Supplemental Material to:

Andresen K, Boberg KM, Vedeld HM, Honne H, Hektoen M, Wadsworth CA, et al. Novel target genes and a valid biomarker panel identified for cholangiocarcinoma, Epigenetics 2012; 7(11); http://dx.doi.org/10.4161/epi.22191

http://www.landesbioscience.com/journals/epigenetics/article/22191

d)

d)

Supplementary Appendix

Supplement A

Nucleic acid isolation

For cancer cell lines, DNA was isolated using a standard phenol/chloroform procedure and total RNA was isolated using Trizol (Invitrogen, Carlsbad, CA) according to the manufacturer's instructions. RNA quality was assessed using a 2100 bioanalyzer (Agilent Technologies, Palo Alto, CA). For fresh frozen samples, DNA was extracted from approximately 25 mg of tissue using the AllPrep DNA/RNA kit (Qiagen Inc, Valencia, CA). For archival material, DNA was isolated from five sections of paraffin embedded tissue à 20 µm, using the QIAamp DNA kit (Qiagen). Nucleic acid concentration was determined using the ND-1000 Nanodrop (NanoDrop Technologies, Wilmington, DE).

Description of the gene expression microarray analysis

Standard one-round amplification was performed using the NanoAmp RT-IVT Labeling Kit (Applied Biosystems) according to the manufacturers' protocol. Briefly, cDNA was synthesized from one µg total RNA in an oligo dT primed reaction. Labeled complementary RNA (cRNA) was obtained from double-stranded cDNA in the presence of digoxigenin (DIG)-UTP in an *in vitro* labeling reaction. Samples were hybridized to gene expression microarrays (Human Genome Survey Microarray V2.0, Applied

Biosystems) containing 32,878 oligonucleotide probes representing 29,098 individual genes. Chemoluminescense was measured using the AB1700 Chemoluminescense Analyzer (Applied Biosystems) after incubating the array with alkalic phosphatase-linked digoxygenin antibody. Probe signals were post-processed and quantile normalized using the R-script (R 2.5.0) "ABarray" file 1.2.0 and Bioconductor (www.bioconductor.org) and further analyzed in Excel (Microsoft office, version 2007). Array elements with a signal-to-noise ratio <3, and/or a flag value >8191 were discarded from further analysis.

Supplement B

CpG island search

Potential candidate genes for DNA methylation were analyzed for the presence of a CpG island in the promoter region using the CpG island searcher algorithm.¹⁷ Default criteria were used for CpG island detection.¹⁸

Bisulfite treatment of DNA

Bisulfite treatment of DNA results in the conversion of unmethylated but not methylated cytosines to uracil.^{19,20} DNA (1.3 μ g) was bisulfite treated using the EpiTect bisulfite kit (Qiagen) according to manufacturers' protocol. Desulfonation and washing steps were performed using a QIAcube (Qiagen) and the bisulfite treated DNA was eluted in 40 μ l elution buffer.

Qualitative methylation-specific polymerase chain reaction (MSP)

MSP primers were designed in close proximity of the transcription start site, according to the Human Genome browser (genome.ucsc.edu), using the Methyl Primer Express Software v1.0 (Applied Biosystems). Primers were purchased from MedProbe (MedProbe, Oslo, Norway). Two pairs of primers were used to amplify the loci of interest, one specific for methylated and one specific for unmethylated template. The MSP reaction consisted of one unit HotStarTaq DNA polymerase (Qiagen), 1×PCR buffer (Tris-Cl, KCl(NH₄)₂SO₄, 15 mM MgCl₂; pH 8.7; Qiagen), 200 µM of each dNTP (Amersham Biosciences, Piscataway, NJ, USA), primers (800 pM each) and 24 ng of bisulfite treated template DNA in a total volume of 25 µl. All MSP reactions were optimized with respect to MgCl₂ concentration, annealing temperature and elongation time (Supplementary Table 4). In addition, the following control experiments were performed for each MSP assay; bisulfite treated and non-bisulfite treated normal lymphocyte DNA was applied in the methylated reaction, and completely methylated DNA was applied in the unmethylated reaction. Thermal cycling (Tetrad 2, Bio-Rad, CA, USA) was performed at 95C° for 15 minutes and 35 subsequent cycles (30 seconds at 95°C, 30 seconds at variable annealing temperatures (Supplementary Table 4), and 30-60 seconds elongation at 72°C) with a final extension of seven minutes at 72°C. Human placental DNA (Sigma Chemical Co, St Louis, MO) treated in vitro with SssI methyltransferase (New England Biolabs Inc., Beverly, MA) was used as positive control for the methylated reaction and DNA from normal lymphocytes was used as a positive control for the unmethylated reaction. Water, replacing the template, was used as a negative control in both reactions. MSP products were mixed with five µl gel loading buffer (1 x TAE buffer, 20% Ficoll; Sigma Aldrich, and 0.1% xylen cyanol; Sigma Aldrich) and loaded onto a

