Synthesis of Bridged Inside-Outside Bicyclic Ethers through Oxidative Transannular Cyclization Reactions

Xun Han and Paul E. Floreancig*

Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 florean@pitt.edu

Supporting Information

Table of Contents

General Information	S1
Experimental Section.	S2
References	S14
Crystal Data	S15
Spectral Data	S24

General Information

Proton (¹H NMR) and carbon (¹³C NMR) nuclear magnetic resonance spectra were recorded on a Bruker Avance 300 spectrometer at 300 MHz and 75 MHz, a Bruker Avance 400 spectrometer at 400 MHz and 100 MHz, a Bruker Avance 500 spectrometer at 500 MHz and 125 MHz. The chemical shifts are reported in parts per million (ppm) on the delta (δ) scale. The solvent peak was used as a reference value, for ¹H NMR: CDCl₃ = 7.27 ppm, C_6D_6 = 7.16 ppm, for ¹³C NMR: $CDCl_3 = 77.23$, $C_6D_6 = 128.4$ ppm. Data are reported as follows: (s = singlet; d = doublet; t = triplet; q = quartet; sept = septet; dd = doublet of doublets; ddd = doublet of doublets; dddd = doublet of doublet of doublet; td = triplet of doublets; dtd = doublet of triplet of doublets; br = broad). High resolution and low resolution mass spectra were recorded on a VG 7070 spectrometer. Infrared (IR) spectra were collected on a Mattson Cygnus 100 spectrometer. Samples for IR were prepared as a thin film on a NaCl plate by dissolving the compound in CH₂Cl₂ and then evaporating the CH₂Cl₂. Tetrahydrofuran and diethyl ether were distilled from sodium and benzophenone. Methylene chloride was distilled under N₂ from CaH₂. Analytical TLC was performed on E. Merck pre-coated (25 mm) silica gel 60F-254 plates. Visualization was done under UV (254 nm). Flash chromatography was done using ICN SiliTech 32-63 60 Å silica gel. Reagent grade ethyl acetate, diethyl ether, toluene and hexanes (commercial mixture) were purchased from EM Science and used as is for chromatography. All products in this manuscript are racemic mixtures but are drawn and named as single enantiomers to indicate their relative stereochemistry.

Experimental Section

Reagents and conditions a) SO₃•Py, DMSO, Et₃N, CH₂Cl₂, 79%. b)¹ Propargyl bromide, Zn, ICH₂CH₂I, THF, sonication, 87%. c)² PMBOC(NH)CCl₃, La(OTf)₃, PhMe, 94%. d)³ HOAc, [(p-cymene)RuCl₂]₂, Fur₃P, Na₂CO₃, PhMe, 80 °C, 45%.

Scheme 1. Synthesis of 4.

4-(4-methoxybenzyloxy)tridec-1-en-5-yn-2-yl acetate (4).

¹H NMR (300 MHz, CDCl₃) δ 7.31-7.28 (m, 2H), 6.90-6.87 (m, 2H), 4.85 (s, 2H), 4.72 (d, 1H, J = 11.4 Hz), 4.45 (d, 1H, J = 11.4 Hz), 4.22 (ddt, 1H, J = 2.1, 6.3, 7.2 Hz), 3.81 (s, 3H), 2.66 (dd, 2H, J = 5.4, 7.2 Hz), 2.25 (td, 2H, J = 1.8, 6.9 Hz) 2.05 (s, 3H), 1.59-1.49 (m, 2H), 1.44-1.29 (m, 8H), 0.90 (t, 3H, J = 6.9 Hz); ¹³C NMR (100 MHz,

CDCl₃) δ 169.3, 159.4, 152.3, 130.1, 129.9, 113.9, 104.3, 87.4, 78.2, 70.1, 66.1, 55.5, 40.6, 32.0, 29.0, 28.9, 22.8, 21.2, 18.9, 14.3; IR (neat) 2930, 2857, 1758, 1667, 1613, 1586, 1514, 1464, 1369, 1341, 1302, 1249, 1206, 1137, 1081, 1036, 965, 875, 823, 758, 721 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₃H₃₂O₄Na [M+Na]⁺ 395.2198, found 395.2190.

Cyclization of 4 to form 5 and 6.

To a suspension of substrate **4** (152 mg, 0.408 mmol), 2,6dichloropypyridine (241 mg, 1.63 mmol), and 4 Å molecular sieves (304 mg) in anhydrous DCE (4 mL) was added DDQ (186 mg, 0.820 mmol) in one portion at rt. The mixture was stirred at rt for 1 h, and then was quenched by the addition of NEt₃. The mixture was loaded directly onto a short plug of silica gel and eluted with dichloromethane and EtOAc. The filtrate was concentrated and purified by flash chromatography (hexane:EtOAc, 30:1 to 15:1) to give the *trans* and *cis* products (97 mg, total mass, *trans/cis* = 2.8/1, 72% total yield). **5**: ¹H

NMR (300 MHz, CDCl₃) δ 7.35-7.30 (m, 2H), 6.94-6.89 (m, 2H), 5.26 (dd, 1H, J = 5.4, 8.4 Hz), 5.18 (ddt, 1H, J = 1.5, 1.8, 6.6 Hz), 3.82 (s, 3H), 2.81 (dd, 1H, J = 6.9, 14.1 Hz), 2.64-2.61 (m, 2H), 2.53 (d, 1H, J = 14.1 Hz), 2.23 (td, 2H, J = 2.1, 6.9 Hz), 1.54-1.47 (m, 2H), 1.40-1.26 (m, 8H), 0.89 (t, 3H, J = 6.9 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 205.3, 159.7, 132.8, 127.7, 114.2, 90.6, 76.6, 73.7, 65.8, 55.5, 49.4, 47.6, 31.9, 29.0, 29.0, 28.7, 22.8, 18.9, 14.3; IR (neat) 2929, 2856, 1724, 1613, 1515, 1463, 1367, 1334, 1304, 1248, 1177, 1104, 1054, 1035, 946, 829 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₁H₂₉O₃ [M]⁺ 329.2117, found 329.2116.

6: ¹H NMR (300 MHz, CDCl₃) δ 7.35-7.29 (m, 2H), 6.93-6.88 (m, 2H), 4.58 (dd, 1H, J = 3.3, 10.8 Hz), 4.53 (ddt, 1H, J = 1.8, 3.3, 11.1 Hz), 3.81 (s, 3H), 2.80-2.54 (m, 4H), 2.23 (td, 2H, J = 2.1, 7.2 Hz), 1.55-1.47 (m, 2H), 1.38-1.26 (m, 8H), 0.89 (t, 3H, J = 6.9 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 205.5, 159.8, 132.4, 127.7, 114.2, 88.0, 78.6, 67.8, 55.6, 53.6, 49.4, 48.5, 31.9, 29.0, 29.0, 28.6, 22.8, 19.0, 14.3; IR (neat) 2926, 2854, 1723, 1613, 1515, 1462, 1344, 1302, 1250, 1177, 1161, 1043, 952, 830 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₁H₂₉O₃ [M]⁺ 329.2117, found 329.2108.

Reagents and conditions a) NaH, THF, then p-methylbenzyl bromide, Bu₄NI, 99% b) HOAc, [(pcymene)RuCl₂]₂, Fur₃P, Na₂CO₃, PhMe, 80 °C, 58%.

Scheme 2. Synthesis of 8.

4-(4-methylbenzyloxy)tridec-1-en-5-yn-2-yl acetate (8).

¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, 2H, J = 8.0 Hz), 7.15 (d, 2H, J = 8.0 Hz), 4.85 (s, 2H), 4.74 (d, 1H, J = 11.6), 4.48 (d, 1H, J = 11.6 Hz), 4.23 (t, 1H, J = 6.8 Hz), 2.66 (app dd, 2H, J = 6.8, 8.0 Hz), 2.35 (s, 3H), 2.24 (app dd, 2H, J = 5.6, 6.8 Hz), 2.05 (s, 3H), 1.56-1.49 (m, 2H), 1.42-

1.37 (m, 2H), 1.34-1.26 (m, 6H), 0.90 (t, 3H, J = 6.8 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 169.3, 152.3, 137.5, 135.0, 129.2, 128.4, 104.3, 87.5, 78.2, 70.3, 66.3, 40.6, 32.0, 29.0, 28.9, 22.9, 21.4, 21.3, 18.9, 14.3; IR (neat) 2928, 2857, 1759, 1668, 1458, 1433, 1369, 1340, 1204, 1083, 1020, 874, 803 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₃H₃₂O₃Na [M+Na]⁺ 379.2249, found 379.2222.

Cyclization of 8 to form 9 and 9'.

To a suspension of substrate **8** (29 mg, 0.081 mmol), 2,6dichloropypyridine (47 mg, 0.32 mmol), 4 Å molecular sieves (57 mg) in anhydrous DCE (1 mL) was added DDQ (36 mg, 0.16 mmol) in one portion at rt. The mixture was stirred at rt for 6 h, and then was quenched by the addition of NEt₃. The mixture was loaded directly onto a short plug of silica gel and eluted with dichloromethane and EtOAc. The filtrate was concentrated and purified by flash chromatography to give both *trans* and *cis* products (18 mg, total mass, *trans/cis* = 3.3/1, 72% total yield). **9**: ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, 2H, *J* = 8.4 Hz), 7.20 (d, 2H, *J* = 8.0

Hz), 5.27 (dd, 1H, J = 4.0, 10.0 Hz), 5.20 (ddt, 1H, J = 1.6, 2.4, 5.2 Hz), 2.89 (dd, 1H, J = 6.8, 14.0 Hz), 2.68-2.57 (m, 2H), 2.54 (dt, 1H, J = 1.6, 14.4 Hz), 2.36 (s, 3H), 2.23 (td, 2H, J = 2.0, 7.2 Hz), 1.55-1.47 (m, 2H), 1.39-1.33 (m, 2H), 1.31-1.28 (m, 6H), 0.89 (t, 3H, J = 6.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 205.3, 138.1, 137.7, 129.5, 126.2, 90.7, 76.5, 73.9, 65.8, 49.5, 47.6, 32.0, 29.0, 28.7, 22.8, 21.4, 18.9, 14.3; IR (neat) 2927, 2856, 1724, 1516, 1459, 1415, 1365, 1333, 1225, 1161, 1104, 1055, 1021, 945, 809 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₁H₂₉O₂ [M]⁺ 313.2168, found 313.2161.

9': ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, 2H, *J* = 8.0 Hz), 7.19 (d, 2H, *J* = 8.0 Hz), 4.60 (dd, 1H, *J* = 3.2, 10.8 Hz), 4.53 (ddt, 1H, *J* = 2.0, 2.8, 8.4 Hz), 2.76 (dd, 1H, *J* = 11.6, 14.4 Hz), 2.68-2.57 (m, 3H), 2.35 (s, 3H), 2.24 (td, 2H, *J* = 2.0, 7.2 Hz), 1.57-1.49 (m, 2H), 1.37-1.33 (m, 2H), 1.31-1.28 (m, 6H), 0.89 (t, 3H, *J* = 6.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 205.5, 138.3, 137.3, 129.5, 126.2, 88.0, 78.8, 77.6, 67.8, 49.4, 48.5, 31.9, 29.0, 29.0, 28.6, 22.8, 21.4, 19.0, 14.3; IR (neat) 2927, 2856, 1724, 1516, 1460, 1380, 1344, 1305, 1246, 1161, 1135, 1054, 953, 811, 719 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₁H₂₉O₂ [M]⁺ 313.2168, found 313.2169.

a)⁴ Ethyl propiolate, ZnI₂, 50-100 °C, then HCO₂H. b) Propargyl bromide, Zn, ICH₂CH₂I, THF, sonication. c) PMBOC(NH)CCI₃, La(OTf)₃, PhMe. d) HOAc, [(*p*-cymene)RuCl₂]₂, Fur₃P, Na₂CO₃, PhMe, 80 °C, 4% over 4 steps.

Scheme 3. Synthesis of 10.

Ethyl 6-acetoxy-4-(4-methoxybenzyloxy)hept-6-en-2-ynoate (10).

¹H NMR (500 MHz, CDCl₃) δ 7.29 (d, 2H, J = 8.5 Hz), 6.89 (d, 2H, J = 9.0 Hz), 4.90 (d, 1H, J = 2.0 Hz), 4.89 (s, 1H), 4.75 (d, 1H, J = 11.0 Hz), 4.46 (d, 1H, J = 11.0 Hz), 4.33 (t, 1H, J = 6.5 Hz), 4.26 (q, 2H, J = 7.0 Hz), 3.81 (s, 3H), 2.73-2.72 (m, 2H), 2.06 (s, 3H), 1.34 (t, 3H, J = 1.0 Hz)

7.0 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 169.2, 159.7, 153.4, 150.9, 130.1, 129.1, 114.0, 105.3, 85.0, 78.2, 71.1, 65.5, 62.4, 55.5, 39.5, 21.2, 14.2; IR (neat) 2938, 2869, 2839, 2235, 1757, 1713, 1669, 1613, 1514, 1465, 1369, 1301, 1250, 1208, 1086, 1034, 882, 823, 752 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₉H₂₂O₆Na [M+Na]⁺ 369.1314, found 369.1331.

Cyclization of 10 to form 11 and 11'.

To a suspension of substrate **10** (56 mg, 0.16 mmol), 2,6dichloropypyridine (96 mg, 0.65 mmol) and 4 Å molecular sieves (113 mg) in anhydrous DCE (1.6 mL) was added DDQ (75 mg, 0.33 mmol) in one portion at rt. The mixture was stirred at rt for 9.5 h, and then was quenched by the addition of 0.1 mL NEt₃. The mixture was loaded directly onto a short plug of silica gel and eluted with dichloromethane and EtOAc. The filtrate was concentrated and purified by flash chromatography (hexane:EtOAc, 10:1 to 8:1) to give the desired product (22 mg, total mass, *trans/cis* = 1.6/1, 45% total yield) as an

inseparable mixture. Mixture of **11** and **11'**: ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.30 (m, 2H), 6.94-6.91 (m, 2H), 5.29 (dd, 0.6H, J = 2.0, 7.6 Hz), 5.22 (dd, 0.6H, J = 5.2, 9.2 Hz), 4.68 (dd, 0.4H, J = 3.2, 11.6 Hz), 4.62 (dd, 0.4H, J = 3.2, 10.8 Hz), 4.25 (q, 2H, J = 7.2 Hz), 3.82 (s, 1.8H), 3.82 (s, 1.2H), 2.94 (dd, 0.6H, J = 7.6, 14.8 Hz), 2.82 (dd, 0.4H, J = 12.0, 14.8 Hz), 2.75-2.62 (m, 3H), 1.33 (t, 1.8H, J = 6.8 Hz), 1.31 (t, 1.2H, J = 6.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 203.6, 203.5, 160.0, 159.9, 153.1, 152.9, 131.8, 131.7, 127.7, 127.5, 114.3, 83.0, 82.6, 80.2, 79.1, 78.0, 74.8, 66.7, 64.9, 62.6, 62.6, 55.5, 49.2, 49.0, 46.5, 45.7, 14.2; IR (neat) 2980, 2934, 2840, 1716, 1643, 1613, 1587, 1516, 1464, 1367, 1337, 1302, 1252, 1178, 1152, 1059, 1033, 950, 833, 751 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₇H₁₉O₅ [M]⁺ 303.1232, found 303.1238.

Reagents and conditions a)⁵ Methyl butenoate, 9-BBN, Pd(dppf)Cl₂, K₂CO₃, DMF, 50 °C. b) NaBH₄, MeOH, 0 °C, 80% (two steps). c) Cl₃CCN, DBU, CH₂Cl₂, 55%. d) 2,6-Heptadiyn-1-ol, La(OTf)₃, PhMe. e) *p*-TsOH, MeOH, 42% (two steps). f) LiOH, THF, MeOH, H₂O. g) 2,4,6-Trichlorobenzoyl chloride, Et₃N, THF, then DMAP, PhMe, 65 °C. h) HOAc, [Ru(*p*-cymene)Cl₂]₂, Fur₃P, 1-decyne, Na₂CO₃, PhMe, 80 °C, 11% (three steps).

Scheme 4. Synthesis of 12. Note: Compounds 14 and 16 were prepared through similar sequences.

Macrolactone substrate 12.

¹H NMR (300 MHz, CDCl₃) δ 7.21 (d, 1H, *J* = 7.8 Hz), 6.74-6.70 (m, 2H), 4.89 (s, 1H), 4.85 (d, 1H, *J* = 1.5 Hz), 4.77 (d, 2H, *J* = 2.1), 4.76 (d, 1H, *J* = 9.6 Hz), 4.30 (tt, 1H, *J* = 2.1, 6.9 Hz), 4.17 (d, 1H, *J* = 9.3 Hz), 2.93-2.83 (m, 1H), 2.68 (dd, 1H, *J* = 6.9, 15.0), 2.62-2.37 (m, 3H), 2.08 (s, 3H), 2.00-1.88 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 173.3, 169.0, 160.0, 151.4,

143.1, 132.7, 127.1, 115.4, 111.2, 104.6, 84.8, 81.2, 68.0, 67.1, 55.2, 52.0, 39.4, 34.4, 31.2, 29.3, 21.1; IR (neat) 2922, 2852, 1745, 1667, 1611, 1579, 1503, 1461, 1439, 1368, 1324, 1258, 1215, 1132, 1110, 1044, 1025 cm⁻¹; HRMS (ESI) *m/z* calcd for $C_{21}H_{24}O_6Na [M+Na]^+$ 395.1471, found 395.1475.

Cyclization of 12 to form 13.

To a suspension of macrolactone substrate **12** (46 mg, 0.12 mmol), 2,6dichloropypyridine (77 mg, 0.52 mmol) and 4 Å molecular sieves (92 mg) in anhydrous DCE (1.3 mL) was added DDQ (59 mg, 0.26 mmol) in one portion at rt. The mixture was stirred at rt for 4 h, and then was quenched by the addition of 10 drops of NEt₃. The mixture was loaded directly onto a short plug of silica gel and eluted with dichloromethane and EtOAc. The filtrate

was concentrated and purified by flash chromatography (hexane:EtOAc, 5:1 to 3:1) to give the desired product (29 mg, 72%). **13**: ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, 1H, *J* = 8.4 Hz), 6.81 (dd, 1H, *J* = 2.8, 8.8 Hz), 6.76 (d, 1H, *J* = 2.8 Hz), 5.36 (dd, 1H, *J* = 2.0, 12.4 Hz), 5.10 (app dt, 1H, *J* = 1.2, 7.2 Hz), 4.84 (dd, 1H, *J* = 3.2, 15.2 Hz), 4.69 (dd, 1H, *J* = 1.6, 14.8 Hz), 3.81 (s, 3H), 2.98-2.81 (m, 3H), 2.62-2.49 (m, 4H), 2.40 (ddd, 1H, *J* = 3.6, 11.2, 12.4 Hz), 2.01-1.79 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 204.7, 172.6, 159.9, 142.5, 128.3, 127.4, 115.8, 111.8, 84.2, 82.6, 69.2, 65.5, 55.2, 51.7, 46.8, 46.2, 34.5, 31.4, 29.1; IR (neat) 2923, 2851, 1740, 1611, 1579, 1504, 1441, 1368, 1334, 1275, 1255, 1233, 1158, 1131, 1110, 1048, 1024, 996, 952, 818, 733 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₉H₂₀O₅Na [M+Na]⁺ 351.1208, found 351.1199.

Macrolactone substrate 14.

¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, 1H, J = 8.8 Hz), 6.72-6.69 (m, 2H), 4.91 (s, 1H), 4.88 (d, 1H, J = 1.6 Hz), 4.84 (d, 1H, J = 10.4 Hz), 4.79 (d, 2H, J = 2.0 Hz), 4.36 (tt, 1H, J = 2.0, 6.4 Hz), 4.33 (d, 1H, J = 10.6 Hz), 3.79 (s, 3H), 2.77-2.71 (m, 2H), 2.65 (dd, 1H, J = 6.0, 14.8 Hz), 2.60-2.52 (m, 1H), 2.42-2.38 (m, 2H), 2.09 (s, 3H), 1.78-1.72 (m, 2H), 1.65-1.49 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 169.3, 159.6, 151.7, 143.5,

130.8, 127.6, 115.1, 110.9, 104.9, 84.4, 81.0, 68.6, 66.8, 55.4, 51.7, 39.9, 33.8, 33.1, 30.4, 28.8, 24.5, 21.3; IR (neat) 2923, 2853, 1745, 1667, 1610, 1579, 1502, 1462, 1369, 1325, 1259, 1209, 1135, 1111, 1067, 1032 cm⁻¹; HRMS (ESI) *m/z* calcd for $C_{23}H_{28}O_6Na [M+Na]^+ 423.1784$, found 423.1768.

Cyclization of 14 to form 15.

