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APPENDIX A:  Adapting the SPW filter from 2D to 3D 

Following the notation of Sindelar and Grigorieff (2011), we consider the case of image 

formation that conforms to the following model: 

         yxnyxmkhyx iii ,,,CTFFT, 1D2     (real space) (A1.1) 

           khNkhMkhyxkhF iiii ,,,CTF,FT, D2D2   (A1.1) 

           (Fourier space) 

where for the i'th image:  is the observed projection density in the image, 

 is the projection of the noise-free 3D Coulomb potential of the particle, ; 

 is the Fourier transform (FT) of 

 yxi ,D2 





m x, y

M h, k

 r

m x, y , corresponding to a central section of 

.  We employ a commonly used noise model in which all noise effects are 

accounted for by a single term,  (this simplification is justified, as noted 

previously (Sindelar and Grigorieff, 2011), by the expected dominance of shot noise from 

the measurement process itself over other noise sources).  
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FT of .  The contrast transform function term is here written as .  yx,ni )k,(CTFi h

 

Wiener filter for a 3D toy problem 

By the projection theorem (Radon, 1917), the FT of each measured image samples a two-

dimensional plane through the 3D FT of the molecular map (a “Fourier slice”), where the 

orientation of the slice is defined by the viewing orientation for the image (usually 

specified by Euler angles ).  Thus, in principle, a sufficiently large data set of 

image FTs could be used to measure all values in the 3D FT, and inverse FT would 

complete the 3D reconstruction problem.  In practice, the plane defined by a Fourier slice 

 ,,



almost never coincides with the discrete 3D FT (DFT) grid that is utilized in 

computational treatments, so that the discrete grid points themselves are not precisely 

sampled.  We address this problem in the current work by using a “gridding” approach in 

which each measurement on the Fourier slice is averaged with its nearest neighbor on the 

discretely sampled 3D DFT grid, followed by a compensatory post-processing step 

(Appendix B). 

 

For the moment, however, we choose to idealize the reconstruction problem by 

considering a “toy” data set for which each measurement falls exactly on the 3D DFT 

grid.  A large set of randomly oriented Fourier slices will thus provide a variable number 

of noisy measurements, , with CTF values  (i=1, 2, … ) for each value 

 on the 3D Fourier grid (one way to approximate such a case with arbitrary 

accuracy would be to pad the 3D volume to be reconstructed by an arbitrarily large 

amount).  Here, represents a discrete grid point in the 3D DFT having integer indices 

hkl, and is the number of measurements contributing to grid point  

(corresponding to how many Fourier slices contribute to this grid point; this is related to 

the number of interpolated measurements  contributing to a grid point, see below).  

The values of  are related to 
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F  khFi ,D2  (Eq. (A1.2) but are now assigned to grid 

point .  Thus, this idealized scenario emulates the 3D reconstruction problem, but 

avoids any errors associated with fractional coordinates and “gridding” (see Appendix B).  

To reduce the error when forming a reconstructed map from this ‘toy’ data set, we write 

an expression for the expected squared error: 

shkl



 
    2W=Error rr   (where is the map estimate) (A1.3)

 

W

and solve for a set of linear coefficients that will form an ideally weighted sum of the 

Fourier space data points, minimizing the average error.  In the absence of additional 

information, the least squares estimate is (Saxton (1978), note that this result was 

presented by Saxton specifically for the case 2D images, but readily generalizes to 3D): 
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Here, we have introduced a small constant term,   that prevents division by zero.  For the 

current work we have selected the value  = 0.1, which in our numeric tests was large 

enough to prevent numeric errors but too small to generate any substantial filtering effect 

on the reconstructions, as judged by insensitivity of reconstruction statistics to 

perturbations of   around the chosen value (results not shown).  If estimates of the 

signal-to-noise ratio (SNR) of the data measurements are available, the result is a 

“Wiener filter” (Saxton, 1978), expressed as follows: 
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(bold symbols are vectors and italicized non-bold symbols refer to the length of the 

corresponding vectors).  Here SSNR refers to the spectral SNR of the measured data, 
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ss
ss , and is expressed in terms of the average 

value of the SNR in resolution ring S2D with central radius s and containing 2D grid 



points .  We note that while the measured data come from 2D DFT’s of the 

images, the data also represent measurements of central sections in the 3D DFT of the 

particle.  The SSNR function can therefore be used for Wiener filtering in 2D (Saxton, 

1978) as well as 3D (Eq. (A1.5)).  Furthermore, it is important to realize that the SSNR 

refers to the measured data before averaging to obtain a reconstruction.  The above 

expression for the Wiener filter differs from the form presented earlier for the case of 2D 

image averaging (Saxton, 1978) only by its extension to 3D coordinates, and by allowing 

the number of Fourier samples  to vary from voxel to voxel. 
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Single-particle Wiener filter for the 3D toy problem 

 

As was previously observed for the 2D case (Sindelar and Grigorieff, 2011), the overall 

SNR of a 3D map of an isolated single particle depends on the bounding box dimension.  