2% agarose gel (BioRad, Hercules, CA, USA) in 1 x TAE buffer with ethidium bromide (Sigma Aldrich). Electrophoresis was performed at 200V for 25 minutes before MSP products were visualized by UV irradiation using a Gel Doc XR+ (BioRad). All results were verified by a second independent round of MSP and scored independently by two authors (KA and HMV). In cases of discrepancies, a third round of analysis was performed. Scoring was performed using the methylated band intensities of positive controls as a reference. In tissue samples, the methylated band intensities were scored on a scale from zero to five. Tumor samples were only considered methylated when band intensities were equal to or stronger than three. For non-malignant samples, methylated band intensities equal to or stronger than three were scored as methylated, while methylated band intensities equal to or below two were scored as weakly methylated. Only non-malignant samples with the absence of a band in the methylated reaction (intensity 0) were scored as unmethylated.

Direct DNA bisulfite sequencing

Fourteen cancer cell lines (colon, n=6; cholangiocarcinoma, n=6 and gallbladder carcinoma, n=2) were subjected to bisulfite sequencing. DNA bisulfite primers were designed using the Methyl Primer Express Software v1.0 (Applied Biosystems) to cover the area amplified by the MSP. The experimental procedure has been published previously.²¹ Briefly, fragments were amplified for 35 cycles using HotStarTaq (Qiagen) and purified using ExoSAP-IT, according to the protocol of the manufacturer (GE Healthcare, USB Corporation, Ohio, USA). Sequencing was performed using the dGTP BigDye Terminator Cycle Sequencing Ready Reaction kit on the AB Prism 3730 (Applied Biosystems). Bisulfite-treated completely methylated DNA (CpGenome Universal Methylated DNA,

Millipore, MA, USA) and DNA from normal lymphocytes served as positive and negative controls, respectively. In accordance with a previous report²², the amount of methylcytosine of each CpG site was calculated by the peak height ratio of the cytosine signal versus the sum of cytosine and thymine signal. Methylation of individual CpG sites was determined after the following criteria: 0-0.2 was unmethylated, 0.21-0.8 was partially methylated and 0.81-1.0 was scored as methylated.

Quantitative methylation-specific polymerase chain reaction (qMSP)

Primers and probes were designed using Primer Express v3.0 and purchased from Medprobe and Applied Biosystems, respectively. All qMSP reactions were carried out in triplicates in 384-well plates. The total reaction volume was 20 μ l, and included 0.9 μ M of each primer, 0.2 μ M probes (labelled with 6-FAM and a non-fluorescent quencher), 30 ng bisulfite treated template and 1x TaqMan Universal PCR master mix NoAmpErase UNG (Applied Biosystems). Amplification was performed at 95°C for 15 minutes before 45 cycles of 15 seconds at 95°C and 1 minute elongation at 60 °C, using the TaqMan 7900HF (Applied Biosystems). Bisulfite-converted completely methylated DNA (Millipore) served as a positive control and was also used to generate a standard curve by 1:5 serial dilutions (32.5 – 0.052 ng). The ALU-C4 gene²³ was used for normalization. In addition, bisulfite treated and untreated DNA from normal lymphocytes, and water blanks were used as negative controls.

All samples were censored after cycle 35 (in accordance with Applied Biosystems protocol) and the median quantity value was used for further processing. Briefly, percent methylated reference (PMR) was calculated by dividing the GENE:ALU ratio in the sample by

the GENE:ALU ratio of the positive control (completely methylated DNA) and multiplying by 100. To ensure high specificity, individual fixed thresholds were established for each assay (one for fresh frozen material and one for archival material), using the integer above the highest PMR value across the normal samples. Samples with higher PMR values than the thresholds were scored as methylation positive. For *CDO1*, *DCLK1*, *SFRP1*, and *ZSCAN18* the thresholds for the fresh frozen sample series were 1, 2, 1, and 1, respectively. For the archival sample series, thresholds were set at 2, 2, 5, and 3, respectively.