To a suspension of macrolactone substrate 14 (32 mg, 0.08 mmol), 2,6dichloropypyridine (48 mg, 0.32 mmol), 4 Å molecular sieves (65 mg) in anhydrous DCE (0.85 mL) was added DDQ (37 mg, 0.16 mmol) in one portion at rt. The mixture was stirred at rt for 1 h, and then was quenched by the addition of 10 drops of NEt₃. The mixture was loaded directly onto a short plug of silica gel and eluted with dichloromethane and EtOAc. The filtrate

was concentrated and purified by flash chromatography (hexane:EtOAc, 8:1 to 3:1) to give the desired product (23 mg, 81%). **15**: ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, 1H, *J* = 8.8 Hz), 6.80 (dd, 1H, *J* = 2.8, 8.4 Hz), 6.71 (d, 1H, *J* = 2.8 Hz), 5.43 (dd, 1H, *J* = 2.8, 11.6 Hz), (app d, 1H, *J* = 6.8 Hz), 4.83 (dd, 1H, *J* = 2.0, 15.2 Hz), 4.72 (dd, 1H, *J* = 3.2, 15.6 Hz), 3.80 (s, 3H), 2.92 (dd, 1H, *J* = 7.2, 14.4 Hz), 2.73-2.52 (m, 5H), 2.39 (t, 2H, *J* = 6.4 Hz), 1.81-1.75 (m, 1H), 1.73-1.57 (m, 3H), 1.53-1.46 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 204.9, 172.7, 159.7, 142.0, 130.0, 127.2, 115.0, 111.8, 83.2, 82.5, 70.7, 65.7, 55.4, 51.6, 49.1, 46.6, 33.7, 33.2, 30.7, 28.6, 24.4; IR (neat) 2934, 2861, 1739, 1610, 1580, 1503, 1458, 1371, 1333, 1266, 1229, 1158, 1113, 1056, 1023, 984, 947, 816, 731 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₁H₂₄O₅Na [M+Na]⁺ 379.1521, found 379.1543.

Macrolactone substrate 16

¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, 1H, *J* = 7.6 Hz), 6.73-6.71 (m, 2H), 4.88 (d, 2H, *J* = 3.6 Hz), 4.79 (d, 1H, *J* = 10.8 Hz), 4.76 (s, 2H), 4.36 (d, 1H, *J* = 10.8 Hz), 4.38-4.35 (m, 1H), 3.80 (s, 3H), 2.70 (dd, 2H, *J* = 7.2, 13.2 Hz), 2.64 (dd, 2H, *J* = 6.8, 10.0 Hz), 2.38 (t, 2H, 6.4 Hz), 2.06 (s, 3H), 1.72-1.68 (m, 2H), 1.62-1.58 (m, 2H), 1.38-1.26 (m, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 173.4, 169.3, 159.5, 151.8, 143.4, 130.9, 127.7, 115.1,

111.1, 104.9, 85.2, 80.7, 68.4, 67.1, 55.4, 52.4, 40.2, 33.9, 33.2, 31.5, 29.2, 28.2, 27.8, 27.6, 27.5, 27.2, 24.5, 21.3; IR (neat) 2928, 2856, 1753, 1668, 1611, 1579, 1503, 1461, 1370, 1342, 1207, 1114, 1077, 1023, 875, 818 cm⁻¹; HRMS (ESI) *m/z* calcd for $C_{28}H_{38}O_6Na [M+Na]^+$ 493.2566, found 493.2559.

0 0 0 0 0 0 0 0 17

Cyclization of 16 to form 17.

To a suspension of macrolactone substrate **16** (50 mg, 0.11 mmol), 2,6dichloropypyridine (63 mg, 0.42 mmol) and 4 Å molecular sieves (100 mg) in anhydrous DCE (1.3 mL) was added DDQ (48 mg, 0.21 mmol) in one portion at rt. The mixture was stirred at rt for 40 min, and then was quenched by the addition of 10 drops of NEt₃. The mixture was loaded directly onto a

short plug of silica gel and eluted with dichloromethane and EtOAc. The filtrate was concentrated and purified by flash chromatography (hexane:EtOAc, 15:1 to 5:1) to give the desired product (30 mg, *trans/cis* = 6/1, 65% total yield; *cis* product has not been separated out from its *trans* isomer. *Trans/cis* ratio is based on integrating characteristic signals in the ¹H NMR spectrum.). **17**: ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, 1H, *J* = 8.4 Hz), 6.80 (dd, 1H, *J* = 2.8, 8.4 Hz), 6.74 (d, 1H, *J* = 2.8 Hz), 5.47 (dd, 1H, *J* = 2.8, 11.2 Hz), 5.25 (d, 1H, *J* = 6.0 Hz), 4.80 (dd, 1H, *J* = 1.2, 16.0 Hz), 4.70 (dd, 1H, *J* = 2.0, 16.0 Hz), 3.81 (s, 3H), 2.94 (dd, 1H, *J* = 7.2, 14.0 Hz), 2.77-2.70 (m, 2H), 2.63-2.55 (m, 3H), 2.39 (t, 2H, *J* = 6.8 Hz), 1.72-1.58 (m, 4H), 1.41-1.26 (m, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 204.9, 173.4, 159.6, 142.5, 129.8, 127.7, 115.3, 111.8, 83.6, 83.4, 70.6, 65.5, 55.5, 52.3, 48.9, 46.9, 33.7, 33.2, 31.8, 29.7, 28.3, 27.5, 27.2, 26.9, 26.2, 24.1; IR (neat) 2928, 2855, 1739, 1610, 1579, 1504, 1461, 1335, 1230, 1160, 1052, 946, 816, 732, 705 cm⁻¹; C₂₆H₃₅O₅ [M]⁺ 427.2484, found 427.2493.

Reagents and conditions

a)⁶ NaClO₂, NaH₂PO₄, 2-methyl-2-butene, ^fBuOH, H₂O, -10 °C. b) K₂CO₃, MeOH. c) Mel, K₂CO₃, acetone. d) Cl₃CCN, DBU, CH₂Cl₂, 29% (4 steps). e) 4,8-Nonadiyne-1,6-diol, TMSOTf, C₆H₁₂, 0 °C, 18% *Z*, 21% *E*. f) LiOH, THF, MeOH, H₂O. g) Bu₄NF, THF. h)⁷ 2-Chloro-1-methyl-pyridinium iodide, Et₃N, CH₃CN, reflux. i) HOAc, [Ru(*p*-cymene)Cl₂]₂, 1-decyne, Na₂CO₃, PhMe, 80 °C, 11% **18**, 21% **20** (four steps).

Scheme 5. Synthesis of 18 and 20.

Macrolactone substrate 18.

¹H NMR (400 MHz, CDCl₃) δ 5.44 (td, 1H, *J* = 1.2, 7.6 Hz), 4.88 (s, 1H), 4.85 (d, 1H, *J* = 1.6 Hz), 4.30-4.17 (m, 4H), 3.95 (dd, 1H, *J* = 7.2, 10.4 Hz), 2.62 (app dd, 2H, *J* = 4.8, 6.4 Hz), 2.59-2.49 (m, 3H), 2.47-2.43 (m, 2H), 2.42-2.35 (m, 1H), 2.14 (s, 3H), 1.90-1.84 (m, 2H), 1.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.3, 169.3, 152.2, 142.6, 121.8, 104.3, 86.4, 79.3, 66.1, 64.6, 64.0, 26.8, 23.4, 21.3, 17.2; IB (next) 2024, 2856, 1755, 1733, 1667, 1433, 1360

40.4, 34.7, 28.2, 26.8, 23.4, 21.3, 17.2; IR (neat) 2924, 2856, 1755, 1733, 1667, 1433, 1369,

1338, 1249, 1203, 1065, 1019, 969, 879 cm⁻¹; HRMS (ESI) m/z calcd for C₁₈H₂₄O₅Na [M+Na]⁺ 343.1521, found 343.1566.

Macrolactone substrate 20.

¹H NMR (400 MHz, CDCl₃) δ 5.55 (td, 1H, J = 1.2, 6.4 Hz), 4.85 (s, 1H), 4.84 (d, 1H, J = 1.6 Hz), 4.37 (dd, 1H, J = 6.0, 14.0 Hz), 4.27-4.12 (m, 3H), 4.02 (dd, 1H, J = 6.0, 14.0 Hz), 2.62-2.56 (m, 2H), 2.53-2.47 (m, 2H), 2.46-2.42 (m, 2H), 2.38-2.35 (m, 2H), 2.14 (s, 3H), 1.79 (p, 2H, J = 6.0 Hz), 1.66 (s, 3H); ¹³C NMR

(100 MHz, CDCl₃) δ 173.6, 169.3, 152.2, 134.8, 124.0, 104.4, 84.1, 81.9, 67.8, 67.5, 62.3, 40.8, 35.1, 32.5, 25.0, 21.3, 16.1, 15.4; IR (neat) 2924, 2856, 1734, 1669, 1574, 1433, 1368, 1343, 1206, 1069, 1022, 969, 882 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₈H₂₄O₅Na [M+Na]⁺ 343.1521, found 343.1515.

Cyclization reaction of 18 to form 19.

To a suspension of macrolactone substrate **18** (36 mg, 0.11 mmol), 2,6dichloropyridine (100 mg, 0.674 mmol), LiClO₄ (3.0 mg, 0.028 mmol), 4 Å molecular sieves (72 mg) in anhydrous DCE (1.4 mL) was added DDQ (76 mg, 0.34 mmol) in one portion at rt. The mixture was stirred at rt for 23 hs, and then 26 mg DDQ (1.0 eq.) was added. The resulting mixture was stirred for 3 h at rt,

and then was quenched with NEt₃. The black mixture was loaded directly onto a short plug of silica gel and eluted with dichloromethane and EtOAc. The filtrate was concentrated and purified by flash chromatography (hexane:EtOAc, 10:1 to 6:1) to give the desired *trans*-product (17 mg, 54%). ¹H NMR (400 MHz, CDCl₃) δ 5.31 (dd, 1H, J = 1.2, 8.8 Hz), 5.08 (app dd, 1H, J = 1.2, 7.6 Hz), 4.95 (td, 1H, J = 5.6, 8.8 Hz), 4.28-4.23 (m, 1H), 4.14-4.09 (m, 1H), 2.78 (dd, 1H, J = 7.2, 14.0 Hz), 2.57-2.32 (m, 9H), 1.90-1.83 (m, 2H), 1.80 (d, 3H, J = 1.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 205.4, 172.8, 142.7, 125.4, 89.1, 77.8, 68.5, 65.9, 64.4, 48.2, 47.0, 34.7, 29.1, 26.2, 23.5, 16.9; IR (neat) 2922, 2852, 1731, 1436, 1380, 1332, 1249, 1154, 1106, 1051, 937, 893 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₆H₂₀O₄Na [M+Na]⁺ 299.1259, found 299.1248.

Cyclization reaction of 20 to form 19.

