
Supporting text1

Model construction2

Conditional distribution of the number of substitutions3

The model for p(Sobs | Tobs, J,Tinf ,L,D, θ,Dobs,Tend,X) is based on the probability distri-4

bution of the number of substitutions between sequences during the evolutionary durations5

separating the sequences. Here we derive this probability distribution.6

The evolutionary duration ∆ between two sequences is the sum of time intervals com-7

puted along the transmission tree. For sequences with four modalities per site (a, c, t,8

g), we assume a constant probability of 1/3 for each possible mutation. We suppose that9

mutations at one position appear randomly and independently in time, so that the number10

of mutations during a time interval ∆ is a Poisson distribution with intensity m∆. Let P∆11

be the probability that, at position x, the value at time ∆ is the same as the value at time12

0. Then, taking into account the Jukes-Cantor’s correction,13

P∆+d∆ = P∆P (no mutation between ∆ and ∆ + d∆)

+ (1− P∆)P (one mutation between ∆ and ∆ + d∆ going back to the original value)

= P∆(1−md∆) + (1− P∆)md∆1
3

Thus P ′∆ = (1− 4P∆)m3 , and solving this equation with the initial condition P0 = 1 one gets14

P∆ =
1 + 3e−

4
3
m∆

4
.

If a mutation appears, it is uniform between all possible new values, so the probability to15

observe a given value different from the value at ∆ = 0 is 1−P∆
3 . Therefore, the conditional16

distribution of the number of differences between two sequences given ∆ is:17

M | ∆ ∼ Binomial

[
s,

3

4

{
1− exp

(
−4

3
m∆

)}]
whose probability is18

Pm,s(M | ∆) =

(
M

s

)[
3

4

{
1− exp

(
−4

3
m∆

)}]M [1

4
+

3

4
exp

(
−4

3
m∆

)]s−M
. (1)

Conditional distribution of observed genetic sequences for a simple tree19

For the simple transmission tree drawn in Fig. S1, Eq. (3) in the main text becomes:20

1



∑
Sk∈S

∑
Si∈S

∑
Sl∈S

Pm,s{M(Sobsk , Sk) | ∆ = T obsk − T infk }Pm,s{M(Sobsj , Sk) | ∆ = T obsj − T infk }

× Pm,s{M(Sk, Si) | ∆ = T infk − T infi }Pm,s{M(Sl, Si) | ∆ = T infl − T infi }

× Pm,s{M(Sobsi , Sl) | ∆ = T obsi − T infl }Pm,s{M(Sobsl , Sl) | ∆ = T obsl − T infl },
(2)

where Sk, Si and Sl are genetic sequences transmitted at times T infk , T infi and T infl to21

premises k, i and l, respectively; S is the set of all possible sequences (the size of S is 4s,22

where s is the length of the sequence); M(S′, S) is the number of substitutions between S23

and S′; Pm,s{M(S′, S) | ∆ = T ′ − T} is the probability given by Eq. (1) in this document24

with M = M(S′, S) and ∆ = T ′ − T .25

Conditional pseudo-distribution of observed genetic sequences for a simple26

tree27

For the simple transmission tree drawn in Fig. S1, div(i, j) = i, div(k, j) = k, div(k, i) = i,28

div(l, j) = i, div(l, i) = l and div(l, k) = i and the conditional pseudo-distribution of observed29

genetic sequences is:30

p̃m,s(S
obs | Tobs, J,Tinf ) =Pm,s{M(Sobsi , Sobsj ) | ∆ =| T obsi − T infi | + | T obsj − T infi |}

× Pm,s{M(Sobsk , Sobsj ) | ∆ =| T obsk − T infk | + | T obsj − T infk |}

× Pm,s{M(Sobsk , Sobsi ) | ∆ =| T obsk − T infi | + | T obsi − T infi |}

× Pm,s{M(Sobsl , Sobsj ) | ∆ =| T obsl − T infi | + | T obsj − T infi |}

× Pm,s{M(Sobsl , Sobsi ) | ∆ =| T obsl − T infl | + | T obsi − T infl |}

× Pm,s{M(Sobsl , Sobsk ) | ∆ =| T obsl − T infi | + | T obsk − T infi |}.
(3)

Substitutes for the conditional distribution of observed genetic sequences31

We tested two expressions of the conditional distribution of observed genetic sequences32

pm,s(S
obs | Tobs, J,Tinf ) = pm,s(S

obs
1 | Tobs, J,Tinf )

I∏
i=2

pm,s(S
obs
i | Sobs1:(i−1),T

obs, J,Tinf ).

