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Correcting covariances for finite sample size. In the main text, we define the variance-

covariance matrix Ŵ of allele frequencies between populations without accounting for sampling

variance. Here, we show the calculations corrected for sample size. Consider n biallelic loci typed

in m populations of diploid individuals, and let the sample size in population i at locus k be Nik

(with missing data, the number of individuals can vary across loci). Let the counts of the two alleles

in population i at locus k be nik and 2Nik − nik (with one allele being arbitrarily defined as the

reference in all that follows), the true allele frequency in the population be Xik, and the observed

allele frequency be X̂ik = nik
2Nik

. We assume the nik are binomially distributed with parameters

2Nik and Xik, and are independent for all i and k. Recall that the allele frequency in the ancestral

population is xA, and that the covariance between populations i and j with respect to the ancestral

frequency xA is Vij . We begin by defining Vij using the observed allele frequencies at a single SNP

k:

Vij = E[(X̂ik − xA)(X̂jk − xA)] (1)

= E
[
[(X̂ik −Xik) + (Xik − xA)][(X̂jk −Xjk) + (Xjk − xA)]

]
(2)

= E[(Xik − xA)(Xjk − xA)] + E[(X̂ik −Xik)(X̂jk −Xjk)]. (3)

The bias in the estimate of Vij is thus E[(X̂ik −Xik)2] if i = j (i.e., it is the sampling variance in

Xik) and zero otherwise. This follows from the fact that the nik are assumed to be independent

across i.

Now consider all n SNPs, and let the mean bias across all SNPs be Bi. At a given SNP k,

the sampling variance in population j is X̂ik is Xik(1−Xik)
2Nik

(from the binomial sampling of xik),

so the mean bias across SNPs is proportional to Xik(1−Xik) (i.e., the mean across all SNPs of

Xik(1−Xik)). A natural estimator of Bi is then:

Bi =
hi

4Ni
(4)

where hi is an unbiased estimate of the heterozygosity in population i averaged over all SNPs [Nei,

1978]:

hi =
1

n

n∑
k=1

nik(2Ni − nik)

Ni(2Ni − 1)
. (5)

As derived in the main text, the sample covariance of populations i and j, Wij , is:

Wij = Vij −
1

m

m∑
k=1

Vik −
1

m

m∑
k=1

Vjk +
1

m2

m∑
k=1

m∑
k′=1

Vkk′ . (6)

The bias in the estimate of Ŵij (let us call this B′ij) is then:

B′ij = I[i=j]Bi −
Bi

m
− Bj

m
+

∑m
k=1Bk

m2
(7)
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where I[i=j] is an indicator that evaluates to 1 if i = j and zero otherwise. We can then estimate

the unbiased covariance Ŵij as:

Ŵij =

∑n
k=1(X̂ik − µk)(X̂jk − µk)

n
−B′ij (8)

where µk =
∑m

i=1 X̂ik

m . If there is missing data in either population i or population j, we simply

ignore the SNP for that pairwise comparison of populations. Since the mean allele frequency across

populations is important here, large amounts of missing data (or correlated missingness between

populations) could result in skewed covariances. We thus exclude populations with large amounts

of missing data.

Nonidentifiability of the drift parameters in an admixed population. In the main text,

we write down a model for the allele frequencies in an admixed population, and claim that the

amount of genetic drift occurring before and after the mixture event are nonidentifiable. Consider

the graph in Supplementary Figure 1. We can write down the expected variances and covariances

involving the admixed population:

V12 = (1− w)c4xA[1− xA] (9)

V23 = wc5xA[1− xA] (10)

V22 = [c1 + w2(c2 + c5) + (1− w)2(c3 + c4)]xA[1− xA] (11)

and we are interested in estimating w, c1, c2, and c3. It is clear from the above that c1, c2, and

c3 do not appear except as a linear combination. Adding additional populations does not add

additional information about these parameters, unless they are assumed to result from the same

mixture event.

We choose to set c2 and c1 to zero, and estimate only c3, which can now be thought of as a

composite branch length that sums all the three components of genetic drift. A subtle point is that

all of this drift is weighted by (1−w). When estimating w, then, the true relative contributions of

c1, c2, and c3 could lead to a bias in the estimation of w. For example, if c1 and/or c2 are large, this

could bias the estimation of (1− w) upwards. We believe this is likely the cause of the downward

bias in w in the simulations in Figure 2D in the main text.