To a suspension of macrolactone substrate **20** (20 mg, 0.062 mmol), 2,6dichloropypyridine (55 mg, 0.37 mmol), LiClO₄ (1.7 mg, 0.016 mmol), 4 Å molecular sieves (40 mg) in anhydrous DCE (0.8 mL) was added DDQ (42 mg, 0.19 mmol) in one portion at rt. The mixture was stirred at rt for 43 hours and then was guenched with NEt₃. The black mixture was loaded directly onto a

short plug of silica gel and eluted with dichloromethane and EtOAc. The filtrate was concentrated and purified by flash chromatography to give the *trans*-product **19** (6.0 mg, 35%).

a) (3-Methyloxetan-3-yl)methanol⁸, DCC, DMAP, CH₂Cl₂. b) BF₃•OEt₂, CH₂Cl₂, 0 °C, 71% (two steps). c) ^{*n*}BuLi, THF, –78 °C, then (CH₂O)_n, 0 °C, 85%. d) HOAc, H₂O, THF. e) K₂CO₃, MeOH, 85% (two steps). f)⁹ Dimethyl(thiophen-2-yl)silane, H₂PtCl₆, THF, 50 °C, 45% (+ 42% regioisomer). g)¹⁰ Phl, Bu₄NF, Pd₂(dba)₃, THF, 76%. h) Cl₃CCN, DBU, CH₂Cl₂, 92%. i) TMSOTf, 4,8-Nonadiyne-1,6-diol, C₆H₁₂, 0 °C, 41%. j) Bu₄NF, THF, 78%. k) LiOH, THF, MeOH, H₂O. I) 2-Chloro-1-methylpyridinium iodide, Et₃N, CH₃CN, reflux 46% (two steps). m) HOAc, 1-decyne, [Ru(*p*-cymene)Cl₂]₂, Fur₃P, Na₂CO₃, PhMe, 80 °C, 53%.

Scheme 6. Synthesis of 21.

Macrolactone substrate 21.

¹H NMR (400 MHz, CDCl₃) δ 7.39-7.25 (m, 5H), 5.82 (t, 1H, *J* = 6.4 Hz), 4.90 (s, 1H), 4.87 (d, 1H, *J* = 1.6 Hz), 4.39 (dd, 1H, *J* = 6.8 12.0 Hz), 4.35-4.28 (m, 3H), 4.18 (dd, 1H, *J* = 6.8, 12.0 Hz), 2.68-2.61 (m, 4H), 2.59-2.43 (m, 2H), 2.40-2.28 (m, 2H), 2.13 (s, 3H), 1.96-1.84 (m, 2H), 1.81-1.64 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 174.2, 169.3, 152.1, 143.4, 141.6,

128.6, 127.6, 126.7, 125.2, 104.6, 85.4, 80.0, 66.2, 64.9, 63.5, 40.3, 33.5, 28.8, 25.8, 24.1, 21.3, 16.2; IR (neat) 2929, 1755, 1730, 1667, 1493, 1433, 1368, 1245, 1204, 1080, 1020, 964, 917, 880, 761 cm⁻¹; HRMS (ESI) m/z calcd for C₂₄H₂₈O₅Na [M+Na]⁺ 419.1834, found 419.1841.

Cyclization reaction of 21 to form 22.

To a suspension of macrolactone **21** (38 mg, 0.096 mmol), 2,6dichloropypyridine (57 mg, 0.38 mmol), LiClO₄ (3 mg, 0.03 mmol) and 4 Å molecular sieves (76 mg) in anhydrous DCE (1 mL) was added DDQ (44 mg, 0.19 mmol) in one portion at rt. The mixture was stirred at rt for 15 min, and then was quenched by with NEt₃. The mixture was loaded directly onto a short

plug of silica gel and eluted with dichloromethane and EtOAc. The filtrate was concentrated and purified by flash chromatography (hexane:EtOAc, 8:1 to 4:1) to give the desired product **22** (24 mg, 72%). **22**: ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.28 (m, 5H), 5.73 (d, 1H, *J* = 8.4 Hz), 5.14-5.10 (m, 2H), 4.37-4.24 (m, 2H), 2.83 (dd, 1H, *J* =7.2, 14.0 Hz), 2.63 (td, 2H, *J* = 4.0, 7.6 Hz), 2.56-2.37 (m, 6H), 2.32-2.25 (m, 1H), 1.93-1.81 (m, 2H), 1.80-1.68 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 204.9, 173.6, 144.6, 141.2, 128.7, 128.0, 127.3, 126.9, 88.5, 78.3, 69.2, 65.9, 63.4, 48.2, 47.2, 33.9, 29.5, 25.8, 23.9, 16.1; IR (neat) 2926, 1726, 1493, 1444, 1358, 1334, 1246, 1227, 1157, 1112, 1047, 937, 887, 764 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₂H₂₄O₄Na [M+Na]⁺ 375.1572, found 375.1584.

a) TBSCI, imidazole, CH₂CI₂. b) ⁿBuLi, THF, -78 °C, then (CH₂O)_n, 0 °C, 93% (two steps). c) CBr₄, Ph₃P, CH₂Cl₂, MeOH, 0 °C. d) 5-Heptyne-1,3-diol 1-TBDPS ether, NaH, Bu₄NI, THF, 66%. e) PPTs, MeOH, CH₂Cl₂. f) Dess-Martin periodinane, NaHCO₃, CH₂Cl₂, 55% (two steps). g) NaClO₂, NaH₂PO₄, 2-methyl-2-butene, ^tBuOH, H₂O, -10 °C. h) Bu₄NF, THF. i) 2-Chloro-1-methylpyridinium iodide, Et_aN, CH₃CN, reflux. j) HOAc, [Ru(p-cymene)Cl₂]₂, 1-decyne, Na₂CO₃, PhMe, 80 °C, 35% (four steps).

Scheme 7. Synthesis of 23. Note: Compounds 25 and 27 were prepared through similar sequences.

Macrolactone substrate 23.

23

¹H NMR (400 MHz, CDCl₃) δ 4.85 (d, 1H, J = 1.2 Hz), 4.83 (s, 1H), 4.30-4.19 (m. 2H), 4.14-4.05 (m, 3H), 2.58 (ddd, 1H, J = 2.0, 7.6, 14.4 Hz), 2.47 (t, 2H, J = 4.8 Hz), 2.37 (app dddd, 1H, J = 2.8, 5.6, 8.4, 17.2 Hz), 2.22-2.17 (m, 1H), 2.17 (s, 3H), 2.16-2.00 (m, 2H), 1.90 (ddt, 1H, J = 3.2, 12.0, 14.8 Hz), 1.83-1.76 (m, 1H), 1.74-1.67 (m, 2H), 1.51-1.44 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 173.8, 169.2, 153.0, 104.3, 86.0, 77.1, 69.6, 60.5, 56.8, 37.8, 35.0, 33.8, 27.7, 23.5, 21.3, 17.9; IR (neat) 2926, 2854, 1755, 1731, 1665, 1434, 1369, 1259, 1200, 1152, 1053 cm⁻¹; HRMS (ESI) *m/z* calcd for $C_{16}H_{22}O_5Na [M+Na]^+$ 317.1365, found 317.1365.

Cyclization of 23 to form 24.

To a suspension of macrolactone substrate 23 (177 mg, 0.60 mmol, 23/regioisomer = 8/1), 2,6-dichloropypyridine (888 mg, 6.0 mmol), LiClO₄ (51 mg, 0.48 mmol), 4 Å molecular sieves (355 mg) in anhydrous DCE (7 mL) was added DDQ (817 mg, 3.60 mmol) in one portion at rt. The mixture was stirred at 50 °C

for 41.5 h, and then 272 mg DDQ (1.20 mmol) and 19 mg LiClO₄ was added. The resulting mixture was stirred at the same temperature for 20.5 h, and then was guenched by the addition of 1.5 mL NEt₃. The mixture was loaded directly onto a short plug of silica gel and eluted with dichloromethane and EtOAc. The filtrate was concentrated and purified by flash chromatography (hexane:EtOAc, 10:1 to 4:1) to give the desired product (49 mg, 36%) as colorless crystal. ¹H NMR (400 MHz, CDCl₃) & 5.09-5.07 (m, 1H), 4.62-4.55 (m, 1H), 4.39-4.33 (m, 1H), 4.06 (dt, 1H, J = 4.0, 10.8 Hz), 2.74 (dd, 1H, J = 8.0, 14.8 Hz), 2.49 (ddd, 1H, J = 3.2, 6.8, 14.0 Hz), 2.45 (dt, 1H, J = 1.2, 14.4 Hz), 2.42-2.37 (m, 2H), 2.33-2.18 (m, 2H), 2.04 (ddt, 1H, J = 2.0, 11.2)16.8 Hz), 1.96-1.79 (m, 4H), 1.76-1.66 (m, 1H), 1.51-1.40 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) & 205.4, 173.2, 89.0, 77.8, 67.2, 65.7, 60.0, 48.4, 46.2, 35.2, 34.4, 28.1, 24.7, 18.8; IR (neat) 2921, 2851, 1724, 1704, 1334, 1258, 1230, 1152, 1109, 1057, 1026, 860, 780 cm^{-1} ; HRMS (ESI) m/z calcd for C₁₄H₁₈O₄Na [M+Na]⁺ 273.1103, found 273.1097.

Macrolactone substrate 25.

¹H NMR (400 MHz, CDCl₃) δ 4.80 (s, 2H), 4.34 (ddd, 1H, J = 3.6, 5.2, 11.2 Hz), 4.28 (dt, 1H, J = 2.0, 16.4 Hz), 4.12 (td, 1H, J = 2.8, 10.4 Hz), 4.04 (dt, 1H, J = 2.0, 16.4 Hz), 3.84 (p, 1H, J = 6.0 Hz), 2.48-2.44 (m, 2H), 2.43-2.31 (m, 4H), 2.16 (s, 3H), 2.02-1.84 (m. 3H), 1.83-1.73 (m, 2H), 1.61-1.52 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) & 173.4, 169.3, 153.4, 103.9, 84.8, 78.8, 75.0, 64.1,

57.5, 38.2, 33.7, 31.1, 23.7, 21.9, 21.3, 18.4; IR (neat) 2929, 2855, 2032, 1962, 1754, 1732, 1666, 1574, 1436, 1369, 1201, 1159, 1069, 1019, 881 cm⁻¹; HRMS (ESI) *m/z* calcd for $C_{16}H_{22}O_5Na$ [M+Na]⁺ 317.1365, found 317.1325.

Cyclization of 25 to form 26.