Supplementary Figures

Supplementary Figure 1. Methylation frequencies in patient material assessed by qualitative methylation-specific polymerase chain reaction (MSP). The twelve group I genes (see figure 2) were investigated in a fresh frozen sample set. Methylation frequencies are indicated for tumor and non-malignant samples. The weakly methylated bands observed among some of the non-malignant samples (light green color) have not been included as methylated in the calculated methylation frequencies.

Supplementary Figure 2. Direct bisulfite sequencing of *CDO1*, *DCLK1* and *ZSCAN18* verified the methylation status as assessed by MSP and was concordant with qMSP. a) *CDO1*. b) *DCLK1*. c) *ZSCAN18*. For all panels, the upper line represents the individual CpG sites (vertical bars) in the fragment amplified by the bisulfite sequencing primers. Transcription start site is denoted by +1 and arrows indicate the location of MSP and the subsequently designed qMSP primers and probe. In the lower part of the panels, dark circles indicate methylated CpGs, grey circles indicate partially methylated CpGs, and white circles indicate unmethylated CpGs. The MSP column on the right side of each panel (M, U/M and U) lists the methylation status as assessed by MSP. The box plots in the rightmost column visualize the differences in qMSP PMR values between cell lines that are unmethylated (U), partially methylated (U/M) and fully methylated (M) as assessed by the MSP analysis. In general, there is a good concordance between the qualitative and quantitative results, although this is only statistically significant for *DCLK1*.

Supplementary Figure 3. Receiver operating characteristics curves for fresh frozen and archival sample series. The panels depict the resulting area under the receiver operating characteristics curve based on the PMR values for individual biomarkers in the a) fresh frozen sample series and b) archival sample series. c) and d) show the overall performance of the biomarker panel in fresh frozen and archival sample series, respectively

Reference List

- 1. Kim BH, Cho NY, Choi M, Lee S, Jang JJ, Kang GH. Methylation profiles of multiple CpG island loci in extrahepatic cholangiocarcinomas. Arch.Pathol.Lab Med. 2007; 131:923-30.
- Lee S, Kim WH, Jung HY, Yang MH, Kang GH. Aberrant CpG island methylation of multiple genes in intrahepatic cholangiocarcinoma. Am.J.Pathol. 2002; 161:1015-22.
- Yang B, House MG, Guo M, Herman JG, Clark DP. Promoter methylation profiles of tumor suppressor genes in intrahepatic and extrahepatic cholangiocarcinoma. Mod.Pathol. 2005; 18:412-20.
- Koga Y, Kitajima Y, Miyoshi A, Sato K, Kitahara K, Soejima H et al. Tumor progression through epigenetic gene silencing of O(6)-methylguanine-DNA methyltransferase in human biliary tract cancers. Ann.Surg.Oncol. 2005; 12:354-63.

- 5. Tozawa T, Tamura G, Honda T, Nawata S, Kimura W, Makino N et al. Promoter hypermethylation of DAP-kinase is associated with poor survival in primary biliary tract carcinoma patients. Cancer Sci. 2004; 95:736-40.
- Tannapfel A, Sommerer F, Benicke M, Weinans L, Katalinic A, Geissler F et al. Genetic and epigenetic alterations of the INK4a-ARF pathway in cholangiocarcinoma. J.Pathol. 2002; 197:624-31.
- Ahrendt SA, Eisenberger CF, Yip L, Rashid A, Chow JT, Pitt HA et al. Chromosome 9p21 loss and p16 inactivation in primary sclerosing cholangitis-associated cholangiocarcinoma. J.Surg.Res. 1999; 84:88-93.
- 8. Hong SM, Choi J, Ryu K, Ro JY, Yu E. Promoter hypermethylation of the p16 gene and loss of its protein expression is correlated with tumor progression in extrahepatic bile duct carcinomas. Arch.Pathol.Lab Med. 2006; 130:33-8.
- 9. Liu XF, Kong FM, Xu Z, Yu SP, Sun FB, Zhang CS et al. Promoter hypermethylation of death-associated protein kinase gene in cholangiocarcinoma. Hepatobiliary.Pancreat.Dis.Int. 2007; 6:407-11.
- Foja S, Goldberg M, Schagdarsurengin U, Dammann R, Tannapfel A, Ballhausen WG. Promoter methylation and loss of coding exons of the fragile histidine triad (FHIT) gene in intrahepatic cholangiocarcinomas. Liver Int. 2005; 25:1202-8.
- Liu XF, Zhu SG, Zhang H, Xu Z, Su HL, Li SJ et al. The methylation status of the TMS1/ASC gene in cholangiocarcinoma and its clinical significance. Hepatobiliary.Pancreat.Dis.Int. 2006; 5:449-53.