The expression which led to the best reconstruction of the transmission tree is given in33

Eq. (5) in the main text. We tested another substitute, consisting in replacing the conditional34

probability pm,s(S
obs
i | Sobs1:(i−1),T

obs, J,Tinf ) of Sobsi given past sequences Sobsj (j = 1, . . . , i−35

1) by the conditional probability of Sobsi given the sequence SobsJ(i) of the source of i:36
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p̃m,s(S
obs | Tobs, J,Tinf ) =

I∏
i=2

Pm,s{M(Sobsi , SobsJ(i)) | ∆ =| T obsi − T infJ(i) | + | T
obs
j − T infJ(i) |}.

Distributions of locations X and culling times Tend for simulations37

For the 20-premise simulations, locations of premises centroids were independently and uni-38

formly drawn in rectangular domains with sizes 22 × 11 km, with the first infected farm at39

position (0,0). Distances were comparable to those in the real datasets. For the 100-premise40

simulation, locations of premises centroids were independently and uniformly drawn in a five41

times larger rectangular domain with sizes 44× 27.5 km, with the first infected farm at posi-42

tion (0,0). Intervals between virus detection and culling time were constant and fixed to one43

day for all premises in all simulations.44

MCMC algorithm45

We built a Monte Carlo Markov Chain to assess the posterior distribution p(J,Tinf ,L,D, θ |46

data). With the simplifications made in section “Model Construction”, the posterior distri-47

bution can be written:48

p(J,Tinf ,L,D, θ | data) ∝ p(Sobs | Tobs, J,Tinf )1(Tobs = Tinf + L + D)

× p(J,Tinf | L, α,Tend,X)p(L | β)p(D | Dobs)p(α, β).
(4)

In the following, premise indices are reordered at each MCMC iteration such that they are49

sorted with respect to increasing infection times T infi .50

MCMC tuning51

Starting values. Starting values of transmissions, times and durations (J,Tinf ,L,D) were52

chosen to satisfy the following timing constraints:53

0 ≤ T inf1 ≤ min{Tend}

T infi ≤ T infi + Li ≤ T infi + Li +Di = T obsi ≤ T endi ∀i = 1, . . . , I

T infJ(i) + LJ(i) ≤ T
inf
i ≤ T endJ(i), ∀i = 2, . . . , I.

(5)

When possible, Di was fixed at Dobs
i . Arbitrary starting values leading to a finite value of54

the posterior probability p(J,Tinf ,L,D, θ | data) were used for parameters α and β.55

Values of fixed parameters for the cases considered. The sequence length and sub-56

stitution rate were s = 8176 and m = 2.076× 10−5for the Darlington and 2007 datasets, and57

s = 8000 and m = 10−4 in the simulated dataset. The lower bound of infection times was58

fixed at t0 = −5 in all the cases. Vague prior distributions were used for α and β: we fixed59

a = (100, 100) and b = (100, 100). The parameter related to the uncertainty of Dobs
i , d, was60

set to 0.5.61
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Proposal distributions. In the following, the star ∗ is used to denote proposed values.62

In order to update J(i), the proposal distribution qi(J
∗ | J) is different in the case of the63

first infected premise i = 1, from the other premises i > 1:64

• the first infected premise i = 1 is permuted with the second infected premise i = 265

(if several premises are infected at time T inf2 , one of these premises is randomly and66

uniformly selected). In order to maintain the consistency of the transmission tree,67

we permuted T1 and T2, L1 and L2, and modified D1 and D2 to satisfy the equation68

Tobs = Tinf + L + D: J∗(1) = J(2), J∗(2) = J(1) = 0, T inf∗1 = T inf2 , T inf∗2 = T inf1 ,69

L∗1 = L2, L∗2 = L1, D∗1 = T obs1 − (T inf∗1 + L∗1) and D∗2 = T obs2 − (T inf∗2 + L∗2).70

• for i > 1, a candidate value J∗(i) for J(i) was drawn uniformly among possible source71

premises satisfying constraints (5). All premises infected by i remain infected by i.72

The proposal distribution qi(T
inf∗ | Tinf ) for infection time T infi was chosen as a trun-73

cated normal distribution:74

T inf∗i ∼ Truncated Normal(T infi , σ2
T , T

min
i , Tmaxi ),

where σ2
T = 100, Tmini = t0 = −5 and Tmaxi = min{{T infk : J(k) = i}, T obsi − Di} if i = 1,75