The noise energy in the box increases proportional to the total box volume, while the 

signal energy (due to the particle) remains constant.  Consequently, SSNR cannot be 

consistently defined and application of Eq. (A1.5) leads to progressively greater over-

filtering of the resulting particle density as the bounding box size is increased.  We 

emphasize that this over-filtering effect is a natural consequence of the error-minimizing 

property of Eq. (A1.5): as the box size grows, the noisy solvent region increasingly 

dominates the error sum, thus requiring a stronger filter in order to minimize the mean-

squared error at all points in the volume (see Sindelar and Grigorieff (2011)). 

 

As we did previously for the 2D case, we address the above problem with the Wiener 



filter by reframing the problem to optimize the density of a single particle reconstruction: 

we now seek the filter that minimizes the error within the particle region only, utilizing a 

binary enveloping function that excludes the solvent region: env3D r 

             2SPW
3D

2SPW
3D envenv=Error rrrrrr   (A1.6)

 

Unlike 
 
in Eq (A1.5),  represents the estimate that minimizes the error 

inside the envelope.  We may now proceed identically as was done for the 2D case in 

order to obtain a modified filter expression, by assuming several conditions are 

approximately satisfied.  Briefly, we assume that (1) a sufficiently large amount of data 

was collected such that the map estimate 

 rW  rSPW

 rSPW  is approximately localized within the 

binary enveloping function; (2) the noise found in the data has relatively modest 

frequency dependence and (3) the particle radius is non-negligible relative to the box 

dimension.  Repeating the derivation in Sindelar and Grigorieff (2011) but substituting 

3D functions in place of 2D functions leads to the following approximate solution for the 

least squares linear filter expression: 
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(A1.7)
 

 

PSSNR s   1

fparticle

SSNR s 
 

(A1.8)
 

 
 

V
f




r
r2

3Dparticle env   (A1.9)
 

As with the 2D single-particle Wiener filter, this 3D version compensates for the 

presence of extra noise energy in the solvent region by scaling up the SNR term.  The 



principal difference between the 3D and 2D incarnations of the filter is that here  is 

computed over a 3D envelope function, defining the relative proportion of solvent in the 

reconstructed box.  As shown in Fig. A.1, we validated Eqs. (A1.7) – (A1.9) via numeric 

tests of synthetic noisy 3D data sets (embodying the “3D toy problem”, above), and 

confirmed that the reconstruction error was minimized with respect to , as we 

demonstrated previously for the analogous 2D case (Sindelar and Grigorieff, 2011). 
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Figure A.1  Validation of the SPW filter using a 3D ‘toy’ data set.  Values of  

were generated by adding randomly generated white noise to structure factors taken from 

the 3D FFT of the same noise-free synthetic volume used in other computations here (see 

Methods).  No CTF modulation was considered (  were all equal to 1).  The 

number of measurements per Fourier voxel, , was made identical (for each hkl) to the 

number of interpolated measurements  found in our gridded reconstructions made 

from noisy 2D projection images. 
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A.  Unmasked cross correlation coefficients between the noise-free reference volume and 



a series of reconstructions generated using Eq. (A1.7), with varying values of .  The 

correlation is maximized at = 1, which corresponds to the original Wiener filter, Eq. 

(A1.5).  Thus, these calculations show that the Wiener filter yields the minimum overall 

error (including the solvent region), with respect to scaling of its SSNR term. 

fparticle

fparticle

B.  Masked cross correlation coefficients between the noise-free reference volume and 

the same series of reconstructions as in panel A (mask from Fig. 2E was used).  The 

correlation is maximized at = 0.10, which is identical to the value of fparticle fmask  we 

compute for the chosen mask.  Thus, the SPW filter minimizes error within the defined 

mask region, for the given mask size. 