- Tischoff I, Markwarth A, Witzigmann H, Uhlmann D, Hauss J, Mirmohammadsadegh A et al. Allele loss and epigenetic inactivation of 3p21.3 in malignant liver tumors. Int.J.Cancer 2005; 115:684-9.
- Wong N, Li L, Tsang K, Lai PB, To KF, Johnson PJ. Frequent loss of chromosome 3p and hypermethylation of RASSF1A in cholangiocarcinoma. J.Hepatol. 2002; 37:633-9.
- 14. Uhm KO, Lee ES, Lee YM, Kim HS, Park YN, Park SH. Aberrant promoter CpG islands methylation of tumor suppressor genes in cholangiocarcinoma. Oncol.Res. 2008; 17:151-7.
- Isomoto H, Mott JL, Kobayashi S, Werneburg NW, Bronk SF, Haan S et al. Sustained IL-6/STAT-3 signaling in cholangiocarcinoma cells due to SOCS-3 epigenetic silencing. Gastroenterology 2007; 132:384-96.
- 16. Kim SK, Jang HR, Kim JH, Kim M, Noh SM, Song KS et al. CpG methylation in exon 1 of transcription factor 4 increases with age in normal gastric mucosa and is associated with gene silencing in intestinal-type gastric cancers. Carcinogenesis 2008; 29:1623-31.
- 17. Takai D, Jones PA. The CpG island searcher: a new WWW resource. In Silico.Biol. 2003; 3:235-40.
- Takai D, Jones PA. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc.Natl.Acad.Sci.U.S.A 2002; 99:3740-5.

- Clark SJ, Harrison J, Paul CL, Frommer M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 1994; 22:2990-7.
- 20. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc.Natl.Acad.Sci.U.S.A 1996; 93:9821-6.
- 21. Lind GE, Ahlquist T, Kolberg M, Berg M, Eknaes M, Alonso MA et al. Hypermethylated MAL gene a silent marker of early colon tumorigenesis. J.Transl.Med. 2008; 6:13.
- Melki JR, Vincent PC, Clark SJ. Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia. Cancer Res. 1999; 59:3730-40.
- Weisenberger DJ, Campan M, Long TI, Kim M, Woods C, Fiala E et al. Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res. 2005; 33:6823-36.

Supplementary tables

Supplementary Table 1: Overview of methylated genes previously identified in CCA

Gene symbol	Location	Function	Sensitivity	Specificity	Number of CCAs	Refs	

			(%)	(%)	analyzed	
APC	5q21	Cell adhesion	26-46	100, 90	72-111	1,2,3
BCL2	18q21	Apoptosis	23	97	111	1
CACNA1G	17q22	Ion channel	4	94	111	1
CDH1	16q22	Cell adhesion	22-43	100, 90	15-111	4,2,5,3,1
CDKN2A (p14 ^{ARF})	9p21	Cell cycle regulation	9-38	100	51-111	6,3,2,1
CDKN2A (p16 ^{INK4a})	9p21	Cell cycle regulation	14-77	100, 90	7-111	7,8,1,4,2,6,5,3
CDKN2B (p15 ^{INK4b})	9p21	Cell cycle regulation	51	100	72	3
CHFR	12q24	Apoptosis	5, 17	100	23, 111	1,5
DAPK1	9q34	Apoptosis	3-40	100, 93	15-79	4,9,5,3,2
FHIT	3p14	Purine metabolism	42	89	19	10
GSTP1	11q13	Drug metabolism	6-18	100, 90	72-111	1,2,3
HOXA1	7p15.2	Development	90	95	111	1
IGF2	11p15.5	Cell growth and	23	89	111	1
		differentiation				
MGMT	10q26	DNA repair	4-33	100	15-111	1,4,2,3