Graph representation of the TreeMix model. In the main text, we describe a specification

of V (the variance/covariance matrix of allele frequencies, defined with respect to an ancestral

population) in terms of a system of linear equations. A useful alternate notation describes V in

terms of a graph [Koller and Friedman, 2009]. Let G be a rooted, directed, acyclic graph with a set

of nodes N and a set of directed edges E. Each edge e has an associated length, ce, and a weight,

we (between zero and one). A special class of edges, called migration edges, are forced to have

length zero. The sum of weights of edges entering a given node is one. There is one node which is

the root (a node with only outgoing edges), and each population corresponds to a tip (a node with
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only incoming edges).

Define {Pi} to be the set of all possible paths in G from the root to the tip corresponding to

population i (if the graph is a tree, there is only one such path). Each individual path p has a

weight, w(p) = Πe∈pwe. Now define the overlap between two paths as:

O(pi, pj) =
∑
e∈pi

w(pi)w(pj)I[e ∈ pj ]ce (12)

where I[e ∈ pj ] is a function that evaluates to one if edge e is in pj , and zero otherwise. We can

now write down the expected covariance between populations i and j as:

Vij =
∑

pi∈{Pi}

∑
pj∈{Pj}

O(pi, pj). (13)

In the special case where G is a tree, there is only one path per population and all of the edges have

weight one, and so Vij reduces to a sum of the lengths of branches shared by the two populations.

Relationship of this model to f− statistics. Tests for “treeness” in three and four-population

trees [Keinan et al., 2007; Reich et al., 2009] have used a framework in which the distances between

populations are quantified in terms of “f−statistics” comparing the allele frequencies between

the populations. Below, we briefly describe these tests in the notation of our model. Consider

the expected f3 statistic calculated between populations 1, 2, and 3, with corresponding allele

frequencies X1, X2, and X3.

f3(X1;X2, X3) = E[(X1 −X2)(X1 −X3)] (14)

= E
[
[(X1 − xA)− (X2 − xA)][(X1 − xA)− (X3 − xA)]

]
(15)

= V11 −V12 −V13 + V23. (16)

Consider the situation where populations 1 and 3 form a clade relative to 2 (i.e., population 2 is

an outgroup). If population X1 is not admixed, this reduces to:

f3(X1;X2, X3) = V11 −V13. (17)

This is necessarily greater than zero (since V13 <= V11). If X1 is admixed, then V12 can be

important and the f3 statistic can be negative. A test for a negative f3 statistic is thus a test for

admixture in population X1 [Reich et al., 2009]. However, this signal can be weakened by large

amounts of drift in X1 (i.e., a large V11), or mixture between X2 and X3 [Reich et al., 2009].

Similarly, consider the expected f4 statistic computed on the tree [[1,2],[3,4]], where 1, 2, 3, and
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4 are populations, and X1, X2, X3 and X4 are the corresponding allele frequencies:

f4(X1, X2;X3, X4) = E[(X1 −X2)(X3 −X4)] (18)

= E
[
[(X1 − xA)− (X2 − xA)][(X3 − xA)− (X4 − xA)]

]
(19)

= V13 −V23 −V14 + V24 (20)

(21)

If the tree is correct (i.e., if populations 1 and 2 are a clade relative to populations 3 and 4), all of

these quantities are zero. A test for a non-zero f4 statistic is thus a test for treeness [Reich et al.,

2009].

Simulation commands. For all simulations, we used ms [Hudson, 2002]. To generate the tree-

like data depicted in Figure 2A in the main text, the command is:

ms 400 400 -t 200 -r 200 500000 -I 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

20 20 20 20 20 -en 0.00270 20 0.025 -ej 0.00275 20 19 -en 0.00545 19 0.025 -ej 0.00550

19 18 -en 0.00820 18 0.025 -ej 0.00825 18 17 -en 0.01095 17 0.025 -ej 0.011 17 16 -en

0.01370 16 0.025 -ej 0.01375 16 15 -en 0.01645 15 0.025 -ej 0.01650 15 14 -en 0.01920

14 0.025 -ej 0.01925 14 13 -en 0.02195 13 0.025 -ej 0.02200 13 12 -en 0.02470 12 0.025