 



 

APPENDIX B:  Extending the SPW theory for gridded 3D reconstruction 

The i’th image in a cryo-EM data set, following DFT and rotational transformation according to 

the known or estimated Euler angles (   , , ) (describing the projection direction), consists of a 

list of discrete measurements that lie on a plane in 3D Fourier space: 

        khNkhMkhkhF iii ,,,CTF,2D   (A2.1)
 

Due to the arbitrary orientation of this plane, the coordinates  of the measurements rarely 

coincide with the 3D grid points s .  Thus, a series of such images will yield an irregular cloud 

of point measurements spread throughout 3D Fourier space (up to the Nyquist sampling limit of 

the images). 

si,hk
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In order to apply the 3D inverse DFT, this measurement cloud must be extrapolated onto the 3D 

cubic grid of DFT coordinates.  The gridding method (Penczek, 2010) accomplishes this 

extrapolation by convolving the cloud of measurements with a “kernel” function (for example, a 

Gaussian function with a half-width of a few Fourier pixel dimensions), followed by sampling of 

the resulting blurred function on the DFT grid.  This combined operation effectively gathers all 

measurements within a specified radius onto a given DFT grid point, as a weighted average.  A 

subsequent inverse DFT operation yields a real-space map whose values are, due to the 

preceding convolution operation, effectively multiplied by the inverse DFT of the kernel 

function (which we will refer to as the point-spread function or PSF).  Thus, to undo the effects 

of the convolution/sampling step, the final step of gridding is a division of the real-space map by 

the PSF, yielding an approximation of the desired molecular map. 

 



Here we implement a very simple form of gridding in which the kernel function is a 3D rectangle 

function Rect (namely a cube having a linear dimension equal to the Fourier grid spacing).  Thus, 

the initial (convolution) step in the gridding process estimates the quantity  

        )Rect( grid ssss FF hklhkl  . (A2.2)
 

Here,  is the 3D Dirac delta function.  In order to account for non-uniform measurement 

density in Fourier space, we normalize the convolution sums at each voxel by dividing by the 

number of measurements nhkl that contribute to these respective locations.  In the case of ideal 

images (in the absence of noise and having an ideal CTF equal to unity for all s), the first step of 

our gridding implementation would therefore be a straight average of nearest neighbor 

measurements for each grid point shkl 
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The tilde in D2~
jF  symbolizes the Fourier terms of a noise-free idealized image that is not affected 

by CTF modulation to distinguish it from the Fourier terms  of a noisy experimental image 

(see below).  We will use the abbreviated notation defined by Eq. (A2.4) in the following and 

throughout the main manuscript, for all sums that result from the convolution with the rectangle 

function Rect. 
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We note that the approximation in Eq. (A2.3) results from a general difficulty encountered in 

gridding algorithms to account for irregular sampling of the FT.  While values of the FT F of the 

noise-free volume are evenly distributed between the discrete 3D grid points s , the results of 

the convolution described by Eq. (A2.4) must be weighted to account for the irregular sampling.  

The simple weighting by 

hkl

hkln1  (Eq. (A2.3)) will tend to skew the estimate  towards 

values of F found in the most densely measured regions near a given .  To compensate for 

this effect, additional weighting terms (proportional to the local measurement density) can be 

introduced within the sum in Eq. (A2.3) in order to yield a more accurate estimate of the 

convolution in Eq. (A2.2) (Penczek et al., 2004).  However, such “gridding weights” are not 

necessarily beneficial in the presence of large amounts of noise, particularly when F varies 

slowly through the extent of the kernel function; moreover, schemes to estimate the local 

measurement density add substantial algorithmic complexity.  We therefore opted not to 

implement gridding weights in our scheme, and instead padded images and volumes by a factor 

of two in order to reduce the variability of F on the scale of the kernel function size (equal to the 

grid spacing, for the rectangle kernel function used here). 

 hkls F grid

shkl

 

Application of Eq. (A2.3) by itself for 3D reconstruction is commonly referred to in the literature 

as nearest neighbor interpolation (Penczek, 2010).  However, having connected Eq. (A2.3) to the 

convolution product in Eq. (A2.2), we may now proceed to the second stage of gridding.  

Following inverse DFT of , the effects of the kernel convolution may be reversed by 

dividing the resulting map by the PSF, in this case equal to a sinc function (the inverse DFT of 

the rectangle function): 
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where L is the linear dimension of the volume and x,y,z are the components of r. 

 

We now modify our expression for  to account for the presence of CTF modulation and 

noise by adapting Eq. (A1.4) to form the least squares estimate for the series of measurements 

tallied in Eq. (A2.3): 
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As before (Eq. (A1.4)), we have introduced a small constant term,  . 