To a suspension of macrolactone substrate **25** (36 mg, 0.12 mmol), 2,6dichloropypyridine (72 mg, 0.49 mmol), LiClO₄ (3.9 mg, 0.037 mmol), 4 Å molecular sieves (72 mg) in anhydrous DCE (1.5 mL) was added DDQ (56 mg, 0.25 mmol) in one portion at rt. The mixture was stirred at rt for 24 h, and then another 56 mg DDQ was added. The resulting mixture was stirred for 53 h at 40

°C, then was quenched by the addition of NEt₃. The black mixture was loaded directly onto a short plug of silica gel and eluted with dichloromethane and EtOAc. The filtrate was concentrated and purified by flash chromatography to give the desired *trans* product **26** (11 mg, 36%). **26**: ¹H NMR (400 MHz, CDCl₃) δ 5.06 (app d, 1H, J = 7.2 Hz), 4.57 (ddd, 1H, J = 3.2, 4.8, 11.6 Hz), 4.42 (ddt, 1H, J = 2.4, 10.4, 11.6 Hz), 3.95 (td, 1H, J = 1.6, 11.2 Hz), 2.73 (dd, 1H, J = 7.6, 14.4 Hz), 2.52 (ddd, 1H, J = 2.8, 8.8, 16.8 Hz), 2.14 (app d, 2H, J = 14.4 Hz), 2.38-2.17 (m, 4H), 2.06-1.97 (m, 1H), 1.92-1.77 (m, 2H), 1.65-1.57 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 205.7, 173.8, 87.6, 78.6, 70.9, 67.0, 65.6, 49.2, 47.0, 35.5, 33.0, 23.3, 21.1, 18.8; IR (neat) 2922, 2852, 1727, 1554, 1452, 1390, 1341, 1230, 1196, 1159, 1110, 1052, 967, 910 cm⁻¹; HRMS (ESI) m/z calcd for C₁₄H₁₉O₄ [M]⁺ 251.1283, found 251.1314.

Macrolactone substrate 27.

26

¹H NMR (400 MHz, CDCl₃) δ 4.84 (s, 2H), 4.30-4.14 (m, 4H), 4.04 (p, 1H, J = 6.0 Hz), 2.47 (d, 2H, J = 5.6 Hz), 2.34 (t, 2H, J = 6.8 Hz), 2.29-2.28 (m, 2H), 2.14 (s, 3H), 1.91-1.82 (m, 2H), 1.78-1.65 (m, 2H), 1.57-149 (m, 4H), 1.44-1.33 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 174.1, 169.2, 152.8, 104.5, 86.9, 76.4, 70.7, 60.8, 55.9, 36.6, 33.9, 33.3, 27.4, 26.9, 26.5, 26.0, 24.0, 21.3, 18.2; IR

(neat) 2930, 2857, 1756, 1733, 1666, 1435, 1369, 1199, 1065, 1022, 965, 878 cm⁻¹; HRMS (ESI) m/z calcd for C₁₉H₂₉O₅ [M]⁺ 337.2015, found 337.1962.

Cy To o dia m

Cyclization of 27 to form 28.

To a suspension of macrolactone substrate **27** (30 mg, 0.090 mmol), 2,6dichloropypyridine (53 mg, 0.36 mmol), LiClO₄ (2.8 mg, 0.027 mmol), 4 Å molecular sieves (60 mg) in anhydrous DCE (1 mL) was added DDQ (81 mg, 0.36 mmol) in one portion at rt. The mixture was stirred at 40 °C for 46 h, then

²⁸ 0.36 mmol) in one portion at rt. The mixture was stirred at 40 °C for 46 h, then was quenched by adding 3 drops of NEt₃. The mixture was loaded directly onto a short plug of silica gel and eluted with dichloromethane and EtOAc. The filtrate was concentrated and purified by flash chromatography (hexane:EtOAc, 10:1 to 4:1) to give both *trans*- and *cis*-products (12 mg total mass, *trans/cis* = 2/1, 46% total yield). **28**: ¹H NMR (400 MHz, CDCl₃) δ 5.11 (dd, 1H, J = 1.6, 6.8), 4.48 (app ddt, 1H, J = 2.4, 8.8, 13.6 Hz), 4.26-4.17 (m, 2H), 2.80 (dd, 1H, J = 6.8,13.6 Hz), 2.49-2.43 (m, 2H), 2.34 (t, 2H, J = 6.8 Hz), 2.32-2.29 (m, 2H), 2.21 (dd, 1H, J = 7.2,14.0 Hz), 2.04-1.96 (m, 1H), 1.90-1.82 (m, 1H), 1.71 (p, 2H, J = 6.8 Hz), 1.51-1.44 (m, 4H), 1.41-1.28 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 205.0, 174.0, 90.0, 77.1, 68.3, 66.0, 59.7, 47.9, 47.8, 35.7, 33.6, 27.8, 26.8, 26.7, 26.0, 24.4, 18.0; IR (neat) 2929, 2857, 1729, 1459, 1337, 1226, 1187, 1147, 1097, 1053, 980, 932, 863 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₇H₂₅O₄ [M]⁺ 293.1753, found 292.1720. **28'**: ¹H NMR (400 MHz, CDCl₃) δ 4.38-4.21 (m, 3H), 3.78 (ddt, 1H, *J* = 2.4, 9.2, 11.2 Hz), 2.63-2.52 (m, 2H), 2.46-2.38 (m, 2H), 2.36-2.24 (m, 4H), 2.13-2.04 (m, 1H), 1.85-1.68 (m, 3H), 1.60-1.34 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) δ 205.3, 174.4, 86.7, 78.8, 67.5, 62.1, 48.1, 47.7, 35.2, 33.7, 26.4, 25.7, 24.8, 24.5, 22.5, 17.9; HRMS (ESI) *m*/*z* calcd for C₁₇H₂₄O₄ [M]⁺ 292.1675, found 292.1700

Reagents and conditions a) ^{*n*}Bul i THE –78 °C then (CH₂C

a) ^{*n*}BuLi, THF, –78 °C, then (CH₂O)_n, rt. b) SO₃•Py, DMSO, Et₃N, CH₂Cl₂, 33% (two steps). c)¹¹ 5-Hexyne-1,3-diol bis-trimethylsilyl ether, TMSOTf, CH₂Cl₂, –78 °C, 30%. d)¹² Me₃Al, PhMe, 0 °C, 68%. e) Dess-Martin periodinane, NaHCO₃, CH₂Cl₂, 83%. f) NaClO₂, NaH₂PO₄, 2-methyl-2-butene, ^{*t*}BuOH, H₂O, –10 °C. g) DDQ, CH₂Cl₂, H₂O. h) 2-Chloro-1-methylpyridinium iodide, Et₃N, CH₃CN, reflux. i) HOAc, 1-decyne, Na₂CO₃, [Ru(*p*-cymene)Cl₂]₂, Fur₃P, PhMe, 80 °C, 29% (four steps).

Scheme 8. Synthesis of 29. Note: Compound 31 was synthesized through a very similar sequence.

Macrolactone substrate 29.

¹H NMR (400 MHz, CDCl₃) δ 4.89 (d, 1H, J = 1.2 Hz), 4.85 (d, 1H, J = 1.2 Hz), 4.64-4.58 (m, 1H), 4.44 (ddt, 1H, J = 2.0, 6.4, 12.8 Hz), 4.25 (ddd, 1H, J = 2.8, 8.0, 11.2 Hz), 4.12-4.07 (m, 1H), 2.71 (dd, 1H, J = 4.8, 14.0 Hz), 2.50 (d, 2H, J = 6.4 Hz), 2.41 (dd, 1H, J = 6.8, 14.0 Hz), 2.30 (td, 2H, J = 1.6, 6.0 Hz), 2.15 (s, 3H), 1.80-1.45 (m, 8H), 1.36 (d, 3H, J = 6.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ

171.8, 169.2, 152.8, 104.2, 87.2, 80.1, 69.8, 65.6, 62.5, 40.0, 39.8, 27.4, 26.8, 26.7, 26.0, 22.6, 21.4, 18.3; IR (neat) 2933, 2859, 1756, 1733, 1668, 1434, 1370, 1332, 1194, 1091, 1050, 1021, 877 cm⁻¹; HRMS (ESI) *m/z* calcd for $C_{18}H_{27}O_5$ [M]⁺ 323.1858, found 323.1856.

Cyclization of 29 to form 30.

To a suspension of macrolactone substrate **29** (36 mg, 0.11 mmol), 2,6dichloropypyridine (66 mg, 0.45 mmol), LiClO₄ (3.6 mg, 0.034 mmol), and 4 Å molecular sieves (72 mg) in anhydrous DCE (1.4 mL) was added DDQ (51 mg,

³⁰ 0.22 mmol) in one portion at rt. The mixture was stirred at rt for 10 h, then was warmed to 30 °C. 25 mg (0.11 mmol) DDQ was added after the reaction was stirred at 30 °C for 43 h. The reaction was quenched with 3 drops of NEt₃. The black mixture was loaded directly onto a short plug of silica gel and eluted with dichloromethane and EtOAc. The filtrate was concentrated and purified by flash chromatography (hexane:EtOAc, 10:1 to 8:1) to give the desired *trans*-product **30** (12.4 mg, 40%). **30**: ¹H NMR (400 MHz, CDCl₃) δ 4.80-4.73 (m, 1H), 4.21-4.07 (m, 2H), 2.57 (d, 1H, *J* = 1.6 Hz), 2.56 (s, 1H), 2.52 (dd, 1H, *J* = 2.0, 14.0 Hz), 2.43 (d, 1H, *J* = 13.6 Hz), 2.39 (dt, 1H, *J* = 2.0, 14.0 Hz), 2.27-2.20 (m, 3H), 1.84-1.75 (m, 1H), 1.68-1.62 (m, 3H), 1.59 (s, 3H), 1.56-1.39 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 205.2, 170.3, 87.3, 80.7, 72.6, 70.2, 64.5, 53.6, 47.1, 42.7, 30.6, 27.6, 26.7, 26.3, 24.8, 17.5; IR (neat) 2920, 2858, 1731, 1468, 1449, 1426, 1375, 1316, 1275, 1259, 1204, 1162, 1129, 1100, 1071, 1029, 968 cm⁻¹; HRMS (EI) *m/z* calcd for C₁₆H₂₂O₄ [M]⁺ 278.1518, found 278.1505.

Macrolactone substrate 31.

¹H NMR (400 MHz, CDCl₃) δ 4.88 (s, 1H), 4.83 (d, 1H, J = 1.2 Hz), 4.50 (ddt, 1H, J = 2.0, 6.4, 12.8 Hz), 4.35-4.26 (m, 2H), 4.16 (td, 1H, J = 2.4, 11.6 Hz), 2.67 (dd, 1H, J = 3.2, 15.2 Hz), 2.43-2.37 (m, 3H), 2.30-2.18 (m, 3H), 2.14 (s, 3H), 1.71-1.57 (m, 4H), 1.54-1.46 (m, 4H), 1.37 (d, 3H, J = 6.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 173.7, 169.3, 153.4, 103.8, 86.9, 80.3, 69.1, 61.9, 60.8,

38.1, 34.4, 31.4, 27.1, 26.8, 24.3, 22.8, 21.4, 18.2; IR (neat) 2933, 2862, 1754, 1731, 1667, 1436, 1369, 1332, 1202, 1085, 1021, 966, 874 cm⁻¹; HRMS (ESI) *m/z* calcd for $C_{18}H_{26}O_5Na [M+Na]^+$ 345.1678, found 345.1668.