Tmini = T infJ(i) + LJ(i) and Tmaxi = min{{T infk : J(k) = i}, T obsi −Di, T
end
J(i)} if i > 1.76

In order to maintain the consistency of the transmission tree, latency duration Li was77

modified to satisfy the equation Tobs = Tinf + L + D: L∗i = T obsi − T inf∗i −Di.78

The proposal distribution qi(D
∗ | D) for duration from infectiousness to detection Di was79

chosen as a truncated normal distribution:80

D∗i ∼ Truncated Normal(Di, σ
2
D, D

min
i , Dmax

i ),

where σ2
D = 1, Dmin

i = max{0, {T obsi − T infk : J(k) = i}} and Dmax
i = T obsi − T infi . In order81

to maintain the consistency of the transmission tree, latency durations Li were modified to82

satisfy the equation Tobs = Tinf + L + D: L∗i = T obsi − T infi −D∗i .83

The proposal distributions q(α∗ | α) and q(β∗ | β) for parameter vectors α = (α1, α2) and84

β = (β1, β2) were chosen as bivariate log-normal distributions:85

α∗ ∼ Log-Normal(logα,Σα)

β∗ ∼ Log-Normal(log β,Σβ),

with Σα = ( 1 0
0 1 ) and Σβ = ( 1 0

0 1 ).86

Acceptance probabilities87

At each iteration of the algorithm, variables were sequentially updated with the following88

acceptance probabilities.89
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The proposal distribution for J(1) is symmetric. Thus, the proposed vector of values90

(J∗(1), J∗(2), T inf∗1 , T inf∗2 , L∗1, L
∗
2, D

∗
1, D

∗
2) is accepted with probability:91

min

{
0,
p(Sobs | Tobs, J∗,Tinf∗)p(J∗,Tinf∗ | L∗, α,Tend,X)p(L∗ | β)p(D∗ | Dobs)

p(Sobs | Tobs, J,Tinf )p(J,Tinf | L, α,Tend,X)p(L | β)p(D | Dobs)

}
,

where (J∗,Tinf∗,L∗,D∗) is equal to (J,Tinf ,L,D) except that (J(1), J(2), T inf1 , T inf2 , L1, L2, D1, D2)92

is replaced by (J∗(1), J∗(2), T inf∗1 , T inf∗2 , L∗1, L
∗
2, D

∗
1, D

∗
2).93

The proposal distribution for J(i), i > 1, is symmetric. Thus, the proposed value J∗(i)94

is accepted with probability:95

min

{
0,
p(Sobs | Tobs, J∗,Tinf )p(J∗,Tinf | L, α,Tend,X)

p(Sobs | Tobs, J,Tinf )p(J,Tinf | L, α,Tend,X)

}
,

where J∗ is equal to J except that J(i) is replaced by J∗(i).96

The proposed vector of values (T inf∗i , L∗i ) is accepted with probability:97

min

{
0,
p(Sobs | Tobs, J,Tinf∗)p(J,Tinf∗ | L∗, α,Tend,X)p(L∗ | β)qi(T

inf | Tinf∗)

p(Sobs | Tobs, J,Tinf )p(J,Tinf | L, α,Tend,X)p(L | β)qi(Tinf∗ | Tinf )

}
,

where (Tinf∗,L∗) is equal to (Tinf ,L) except that (T infi , Li) is replaced by (T inf∗i , L∗i ).98

The proposed vector of values (D∗i , L
∗
i ) is accepted with probability:99

min

{
0,
p(J,Tinf | L∗, α,Tend,X)p(L∗ | β)p(D∗ | Dobs)qi(D | D∗)
p(J,Tinf | L, α,Tend,X)p(L | β)p(D | Dobs)qi(D∗ | D)

}
,

where (D∗,L∗) is equal to (D,L) except that (Di, Li) is replaced by (D∗i , L
∗
i ).100

The proposed vector of values α∗ is accepted with probability:101

min

{
0,
p(J,Tinf | L, α∗,Tend,X)p(α∗, β)q(α | α∗)
p(J,Tinf | L, α,Tend,X)p(α, β)q(α∗ | α)

}
.

The proposed vector of values β∗ is accepted with probability:102

min

{
0,
p(L | β∗)p(α, β∗)q(β | β∗)
p(L | β)p(α, β)q(β∗ | β)

}
.