MINT1	22q11	Unknown	38, 41	100	79, 111	1,2
MINT12	22q11	Unknown	51	100	79	2
MINT2	22q11	Unknown	0, 7	100	79, 111	1,2
MINT25	22q11	Unknown	15	100	79	2
MINT31	22q11	Unknown	1, 15	100	79, 111	1,2
MINT32	22q11	Unknown	35	100	79	2
MLH1	3p22	DNA repair	13-47	100	15-72	4,5,3
NEUROG1	5q23	Cell differentiation	53	89	111	1
PTGS2	1q25	Biosynthesis in	5	100	79	2
		inflammation				
PYCARD	16p11	Apoptosis	36	92	36	11
RARB	3p24	Cell growth and	14-18	100	72, 111	1,3
		differentiation				
RARRES1	3q25	Membrane protein	22	97	111	1
RASSF1	3p21	Cell cycle regulation	28-73	50-100	13-111	10,1,12,5,13,3
RBP1	3q21	Retinol transport	14	100	111	1
RUNX3	1p36	Apoptosis	33, 78	100	23,111	1,5

SEMA3B	3p21	Apoptosis	100	100	15	12
SFN	1p36	Apoptosis	59	100	79	2
SFRP1	8p11	Cell growth and	63	91	41	14
		differentiation				
SOCS3	17q25	Cytokine signaling	88	100	8	15
THBS1	15q15	Cell adhesion	2-11	100	79, 111	1,2
TIMP3	22q12	Cell adhesion	1-9	100	79-111	1,2
TMEFF2	2q32.3	Cell growth and	73	92	111	1
		differentiation				
TP73	1p36	Cell cycle regulation	36	100	72	3
ZMYND10	3p21	Unknown	20	100	15	12

Genes are listed according to approved gene symbols (HUGO Gene Nomenclature Committee). Genes reported to be unmethylated are

not included in the table.

Supplementary table 2: Gene lists from Figure 2

N=30 (Up-regulated in treated cell lines and down-regulated in ICC (Miller et al.))			
Gene symbol	Description		
BDKRB1	Bradykinin receptor B1		
BEX4	Brain expressed, X-linked 4		
CALCOCO1	Calcium binding and coiled-coil domain 1		
CD01	Cysteine dioxygenase, type I		
CRISPLD2	Cysteine-rich secretory protein LCCL domain containing 2		
CSRP1	Cysteine and glycine-rich protein 1		
CXCL14	Chemokine (C-X-C motif) ligand 14		
DNAH3	Dynein, axonemal, heavy chain 3		
DPYSL3	Dihydropyrimidinase-like 3		
DUSP5	Dual specificity phosphatase 5		
FKBP1B	FK506 binding protein 1B		
GNG11	Guanine nucleotide binding protein (G protein), gamma 11		
GPR124	G protein-coupled receptor 124		

GREM1	Gremlin 1
ID3	Inhibitor of DNA binding 3, dominant negative helix-loop-helix protein
INPP5A	Inositol polyphosphate-5-phosphatase
ITPR1	Inositol 1,4,5-trisphosphate receptor, type 1
LHX6	LIM homeobox 6
LMCD1	LIM and cysteine-rich domains 1
MLLT11	Myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila); translocated to, 11
MT2A	Metallothionein 2A
PLAT	Plasminogen activator, tissue
RASIP1	Ras interacting protein 1
SERPINF1	Serpin peptidase inhibitor, clade F, member 1
STXBP1	Syntaxin binding protein 1
TCF4	Transcription factor 4
TMOD1	Tropomodulin 1
TPM2	Tropomyosin 2
ZNF331	Zinc finger protein 331
ZSCAN18	Zinc finger and SCAN domain containing 18

N=8 (Up-regulated in treated cell lines and down-regulated in ICC (Obama et al.))			
Gene symbol	Description		
FAM3B	Family with sequence similarity 3, member B		
HABP4	Hyaluronan binding protein 4		
LUM	Lumican		
MT1F	Metallothionein 1F		
MT1X	Metallothionein 1X		
RNASE4	Ribonuclease, RNase A family, 4		
SLC46A3	Solute carrier family 46, member 3		
TCN2	Transcobalamin II		

N=6 (Up-regulated in treated cell lines and down-regulated in ICC (Miller et al. and Obama et al.))