Cyclization of 31 to form 32.

To a suspension of macrolactone substrate **31** (40 mg, 0.12 mmol), 2,6dichloropypyridine (73 mg, 0.50 mmol), LiClO₄ (4.0 mg, 0.037 mmol), and 4 Å molecular sieves (80 mg) in anhydrous DCE (1.5 mL) was added DDQ (56 mg, 0.25 mmol) in one portion at rt. The mixture was stirred at rt for 8 h, and then warmed to 30 °C. 27 mg (0.12 mmol) DDQ was added after the reaction was

stirred at 30 °C for 26 h. The resulting mixture was stirred for 14 h at 30 °C, and then quenched with NEt₃. The black mixture was loaded directly onto a short plug of silica gel and eluted with dichloromethane and EtOAc. The filtrate was concentrated and purified by flash chromatography to give the desired *trans*-product **32** (13.4 mg, 39%). **32**: ¹H NMR (400 MHz, CDCl₃) δ 4.50-4.37 (m, 2H), 4.05 (dt, 1H, J = 4.0, 11.2 Hz), 2.53 (dd, 1H, J = 2.0, 14.0 Hz), 2.48-2.36 (m, 3H), 2.36-2.25 (m. 2H), 2.24-2.20 (m, 1H), 2.18-2.12 (m, 1H), 1.93-1.88 (m, 2H), 1.72-1.61 (m, 2H), 1.58 (s, 1H), 1.56-1.41 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 205.8, 173.9, 87.5, 80.7, 72.4, 68.3, 60.3, 54.0, 47.5, 34.9, 34.7, 30.2, 27.2, 26.8, 24.8, 18.1; IR (neat) 2928, 2859, 1728, 1441, 1357, 1303, 1254, 1166, 1142, 1085, 1033, 1001, 865, 784 cm⁻¹; HRMS (EI) *m/z* calcd for C₁₆H₂₃O₄ [M]⁺ 279.1596, found 279.1582.

Reduction of macrolactone 13 to form 33.¹³

To a solution of macrolactone **13** (14 mg, 0.044 mmol) in dry DCM (0.1 mL) was added HSi(OEt)₃ (9.7 μ L, 0.053 mmol) under argon atmosphere. The resulting solution was cooled to 0 °C and added [Cp^{*}Ru(NCCH₃)₃]PF₆ (cat.). Then the reaction was warmed to rt and stirred at rt for 30 min then was diluted with 2 mL dry Et₂O. The resulting mixture was filtered through a plug

of florisil (2 cm), washed with 2 ml dry Et₂O and concentrated *in vacuo*. The residue was redissolved in 0.3 mL dry THF. Under argon atmosphere, CuI (1 mg, cat.) was added followed by Bu₄NF (84 μ L, 0.084 mmol) at rt. The resulting mixture was stirred at rt for 4 h, then was diluted with EtOAc, filtered through a pad of silica gel and concentrated in vacuum. The residue was purified by flash chromatography (hexane:EtOAc, 6:1 to 4:1) to give the desired alkene (7.2 mg, 49%) as yellowish oil. **33**: ¹H NMR (400 MHz, C₆D₆) δ 7.25 (d, 1H, *J* = 8.4 Hz), 6.68 (dd, 1H, *J* = 2.8, 8.4 Hz), 6.59 (d, 1H, *J* = 2.8 Hz), 5.92 (ddd, 1H, *J* = 0.8, 4.4, 16.0 Hz), 5.81 (dddd, 1H, *J* = 0.8, 4.4, 5.6, 16.4 Hz), 4.90 (dd, 1H, *J* = 2.4, 12.0 Hz), 4.44-4.43 (m, 1H), 4.36 (dd, 1H, *J* = 6.4, 12.4 Hz), 4.07 (ddt, 1H, *J* = 1.2, 4.4, 12.0 Hz), 2.61-2.48 (m, 2H), 2.43-2.29 (m, 4H), 2.04 (ddd, 1H, *J* = 3.2, 9.6, 12.4 Hz), 1.94 (ddd, 1H, *J* = 3.2, 9.6, 12.4 Hz), 1.62-1.58 (m, 1H), 1.50-1.43 (m, 1H); ¹³C NMR (100 MHz, C₆D₆) δ 205.0, 172.8, 160.4, 142.4, 135.7, 131.9, 130.6, 116.0, 112.3, 72.6, 67.6, 61.5, 55.1, 48.6, 43.5, 34.8, 32.1, 30.6, 29.2; IR (neat) 2923, 2852, 1730, 1611, 1579,

1504, 1459, 1375, 1264, 1235, 1156, 1133, 1101, 1042, 995, 954, 810 cm⁻¹; HRMS (EI) m/z calcd for C₁₉H₂₂O₅Na [M+Na]⁺ 353.1365, found 353.1374.

References

- 1. Lee, A. S.-Y.; Chu, S.-F.; Chang, Y.-T.; Wang, S.-H. Tetrahedron Lett. 2004, 45, 1551.
- 2. Rai, A. N.; Basu, A. Tetrahedron Lett. 2003, 44, 2267.
- 3. Goossen, L. J.; Paetzold, J.; Koley, D. Chem. Commun. 2003, 706.
- 4. Dunn, P. J.; Rees, C. W. J. Soc. Chem. Perkin Trans. 1, 1987, 1579.
- 5. Miyaura, N.; Ishiyama, T.; Sasaki, H.; Ishikawa, M.; Satoh, M.; Suzuki, A. J. Am. Chem. Soc. **1989**, *111*, 314.
- 6. Fillion, E.; Beingessner, R. L. J. Org. Chem. 2003, 68, 9485.
- a) Mukaiyama, T.; Usui, M.; Saigo, K. *Chem. Lett.* **1976**, 49; b) Sawamura, K.; Yoshida, K.; Suzuki, A.; Motozaki, T.; Kozawa, I.; Hayamizu, T.; Munakata, R.; Takao, K.; Tadano, K. *J. Org. Chem.* **2007**, *72*, 6143.
- 8. Zhdanko, A. G.; Nenajdenko, V. G. J. Org. Chem. 2009, 74, 884-887.
- 9. Commandeur, C.; Thorimbert, S.; Malacria, M. J. Org. Chem. 2003, 68, 5588.
- 10. Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1988, 53, 918-920.
- 11. Noyori, R.; Murata, S.; Suzuki, M. Tetrahedron, 1981, 37, 3899-3910.
- 12. Ishihara, K.; Hanaki, N.; Yamamoto, H. J. Am. Chem. Soc. 1993, 115, 10695-10704.
- 13. Trost, B. M.; Ball, Z. T.; Jöge, T. J. Am. Chem. Soc. 2002, 124, 7922-7923.

Crystal data (macrolactone 24)

Table 1. Crystal data and structure refine	ement for xhflor1.	
Empirical formula	C14 H18 O4	
Formula weight	250.28	
Temperature	203(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P c a 21	
Unit cell dimensions	a = 15.563(7) Å	a= 90°.
	b = 5.224(3) Å	b= 90°.
	c = 32.605(15) Å	$g = 90^{\circ}$.
Volume	2651(2) Å ³	
Z	8	
Density (calculated)	1.254 Mg/m ³	
Absorption coefficient	0.091 mm ⁻¹	
F(000)	1072	
Crystal size	0.36 x 0.20 x 0.05 mm ³	
Theta range for data collection	2.50 to 25.00°.	
Index ranges	-18<=h<=18, -6<=k<=6	, -38<=l<=38
Reflections collected	19056	
Independent reflections	2379 [R(int) = 0.0781]	
Completeness to theta = 25.00°	100.0 %	
Absorption correction	Semi-empirical from equ	uivalents
Max. and min. transmission	0.9955 and 0.9679	
Refinement method	Full-matrix least-squares	s on F ²

Data / restraints / parameters	2379 / 1 / 325
Goodness-of-fit on F ²	0.877
Final R indices [I>2sigma(I)]	R1 = 0.0426, WR2 = 0.1184
R indices (all data)	R1 = 0.0589, WR2 = 0.1303
Absolute structure parameter	?
Largest diff. peak and hole	0.147 and -0.155 e.Å ⁻³

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(\text{\AA}^2 x \ 10^3)$ for xhflor1. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U(eq)	
O(1)	1266(2)	353(6)	1782(1)	63(1)	
C(1)	1118(3)	2511(10)	2047(2)	69(1)	
O(2)	2874(2)	4255(5)	2224(1)	57(1)	
C(2)	1616(3)	2058(11)	2439(1)	75(1)	
C(3)	2577(2)	1819(8)	2367(1)	53(1)	
O(3)	615(2)	2394(5)	1271(1)	75(1)	
O(4)	4503(2)	-657(6)	2767(1)	71(1)	
C(4)	3071(3)	1048(9)	2751(1)	60(1)	
C(5)	4026(3)	1057(8)	2658(1)	52(1)	
C(6)	4349(3)	3340(8)	2429(1)	57(1)	
C(7)	3746(2)	4155(8)	2078(1)	53(1)	
C(8)	3807(2)	2455(8)	1720(1)	52(1)	
C(9)	3791(2)	1136(9)	1422(1)	59(1)	
C(10)	3681(3)	-346(12)	1045(2)	76(2)	
C(11)	2737(3)	-375(10)	920(1)	69(1)	
C(12)	2212(3)	-2279(8)	1164(2)	70(1)	
C(13)	1234(3)	-1708(9)	1151(2)	69(1)	
C(14)	1005(2)	565(8)	1393(2)	55(1)	
O(1')	3660(2)	-4764(6)	4433(1)	64(1)	
C(1')	3531(3)	-2670(9)	4154(2)	69(1)	
O(2')	5288(2)	-1023(5)	3962(1)	59(1)	
C(2')	4028(3)	-3290(12)	3772(2)	77(1)	
C(3')	4986(2)	-3518(8)	3847(1)	53(1)	
O(3')	3040(2)	-2561(6)	4940(1)	79(1)	
O(4')	6931(2)	-5947(6)	3422(1)	70(1)	
C(4')	5494(3)	-4461(9)	3478(1)	61(1)	
C(5')	6440(3)	-4303(8)	3544(1)	52(1)	
C(6')	6758(3)	-1962(8)	3762(1)	59(1)	
C(7')	6156(2)	-1086(7)	4103(1)	54(1)	
C(8')	6233(2)	-2642(8)	4481(1)	55(1)	
C(9')	6224(2)	-3906(10)	4784(1)	62(1)	
C(10')	6116(3)	-5298(12)	5166(2)	80(2)	

C(11')	5154(3)	-5288(10)	5297(1)	67(1)
C(12')	4622(3)	-7256(8)	5065(2)	73(1)
C(13')	3668(3)	-6683(9)	5082(2)	72(1)
C(14')	3408(3)	-4421(8)	4821(1)	56(1)

Table 3. Bond lengths [Å] and angles [°] for xhflor1.