 

Following the example of Eq. (A1.5), we may also adapt Eq. (A2.6) to form a filtered estimate of 

the first gridded reconstruction step: 
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(a similar expression can be written for ).  The above expression yields the linear 

transformation of the data having the least squares expected error.  However, the error is not 

minimized against  itself but rather for 

SPWF

F s  Rect(s)F s  .  Thus, after applying the final 

gridding correction (division by the sinc function, Eq. (A2.5)) the error in the final gridded 

reconstruction is no longer strictly minimized; instead, the gridding correction boosts noise 

levels near the volume boundaries (results not shown).  In order to mitigate this issue, we padded 



all images and volumes by a factor of two, so that the sinc correction factor remained close to 

one in the vicinity of the particle (the maximum value of this correction is at the original volume 

boundary, which becomes +/- L/4 after 2-fold padding, so that the correction factor would be 

sinc
L 4
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 = 1.11). 

 

APPENDIX C:  Estimating the image SSNR from masked FSC calculations 

 

Following the approach given by Sindelar and Grigorieff (2011) for aligned 2D images, we 

begin by expressing the expectation value of FSCmask s   in terms of the signal and noise 

components from two noisy half data set reconstructions, each multiplied in real space by the 

soft-edged masking function envmask r : 
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where S denotes a one Fourier voxel thick shell with central radius s;  and  are noise 

components with the same variance, corresponding to Fourier terms of the first and second 

reconstruction (respectively); and  is the FT of .  If we assume that  and  

are uncorrelated, which can be achieved by performing independent 3D structure refinement on 

the two half data sets, then Eq. (A3.1) reduces to 
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where we have used the following: (1) the noise-free map  r  is unchanged by the mask 

multiplication, hence      sFsFs maskENV , (2) the noise terms are uncorrelated with the 

signal terms; and (3) the noise is now represented by a N, which stands for an arbitrary 

realization of the noise in a half data set reconstruction.  If we now assume that the noise term 

varies slowly in s compared with the  smaskENV  term, as is expected for single-particle cryo-

EM data sets (Sindelar and Grigorieff, 2011), then the right-hand term in the denominator of Eq. 

(A3.2) can be approximated as: 
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maskmask env .  Thus, we can write: 
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Rewriting the above expression in terms of the SSNR of the reconstruction, 
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ss  (where we note that the SSNR is doubled by 

combining the two half data sets) we now arrive at the following expression: 
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SSNRfinal s 
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 (A3.5)

 

We rewrite the above result to express the SSNR in terms of the masked FSC: 

 SSNRfinal s   fmask

2 FSCmask s 
1 FSCmask s 

 (A3.6)
 

which is the 3D analog of the result for 2D images (Sindelar and Grigorieff, 2011). 

 

To relate SSN  to the SSNR of the images, we refer to Eq. (A2.6), which expresses the 

gridded FT  as a weighted sum over Fourier space measurements from individual images.  

Similar to the case of aligned 2D images (see Sindelar and Grigorieff (2011)), the noise variance 

in  reduces proportional to the sum of squared CTF terms.  Thus, to recover an estimate of 

the data SNR we can write 
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Here it is worth repeating the observation made in Appendix A that the 2D image DFT’s are 

equivalent to central sections of the 3D DFT, so that the SSNR in either case is also equivalent.  

We note that this last step involves an additional approximation, related to the fact that the 

summed Fourier terms in Eq. (A2.6) are an estimate of the continuously varying FT F convolved 

over a rectangle kernel function.  Consequently, the noise-free signal component in  is 

attenuated somewhat and so the SSNR from Eqs. (A3.6) – (A3.7) will be underestimated.  The 

two-fold padding we employed in our reconstruction algorithm, however, reduces this variability 

over the extent of the kernel function, increasing the accuracy of the SSNR estimate. 

LSQF



 

References 
 

Penczek, P.A.  (2010).  Fundamentals of three-dimensional reconstruction from projections.  

Meth.  Enzymol 482, 1–33. 

Penczek, P.A., Renka, R., and Schomberg, H.  (2004).  Gridding-based direct Fourier inversion 

of the three-dimensional ray transform.  J Opt Soc Am A Opt Image Sci Vis 21, 499–509. 

Radon, J.  (1917).  Über die Bestimmung von Funktionen durch ihre Integralwerte längs 

gewisser Manningfaltigkeiten.  Math.  Phys.  Klasse 69, 262–277. 

Saxton, W.O.  (1978).  Computer techniques for image processing in electron microscopy 

(Academic Press  (New York)). 

Sindelar, C.V., and Grigorieff, N.  (2011).  An adaptation of the Wiener filter suitable for 

analyzing images of isolated single particles.  J.  Struct.  Biol.  176, 60–74. 

 

 
 