Gene symbol	Description
ATF3	Activating transcription factor 3
CTGF	Connective tissue growth factor
EGR2	Early growth response 2
PRG1	p53-responsive gene 1

PTGDS Prostaglandin D2 synthase 21kDa

TIMP3 TIMP metallopeptidase inhibitor 3

N=2 (Up-regulated in treated cell lines and down-regulated in ICC (Miller et al. and Obama et al.) and ECC (Miller

et al.))

Gene symbol	Description
CLU	Clusterin
TCN1	Transcobalamin I

N=13 (Up-regulated in treated cell lines and down-regulated in ECC and ICC (Miller et al.))

Gene symbol	Description
ASRGL1	Asparaginase like 1
C7orf58	Chromosome 7 open reading frame 58
DCLK1	Doublecortin-like kinase 1
FHL1	Four and a half LIM domains 1
IL6	Interleukin 6
KLF9	Kruppel-like factor 9
MMP1	Matrix metallopeptidase 1

Andresen et al., Supplementary

Gene symbol	Description		
N=1 (Up-regulated in treated cell lines and down-regulated in ECC (Miller et al.))			
SYT11	Synaptotagmin XI		
SFRP1	Secreted frizzled-related protein 1		
REEP1	Receptor accessory protein 1		
PDE2A	Phosphodiesterase 2A		
NR4A3	Nuclear receptor subfamily 4, group A, member 3		
NAP1L2	Nucleosome assembly protein 1-like 2		

FOLR1 Folate receptor 1

Abbreviations: ICC, intrahepatic cholangiocarcinoma; ECC, extrahepatic cholangiocarcinoma.

References:

Miller G, Socci ND, Dhall D, D'Angelica M, DeMatteo RP, Allen PJ et al. Genome wide analysis and clinical correlation of chromosomal and transcriptional mutations in cancers of the biliary tract. J.Exp.Clin.Cancer Res. 2009; 28:62.

Obama K, Ura K, Li M, Katagiri T, Tsunoda T, Nomura A et al. Genome-wide analysis of gene expression in human intrahepatic cholangiocarcinoma. Hepatology 2005; 41:1339-48.

Cell line	Medium	Additives
TFK-1	Roswell Park Memorial Institute (RPMI) 1640 medium*	Penicillin-Streptomycin-Glutamine
EGI-1	Dulbecco's Modified Eagle Medium (DMEM)*	Penicillin-Streptomycin-Glutamine
HuCCT1	Roswell Park Memorial Institute (RPMI) 1640 medium*	Penicillin-Streptomycin-Glutamine
SK-ChA-1	Minimum Essential Medium (MEM)*	Penicillin-Streptomycin-Glutamine
Mz-ChA-1	Roswell Park Memorial Institute (RPMI) 1640 medium*	Penicillin-Streptomycin-Glutamine
Mz-ChA-2	Minimum Essential Medium (MEM)*	Penicillin-Streptomycin-Glutamine
KMCU	Dulbecco's Modified Eagle Medium (DMEM)*	Penicillin-Streptomycin-Glutamine
KMBC	Dulbecco's Modified Eagle Medium (DMEM)*	Penicillin-Streptomycin-Glutamine
		and Horse Serum [*]
PaCa-2	Dulbecco's Modified Eagle Medium (DMEM)*	Penicillin-Streptomycin-Glutamine
		and MEM Non Essential Amino Ac
HPAFII	Minimum Essential Medium (MEM)*	Penicillin-Streptomycin-Glutamine
BxBc-3	Roswell Park Memorial Institute (RPMI) 1640 medium*	Penicillin-Streptomycin-Glutamine
AsPc-1	Roswell Park Memorial Institute (RPMI) 1640 medium*	Penicillin-Streptomycin-Glutamine
SW48	Dulbecco's Modified Eagle Medium: Nutrient Mixture F-	Penicillin-Streptomycin-Glutamine
	12 (D-MEM/F12) [*]	
SW480	Dulbecco's Modified Eagle Medium: Nutrient Mixture F-	Penicillin-Streptomycin-Glutamine
	12 (D-MEM/F12) [*]	
RKO	Dulbecco's Modified Eagle Medium: Nutrient Mixture F-	Penicillin-Streptomycin-Glutamine
	12 (D-MEM/F12) [*]	
HCT15	Dulbecco's Modified Eagle Medium: Nutrient Mixture F-	Penicillin-Streptomycin-Glutamine