O(1)-C(14)	1.337(6)
O(1)-C(1)	1.439(6)
C(1)-C(2)	1.512(7)
C(1)-H(1A)	0.9800
C(1)-H(1B)	0.9800
O(2)-C(3)	1.433(5)
O(2)-C(7)	1.438(5)
C(2)-C(3)	1.519(6)
C(2)-H(2A)	0.9800
C(2)-H(2B)	0.9800
C(3)-C(4)	1.524(6)
C(3)-H(3A)	0.9900
O(3)-C(14)	1.200(5)
O(4)-C(5)	1.216(5)
C(4)-C(5)	1.516(6)
C(4)-H(4A)	0.9800
C(4)-H(4B)	0.9800
C(5)-C(6)	1.495(6)
C(6)-C(7)	1.539(5)
C(6)-H(6A)	0.9800
C(6)-H(6B)	0.9800
C(7)-C(8)	1.470(6)
C(7)-H(7A)	0.9900
C(8)-C(9)	1.192(6)
C(9)-C(10)	1.465(8)
C(10)-C(11)	1.525(6)
C(10)-H(10A)	0.9800
C(10)-H(10B)	0.9800
C(11)-C(12)	1.514(7)
C(11)-H(11A)	0.9800
C(11)-H(11B)	0.9800
C(12)-C(13)	1.551(6)
C(12)-H(12A)	0.9800
C(12)-H(12B)	0.9800
C(13)-C(14)	1.469(7)
C(13)-H(13A)	0.9800
C(13)-H(13B)	0.9800
O(1')-C(14')	1.335(6)

O(1')-C(1')	1.437(6)
C(1')-C(2')	1.502(7)
C(1')-H(1'A)	0.9800
C(1')-H(1'B)	0.9800
O(2')-C(7')	1.428(5)
O(2')-C(3')	1.436(5)
C(2')-C(3')	1.515(6)
C(2')-H(2'A)	0.9800
C(2')-H(2'B)	0.9800
C(3')-C(4')	1.521(6)
C(3')-H(3'A)	0.9900
O(3')-C(14')	1.193(5)
O(4')-C(5')	1.217(5)
C(4')-C(5')	1,490(6)
C(4')-H(4'A)	0.9800
C(4')-H(4'B)	0.9800
C(5')-C(6')	1.499(6)
C(6')-C(7')	1 525(6)
C(6')-H(6'A)	0.9800
C(6')-H(6'B)	0.9800
C(7')-C(8')	1 481(6)
C(7')-H(7'A)	0 9900
C(8')-C(9')	1 187(6)
C(9')-C(10')	1.455(8)
C(10')- $C(11')$	1.557(6)
C(10')-H(10C)	0.9800
C(10')-H(10D)	0.9800
C(11')-C(12')	1.522(7)
C(11')-H(11C)	0.9800
C(11')-H(11D)	0.9800
C(12')-C(13')	1.516(6)
C(12')-H(12C)	0.9800
C(12')-H(12D)	0.9800
C(13')-C(14')	1.513(7)
C(13')-H(13C)	0.9800
C(13')-H(13D)	0.9800
C(14)-O(1)-C(1)	117.2(4)
O(1)-C(1)-C(2)	107.6(4)
O(1)-C(1)-H(1A)	110.2
C(2)-C(1)-H(1A)	110.2
O(1)-C(1)-H(1B)	110.2
C(2)-C(1)-H(1B)	110.2
H(1A)-C(1)-H(1B)	108.5
C(3)-O(2)-C(7)	112.4(3)
C(3)-C(2)-C(1)	112.8(4)
C(3)-C(2)-H(2A)	109.0

C(1)-C(2)-H(2A)	109.0
C(3)-C(2)-H(2B)	109.0
C(1)-C(2)-H(2B)	109.0
H(2A)-C(2)-H(2B)	107.8
O(2)-C(3)-C(2)	107.2(3)
O(2)-C(3)-C(4)	109.9(3)
C(2)-C(3)-C(4)	113.1(3)
O(2)-C(3)-H(3A)	108.8
C(2)-C(3)-H(3A)	108.8
C(4)-C(3)-H(3A)	108.8
C(5)-C(4)-C(3)	109 3(3)
C(5)-C(4)-H(4A)	109.8
C(3)-C(4)-H(4A)	109.8
C(5)-C(4)-H(4R)	109.0
C(3)-C(4)-H(4B)	109.8
$H(\Lambda \Lambda) - C(\Lambda) - H(\Lambda B)$	109.8
$\Omega(4) C(5) C(6)$	100.5 121 $0(4)$
O(4) - C(5) - C(0)	121.9(4) 122.5(4)
C(4) - C(3) - C(4)	122.3(4) 115.6(2)
C(0)-C(3)-C(4) C(5) $C(6)$ $C(7)$	113.0(3) 112.9(2)
C(5)-C(0)-C(7)	112.8(3)
$C(3)-C(0)-\Pi(0A)$	109.0
C(7)-C(0)-H(0A)	109.0
C(5)-C(6)-H(6B)	109.0
C(7)-C(6)-H(6B)	109.0
H(6A)-C(6)-H(6B)	107.8
O(2)-C(7)-C(8)	110.1(3)
O(2)-C(7)-C(6)	109.9(3)
C(8)-C(7)-C(6)	112.6(3)
O(2)-C(7)-H(7A)	108.0
C(8)-C(7)-H(7A)	108.0
C(6)-C(7)-H(7A)	108.0
C(9)-C(8)-C(7)	174.8(4)
C(8)-C(9)-C(10)	173.6(4)
C(9)-C(10)-C(11)	110.0(4)
C(9)-C(10)-H(10A)	109.7
C(11)-C(10)-H(10A)	109.7
C(9)-C(10)-H(10B)	109.7
C(11)-C(10)-H(10B)	109.7
H(10A)-C(10)-H(10B)	108.2
C(12)-C(11)-C(10)	112.7(4)
C(12)-C(11)-H(11A)	109.1
C(10)-C(11)-H(11A)	109.1
C(12)-C(11)-H(11B)	109.1
C(10)-C(11)-H(11B)	109.1
H(11A)-C(11)-H(11B)	107.8
C(11)-C(12)-C(13)	112.9(4)
$\langle \rangle \langle \rangle \rangle = \langle -\rangle$	- ()

C(11)-C(12)-H(12A)	109.0
C(13)-C(12)-H(12A)	109.0
C(11)-C(12)-H(12B)	109.0
C(13)-C(12)-H(12B)	109.0
H(12A)-C(12)-H(12B)	107.8
C(14)-C(13)-C(12)	112.3(3)
C(14)-C(13)-H(13A)	109.2
C(12)-C(13)-H(13A)	109.2
C(14)-C(13)-H(13B)	109.2
C(12)-C(13)-H(13B)	109.2
H(13A)-C(13)-H(13B)	107.9
O(3)-C(14)-O(1)	122.2(4)
O(3)-C(14)-C(13)	126.1(4)
O(1)-C(14)-C(13)	111.7(4)
C(14')-O(1')-C(1')	117.1(4)
O(1')-C(1')-C(2')	106.8(4)
O(1')-C(1')-H(1'A)	110.4
C(2')-C(1')-H(1'A)	110.4
O(1')-C(1')-H(1'B)	110.4
C(2')-C(1')-H(1'B)	110.4
H(1'A)-C(1')-H(1'B)	108.6
C(7')-O(2')-C(3')	111.9(3)
C(1')-C(2')-C(3')	112.9(4)
C(1')-C(2')-H(2'A)	109.0
C(3')-C(2')-H(2'A)	109.0
C(1')-C(2')-H(2'B)	109.0
C(3')-C(2')-H(2'B)	109.0
H(2'A)-C(2')-H(2'B)	107.8
O(2')-C(3')-C(2')	107.0(3)
O(2')-C(3')-C(4')	109.3(3)
C(2')-C(3')-C(4')	114.2(4)
O(2')-C(3')-H(3'A)	108.7
C(2')-C(3')-H(3'A)	108.7
C(4')-C(3')-H(3'A)	108.7
C(5')-C(4')-C(3')	112.4(4)
C(5')-C(4')-H(4'A)	109.1
C(3')-C(4')-H(4'A)	109.1
C(5')-C(4')-H(4'B)	109.1
C(3')-C(4')-H(4'B)	109.1
H(4'A)-C(4')-H(4'B)	107.8
O(4')-C(5')-C(4')	122.3(4)
O(4')-C(5')-C(6')	121.6(4)
C(4')-C(5')-C(6')	116.1(4)
C(5')-C(6')-C(7')	112.8(3)
C(5')-C(6')-H(6'A)	109.0
C(7')-C(6')-H(6'A)	109.0

C(5')-C(6')-H(6'B)	109.0
C(7')-C(6')-H(6'B)	109.0
H(6'A)-C(6')-H(6'B)	107.8
O(2')-C(7')-C(8')	110.9(3)
O(2')-C(7')-C(6')	110.7(4)
C(8')-C(7')-C(6')	113.1(3)
O(2')-C(7')-H(7'A)	107.3
C(8')-C(7')-H(7'A)	107.3
C(6')-C(7')-H(7'A)	107.3
C(9')-C(8')-C(7')	174.7(4)
C(8')-C(9')-C(10')	173.0(5)
C(9')-C(10')-C(11')	110.2(4)
C(9')-C(10')-H(10C)	109.6
C(11')-C(10')-H(10C)	109.6
C(9')-C(10')-H(10D)	109.6
C(11')-C(10')-H(10D)	109.6
H(10C)-C(10')-H(10D)	108.1
C(12')-C(11')-C(10')	112.5(4)
C(12')-C(11')-H(11C)	109.1
C(10')-C(11')-H(11C)	109.1
C(12')-C(11')-H(11D)	109.1
C(10')-C(11')-H(11D)	109.1
H(11C)-C(11')-H(11D)	107.8
C(11')-C(12')-C(13')	112.3(4)
C(11')-C(12')-H(12C)	109.1
C(13')-C(12')-H(12C)	109.1
C(11')-C(12')-H(12D)	109.1
C(13')-C(12')-H(12D)	109.1
H(12C)-C(12')-H(12D)	107.9
C(14')-C(13')-C(12')	113.3(3)
C(14')-C(13')-H(13C)	108.9
C(12')-C(13')-H(13C)	108.9
C(14')-C(13')-H(13D)	108.9
C(12')-C(13')-H(13D)	108.9
H(13C)-C(13')-H(13D)	107.7
O(3')-C(14')-O(1')	124.0(4)
O(3')-C(14')-C(13')	125.5(4)
O(1')-C(14')-C(13')	110.5(4)