-ej 0.02475 12 11 -en 0.02745 11 0.025 -ej 0.02750 11 10 -en 0.03020 10 0.025 -ej 0.03025

10 9 -en 0.03295 9 0.025 -ej 0.03300 9 8 -en 0.03570 8 0.025 -ej 0.03575 8 7 -en 0.03845

7 0.025 -ej 0.03850 7 6 -en 0.04120 6 0.025 -ej 0.04125 6 5 -en 0.04395 5 0.025 -ej

0.04400 5 4 -en 0.04670 4 0.025 -ej 0.04675 4 3 -en 0.04945 3 0.025 -ej 0.04950 3 2

-en 0.05220 2 0.025 -ej 0.05225 2 1

To create trees with considerably longer branch lengths, we multiplied all branch lengths by 50:

ms 400 400 -t 200 -r 200 500000 -I 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

20 20 20 20 20 -en 0.135 20 0.025 -ej 0.1375 20 19 -en 0.2725 19 0.025 -ej 0.275 19

18 -en 0.41 18 0.025 -ej 0.4125 18 17 -en 0.5475 17 0.025 -ej 0.55 17 16 -en 0.685

16 0.025 -ej 0.6875 16 15 -en 0.8225 15 0.025 -ej 0.825 15 14 -en 0.96 14 0.025 -ej

0.9625 14 13 -en 1.0975 13 0.025 -ej 1.1 13 12 -en 1.235 12 0.025 -ej 1.2375 12 11

-en 1.3725 11 0.025 -ej 1.375 11 10 -en 1.51 10 0.025 -ej 1.5125 10 9 -en 1.6475 9

0.025 -ej 1.65 9 8 -en 1.785 8 0.025 -ej 1.7875 8 7 -en 1.9225 7 0.025 -ej 1.925 7

6 -en 2.06 6 0.025 -ej 2.0625 6 5 -en 2.1975 5 0.025 -ej 2.2 5 4 -en 2.335 4 0.025

-ej 2.3375 4 3 -en 2.4725 3 0.025 -ej 2.475 3 2 -en 2.61 2 0.025 -ej 2.6125 2 1

For simulations with migration, we added a migration event approximately 100 generations be-

fore the present. For example, migration from population 1 to population 10:

ms 400 400 -t 200 -r 200 500000 -I 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
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20 20 20 20 20 -em 0.002675 10 1 4000 -en 0.00270 20 0.025 -em 0.00270 10 1 0 -ej 0.00275

20 19 -en 0.00545 19 0.025 -ej 0.00550 19 18 -en 0.00820 18 0.025 -ej 0.00825 18 17

-en 0.01095 17 0.025 -ej 0.011 17 16 -en 0.01370 16 0.025 -ej 0.01375 16 15 -en 0.01645

15 0.025 -ej 0.01650 15 14 -en 0.01920 14 0.025 -ej 0.01925 14 13 -en 0.02195 13 0.025

-ej 0.02200 13 12 -en 0.02470 12 0.025 -ej 0.02475 12 11 -en 0.02745 11 0.025 -ej 0.02750

11 10 -en 0.03020 10 0.025 -ej 0.03025 10 9 -en 0.03295 9 0.025 -ej 0.03300 9 8 -en

0.03570 8 0.025 -ej 0.03575 8 7 -en 0.03845 7 0.025 -ej 0.03850 7 6 -en 0.04120 6 0.025

-ej 0.04125 6 5 -en 0.04395 5 0.025 -ej 0.04400 5 4 -en 0.04670 4 0.025 -ej 0.04675

4 3 -en 0.04945 3 0.025 -ej 0.04950 3 2 -en 0.05220 2 0.025 -ej 0.05225 2 1

For simulations of populations exchanging migrants on a lattice, we used the following command:

ms 200 1500 -t 40 -r 40 100000 -I 10 20 20 20 20 20 20 20 20 20 20 -ma x 0 0 0 0 0

0 0 0 0 0 x 0.1 0 0.1 0.1 0 0 0 0 0 0.1 x 0.1 0.1 0.1 0.1 0 0 0 0 0 0.1 x 0 0.1 0.1