Performance of the estimation algorithm103

Using the series of simulations for 20 premises described in the main text, we assessed the104

ability of our method to estimate unobserved time variables and parameters, namely infection105

times (T infi ), infectiousness times (T infi +Li), the source strength (α1), the dispersion param-106

eter (2α2), the latency mean (β1) and the latency standard deviation (β2). We considered the107

coverages of the true values by the 95%-credibility intervals, listed in Table S1. The coverage108

of infection and infectiousness times is high, ranging from 0.78 to 0.95, while the coverage of109

parameters is more heterogeneous and depends on the characteristics of the epidemics (e.g.110

number of farms and parameter values). In particular, potentially identifiability issues could111

have affected the lower coverage values.112
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Darlington cluster: comparison with the results of Cottam et113

al. 2008114

The analysis of Ref. [3] indicated that two of these 15 premises (A, N) were infected from115

a second source outwith our sample. In order to maintain the assumption of a single intro-116

duction required by our model, we initally applied our inference scheme on the 13 remaining117

premises. We inferred that premise B acted as a “hub” of the outbreak, infecting 7 premises118

(see Fig. S8), in contrast with Cottam et al. [3], where the role of the hub was assigned to119

premise K, which was inferred as a source for B. The sequences collected on the premises120

infected by the hub are indeed closer to K than to B thus genetic data support K as the hub.121

However, the lesion age estimates combined with the observation times indicate that K and122

B became infectious on the same day and, consequently, both K→B and B→K transmissions123

were unlikely. Thus, the timing data support the hypothesis that premises B and K were124

infected independently approximately at the same time. To compare our results with those125

of Ref. [3] on a cluster infected by a single introduction, we removed B from the dataset and126

re-estimated the quantities of interest, thus applying our method to 12 premises in total.127

Our estimation, detailed in the main text (result section on the 2001 FMDV epidemic)128

found only two chains of transmissions of length greater than two (K→O→(M,D) and K→F→G→I→J),129

whereas ref. [3] found more long chains: K→O→M→D, K→O→P, K→O→C and K→L→E.130

Regarding the first one, the observed timing and the estimated lesion ages suggest again that131

M and D became infectious almost simultaneously and, therefore, M→D or D→M trans-132

missions are unlikely. On what concerns the K→O→P and K→O→C cases, we note that133

P and C are closer genetically to K than to O, supporting the possibility of a more direct134

link between K and P, and K and C, respectively. Finally, the large number of nucleotide135

substitutions between L and E in a relatively short time makes the K→L→E chain very136

unlikely, leading our method to rather support the double transmission K→(L,E). Further137

information about the inferred trees and posterior distributions of other model parameters is138

provided in Figs. S10–S11.139

Application to a simulation with 100 premises140

In order to test our inference on a larger dataset, we used our model to simulate an out-141

break infecting 100 premises. The locations of these premises are randomly distributed in a142

44×27.5km, so that their spatial density is the same as in the test dataset used in the main143

text. The model was fitted to the observable data: for each premise i, the time T obsi at which144

the virus was detected, an 8000bp DNA sequence Sobsi sampled at T obsi , an assessment of the145

lesion age Dobs
i , and the time T endi at which the premise was culled (see Fig. 1 in the main146

text for a visualisation).147

In Fig. S15, the size of the dots corresponds to the posterior probabilities of pairwise148

transmissions, while the circles represent the true transmissions as they occurred in the sim-149

ulation. Fig. S16 shows the transmissions with highest posterior probability (solid lines)150
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together with the “true” transmissions (dashed lines). 89 of the 99 transmissions were accu-151

rately reconstructed; most of the incorrectly renconstructed transmissions happened either152

at the very beginning of the outbreak or in clusters of farms very closely located. Both153

situations are particularly ambiguous, with several scenarios having very similar likelihoods,154

which can be distinguished only in presence of extremely precise data. We notice however155

that the directions of the uncorrectly inferred transmissions is compatible with the overall156

spreading of the epidemics (started in the lower-left corner). Given the extremely fast pace157

of this simulated outbreak and the high density of the premises, this situation should be158

considered as a worst-case scenario of the real case.159

Finally, we notice that the posterior probabilities for the mean latency duration and the160

mean transmission distance (Fig. S17) have a similar shape to those obtained for the 20161

premise simulation (Fig. 2), but their width is much smaller. In the case of the mean latency162

duration, the true value of this parameter is not contained in the 95% confidence interval of the163

corresponding posterior distribution. This is probably due to the “extreme” character of the164

epidemics, as described above. However, given the small width of this posterior distribution,165

the difference between the true value of the parameter and the median of the posterior is166

less than a day, which in absolute terms is less than what was obtained for the 20 premise167

simulation.168
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