Symmetry transformations used to generate equivalent atoms:

	U11	U ²²	U33	U23	U13	U12	
0(1)	5((0))		(5(2))	4(2)	12(1)	7(1)	
O(1)	56(2)	67(2)	65(2)	4(2)	-13(1)	7(1)	
C(1)	47(2)	91(3)	69(3)	-16(2)	-1(2)	14(2)	
O(2)	59(2)	55(2)	56(2)	-10(1)	-7(1)	14(1)	
C(2)	49(2)	122(4)	53(2)	-9(3)	7(2)	11(2)	
C(3)	47(2)	65(2)	47(2)	-5(2)	3(2)	4(2)	
O(3)	78(2)	56(2)	90(2)	15(2)	-33(2)	-2(2)	
O(4)	63(2)	70(2)	80(2)	18(2)	-10(2)	11(2)	
C(4)	54(2)	75(3)	49(2)	1(2)	-1(2)	5(2)	
C(5)	57(2)	55(2)	44(2)	-5(2)	-12(2)	-1(2)	
C(6)	56(2)	53(2)	62(2)	-3(2)	-16(2)	-6(2)	
C(7)	57(2)	47(2)	55(2)	1(2)	-13(2)	-10(2)	
C(8)	45(2)	61(2)	48(2)	4(2)	5(2)	-1(2)	
C(9)	43(2)	84(3)	49(2)	0(2)	1(2)	7(2)	
C(10)	59(3)	115(4)	53(3)	-23(3)	-1(2)	23(2)	
C(11)	71(3)	85(3)	52(3)	-18(2)	-8(2)	24(2)	
C(12)	93(3)	44(2)	74(3)	-18(2)	-23(3)	15(2)	
C(13)	77(3)	57(2)	74(3)	-3(2)	-32(2)	-9(2)	
C(14)	40(2)	50(2)	74(3)	13(2)	-18(2)	-17(2)	
O(1')	58(2)	74(2)	60(2)	-5(2)	15(1)	2(1)	
C(1')	37(2)	96(3)	75(3)	11(3)	-1(2)	14(2)	
O(2')	56(2)	60(2)	59(2)	15(1)	8(1)	12(1)	
C(2')	46(2)	125(4)	59(3)	13(3)	-6(2)	5(2)	
C(3')	46(2)	72(2)	43(2)	12(2)	1(2)	2(2)	
O(3')	80(2)	59(2)	98(2)	-19(2)	33(2)	-2(2)	
O(4')	65(2)	64(2)	81(2)	2(2)	8(2)	10(2)	
C(4')	59(2)	78(3)	46(2)	7(2)	-2(2)	4(2)	
C(5')	57(2)	56(2)	43(2)	18(2)	8(2)	6(2)	
C(6')	54(2)	56(2)	67(3)	11(2)	16(2)	-4(2)	
C(7')	48(2)	51(2)	63(3)	4(2)	9(2)	-3(2)	
C(8')	41(2)	67(3)	56(3)	1(2)	4(2)	-3(2)	
C(9')	43(2)	89(3)	55(3)	7(3)	-4(2)	6(2)	
C(10')	72(3)	117(4)	51(3)	23(3)	-3(2)	25(3)	
C(11')	72(3)	80(3)	50(3)	18(2)	13(2)	20(2)	
C(12')	96(4)	49(2)	72(3)	16(2)	27(3)	15(2)	
C(13')	82(3)	54(2)	80(3)	6(2)	31(3)	-16(2)	
C(14')	46(2)	56(2)	67(3)	-11(2)	15(2)	-16(2)	

Table 4. Anisotropic displacement parameters (Å²x 10³) for xhflor1. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

	Х	у	Z	U(eq)	
H(1A)	504	2676	2107	83	
H(1B)	1314	4090	1915	83	
H(2A)	1509	3480	2628	90	
H(2B)	1406	487	2569	90	
H(3A)	2679	523	2151	64	
H(4A)	2947	2252	2974	71	
H(4B)	2893	-665	2839	71	
H(6A)	4917	2949	2315	69	
H(6B)	4415	4772	2621	69	
H(7A)	3914	5900	1991	63	
H(10A)	3882	-2104	1088	91	
H(10B)	4027	414	825	91	
H(11A)	2495	1341	958	83	
H(11B)	2695	-799	627	83	
H(12A)	2406	-2257	1449	84	
H(12B)	2314	-4001	1055	84	
H(13A)	1057	-1445	866	83	
H(13B)	920	-3192	1258	83	
H(1'A)	3740	-1070	4275	83	
H(1'B)	2919	-2477	4090	83	
H(2'A)	3926	-1947	3567	92	
H(2'B)	3816	-4907	3658	92	
H(3'A)	5082	-4709	4079	64	
H(4'A)	5337	-6242	3421	73	
H(4'B)	5340	-3434	3238	73	
H(6'A)	6825	-571	3563	71	
H(6'B)	7325	-2322	3880	71	
H(7'A)	6319	690	4175	65	
H(10C)	6465	-4498	5381	96	
H(10D)	6313	-7067	5132	96	
H(11C)	5115	-5645	5592	80	
H(11D)	4913	-3581	5249	80	
H(12C)	4728	-8956	5181	87	
H(12D)	4808	-7286	4777	87	
H(13C)	3350	-8198	4991	87	
H(13D)	3506	-6342	5367	87	

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for xhflor1.

Spectral data

L 10 80 1 4 6 7 1 8 8 7 8 9 7 7 8 9 7 9 7	10000000000	, - 1 H @ U / 0 @ / / 0 @ / 0 / 0 / 0 / 0 / 0 / 0 /	0117770000000101010
M2000000000000000000000000000000000000	08201109440	101000000000000000	4 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		,00000000000000000	191440000000000000000000000000000000000
0000000000000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1000000000000000	000000000000000000000000000000000000000
a descent de com	and a contraction of the second se		





















S30



xun-1-75









9	ഹ		10	m	$\sim$	ഗ	~ c	10	, –	$\sim$	0	9	S	$\sim 0$	0 4	9	9	പ	- 0	00	9	5	$\sim$	-1 00	ŝ	4	~ ~ ~	Ω I	ς, ω	4 0	4	$\sim$	J'		ß	$\sim$	ω	5	1 C	~ ~	Ηœ	00	5 0	I ← I
4	$\sim$	7 -	10	0	9	S I	~ r	~ 4	5	$\leftarrow$	$\vdash$	0	5	00	e c	2	$\sim$		$\supset \circ$		9	0	00 9	7 -	II	0	20	4	$\sim$ -		0	C < C	n c	5	5	5	$\sim$	$\sim$ 1	- 0		00	[- 1]	~ ~	ŝ
$\sim$	m	$\infty$ o	⊃ r~		C	C < 0	$\gamma$ $c$	റന	ന	$\leftarrow$	$\vdash$	$\vdash$	0	00	$\infty$	00	$\infty$	00 1	- r	- 9	9	$\infty$	5	50	5	$\infty$ (	သထ	00	00 0	9 9	9	цΩц	റഹ	4	4	4	4	4	4.4	5 1	് ന	$\sim$	no	00
•	•	•		•	•	•	•	• •		•	•	•	•	•	•		•	•	•	• •	•	•	•	•		•	• •	• •	•		•	•	•	•	•	•	•	•	•	•		•	•	
	r'	99	0 0	9	9	ωı	Ωц	ЪС	ŝ	Ь	S	S	S	ഗവ	ノム	4	4	4.	4 1	1 4	4	$\sim$	$\sim$	20	$\sim$	$\sim$	$\sim \sim$	$\sim$	$\sim c$	$1 \cup 1$	$\sim$	$\sim$ 0	V (	$\sim$	$\sim$	$\sim$	$\sim$	$\sim$	$\sim 0$	VC	1 🔿	$\sim$ 0	7 -	
L		1 1																																						1 1				
		-	-	-	-	-	-		-		-	-	-	-	-			-	_	_	-	_	-	-			-		~	$\sim$		1 /		~	-	_			_	_				
							1	<i>(C</i>		5						20							-			2				2	1					55	5							

















MeO

16







xun-3-53 400B



xun-2-227	400B																																								
270 556 541 854	841 837 398	348 348 лл	240	226 213	211	195	180 165	152	137	044	000 g	994	584	570	567	557	533	526	519	503 103	101 101	458	455	450	442	439	434	400	422	418	415	380	367	363	349	142	770 777	2002	1794	664	
		• •	• •	•	• •	•	•	• •	•	•	•	• •	• •	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	٠
4224	4444	サママ	77	4 4	r 🕁	4	4 7	5 4	4	4.4	7 7	' M	$\sim$ 0	NC	10	$1 \cup 1$	$\sim$	$\sim$	$\sim$	$\sim$	$\sim \sim$	чc	V CI	$\sim$ 7					÷												
					-	-																					$\mathcal{N}$									-	-	_			





Hold Control C

xun-2-224 400B





















S49



xun-2-269	400B																																	
270 893 891 890 854	851 612 599	438	.116	729	.717	681	.510	439	422	386	.315	311	.296	285	147	.744	734	724	.716	00/	.694	. 687 664	.634	5007	577	.569	.557	. 333 727	529	.519	514	494	376	.359
444	4444	* * *	4.4	л сл	20	2 2	2 6	101	~ ~	1 0	$\sim$	2 2	$\sim$	2 9	10	, - , 					-L		-			$\frac{1}{1}$				H L	-, -, 			-



 $\begin{array}{c} 7.\ 270\\ -2.\ 55.\ 309\\ -4.\ 179\\ -4.\ 179\\ -4.\ 177\\ -4.\ 177\\ -4.\ 177\\ -4.\ 177\\ -4.\ 177\\ -4.\ 177\\ -4.\ 177\\ -4.\ 177\\ -4.\ 177\\ -4.\ 177\\ -4.\ 172\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\ 576\\ -2.\$ 

xun-2-270 400B



xun-3-201 1H 400B









### NOESY of compound 6 (CDCl₃)



### NOESY of compound 19 (CDCl₃)

xun-2-224 NOESY 400B 071011



### NOESY of compound 28 (CDCl₃)



NOESY of compound 28' (C₆D₆)



## NOESY of compound 30 (CDCl₃)

 $xun{-}2{-}270$  and  $xun{-}3{-}56$  NOESY 400B