0 0 0 0 0.1 0.1 0 x 0.1 0 0.1 0.1 0 0 0.1 0.1 0.1 0.1 x 0.1 0.1 0.1 0.1 0 0 0.1 0.1

0 0.1 x 0 0.1 0.1 0 0 0 0 0.1 0.1 0 x 0.1 0 0 0 0 0 0.1 0.1 0.1 0.1 x 0.1 0 0 0 0 0

0.1 0.1 0 0.1 x -ej 0.41 10 1 -ej 0.41 9 1 -ej 0.41 8 1 -ej 0.41 7 1 -ej 0.41 6 1 -ej

0.41 5 1 -ej 0.41 4 1 -ej 0.41 3 1 -ej 0.41 2 1

Discussion of simulation errors. In Figure 2C in the main text, we showed that TreeMix was

extremely accurate in most simulation situations. However, there are a few situations in which it

performed poorly. Most notably, this was for simulated admixture between population 1 and 5. The

errors in these simulations tended to be of the same type (Supplementary Figure 7). Additionally,

in the simulations of migration from population 15 to population 20 with a weight of 10%, there

was also a considerable error rate. However, these errors were not consistent across simulations,

and are likely due to the algorithm simply not detecting the admixture event at all.

Analysis of human data including Oceanian populations. As described in the main text, in

the human HGDP data we used two sets of allele frequencies with different ascertainment schemes–

one at SNPs ascertained by sequencing a single Yoruban individual, and one at SNPs ascertained

by sequencing a single French individual. We initially ran TreeMix on both data sets using all

populations to estimate the maximum likelihood trees. The trees estimated using the two ascer-

tainment schemes are nearly identical (Supplementary Figure 11. We then used TreeMix to identify

migration events. The algorithm arrived at quite different conclusions about the Oceanian popula-

tions in the two different data sets (recall that these are the exact same individuals, just genotyped

at different SNPs) (Supplementary Figure 15). In the Yoruba-ascertained data, the East Asian

populations are inferred to be admixed, with the Melanesians as a source population. However,

in the French-ascertained data, the Oceanians are inferred to be admixed. When the Oceanian
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populations are excluded from analysis, the algorithm comes up with nearly the same graph in

both datasets (Figure 4 in the main text and Supplementary Figure 10).

It is not immediately clear why there is a discrepancy between these two datasets when looking at

Oceanian populations. However, Oceania has a particularly complicated genetic makeup, involving

at least four distinct components of ancestry: Denisovan gene flow, Neandertal gene flow, native

Oceanian, and gene flow from Austronesian speakers [Reich et al., 2010, 2011; Wollstein et al.,

2010]. These different components of ancestry may be picked up to differing extents by SNPs from

the different ascertainment panels, leading to conflicting results.

List of migration events inferred in the human data. Here we list the ten migration edges

inferred in the human data and present in Figure 4 in the main text:

1. Yoruba → Mozabite, w = 19%

2. Mandenka → (Palestinian,(Bedouin, Mozabite)), w = 13%

3. Mandenka → Druze, w = 6%

4. Mankenka → (Brahui, Makrani), w = 6%

5. Ancestral non-African → Cambodian, w = 17%

6. (All Europe, Middle East) → Hazara, w = 46%

7. (All Europe, Middle East) → Uygur, w = 46%

8. All Native Americans → Russian, w = 12%

9. (Tuscan(French(Italian,(Basque,Sardinian) → Maya, w = 12%

10. Mozabite → (Tuscan(French(Italian,(Basque,Sardinian), w = 22%

List of migration events inferred in the dog data. Here we list the ten migration edges

inferred in the dog data and present in Figure 6 in the main text:

1. (Greyhound, Whippet) → Borzoi, w = 47%

2. (AlaskanMalamute,SiberianHusky) → Samoyed, w = 47%

3. Wolf → Basenji, w = 25%

4. (ChowChow,ChineseSharPei) → (Pekingese, Shih Tzu), w = 28%

5. Bulldog → Bull mastiff, w = 31%

6. Boxer → Chinese shar-pei, w = 8%

7. Siberian Husky → (Akita,(ChowChow,ChineseSharPei)) w = 17%
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8. Wolf → Boxer, w = 8%

9. Mastiff→ Saint Bernard, w = 13%

10. Whippet → Italian Greyhound, w = 37%
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