95MeOH_50NH	
		4Ac_30kV_90cm.raw	