Supplementary Table 3: Culturing conditions of cancer cell lines

12 (D-MEM/F12)*

LS1034	Dulbecco's Modified Eagle Medium: Nutrient Mixture F-	Penicillin-Streptomycin-Glutamine
	12 (D-MEM/F12)*	

HT29 Dulbecco's Modified Eagle Medium: Nutrient Mixture F- Penicillin-Streptomycin-Glutamine 12 (D-MEM/F12)^{*}

HB8065	Minimum Essential Medium (MEM)*	Penicillin-Streptomycin-Glutamine
JHH-1	William's Medium E [*]	Penicillin-Streptomycin-Glutamine
JHH-4	Minimum Essential Medium (MEM)*	Penicillin-Streptomycin-Glutamine
JHH-5	William's Medium E [*]	Penicillin-Streptomycin-Glutamine
Panc-1	Dulbecco's Modified Eagle Medium (DMEM)*	Penicillin-Streptomycin-Glutamine
CFPAC-1	Iscove's Modified Dulbecco's Medium (IMDM) [#]	Penicillin-Streptomycin-Glutamine

Medium and additives were added according to requirements for each cell line.

*Gibco, Invitrogen, Carlsbad, CA, USA

[#]ATCC, Manassas, VA, USA

																v
Cell	AM	CSF1	D13S	D16S	D18	D198	D21	D2S1	D3S1	D5S	D7S	D8S1	FG	TH	ТР	W
line	EL	РО	317	539	S51	433	S11	338	358	818	820	179	А	01	OX	A
KM	v	12	11	10	12	14,	20	17	15	12,	10,	10 14	22	0.2	8,	16
BC	л	12	11	10	15	15.2	29	17	15	13	12	10, 14	22	9.5	11	10
КМ					14,	13,	30,			10,	10,		22,		8,	14,
CH-1	XY	11	10	9	17	14.2	32.2	22, 25	16	12	12	10, 16	23	9	11	18,
																19
SK-						13.2				11						14
ChA-	Х	12, 13	11, 12	9, 13	16	13.2,	28	25	15	11,	10	13, 14	25	6	8	14,
1						14				13						18
Mz-																
ChA-	Х	11	8, 10	11, 12	14	13, 15	28	16, 24	15	11	13,	13	20,	7	8	15,
1											14		23			19
Mz-																
ChA-	Х	12	12, 13	11	15	13, 16	28,	17, 26	18	10	11,	13	22,	8	8,	15,
2							30				12		24		11	17

Supplementary Table 4: Cancer cell line genotypes

Genotypes for non-commercial cell lines (listed here) were obtained using the AmpFLSTR Identifiler PCR Amplification Kit (Applied Biosystems). The size of the analyzed short tandem repeats (STR), analyzed by PCR and subsequent fragment analysis, are shown for each loci. Amelogenin (Amel) is a gender-determining locus

							El.	
					An.	Mg	Tim	
			Frg.		Те	Cl₂	е	
			Size	Fragmen	mp	(m	(sec	Accession
Primer set	Sense primer	Antisense primer	(bp)	t location	(°C)	M))	number
ASRGL1_MSP_	GAGATAGGTGCGCGTT	ACAACGATTCTACGCCT		+60 to				NM_001083
М	AGTC	ACG	91	+151	57	1.5	30	926
ASRGL1_MSP_	AGTGAGATAGGTGTGT	ACAACAATTCTACACCT		+57 to				
U	GTTAGTT	ACACAC	94	+151	57	1.5	30	
	AGCGAGTACGTATATTT	AAAACGAAACCGAAAA		-221 to -				NM_001040
ATF3_MSP_M	GGC	CG	174	47	53	1.5	30	619
	AGTAGTGAGTATGTATA	АССААААСААААССААА		-224 to -				
ATF3_MSP_U	TTTGGT	AACA	180	44	53	1.5	30	
	AGGGGTTGATTCGAAA	TCTAACGCCAAAACGAA		-90 to				NM_001080
BEX4_MSP_M	GTTTC	ACA	132	+42	55	1.5	30	425
	GATAGGGGTTGATTTGA	ΑΑCTCTAACACCAAAAC		-93 to				
BEX4_MSP_U	AAGTTTT	ААААСА	138	+45	55	1.5	30	
CALCOCO1_M	TACGTTTTTTAGGATGT	CTTTTACCGCTACGTACT						
SP_M	CGC	CG	116	-118 to -2	55	1.5	30	NM_020898
CALCOCO1_M	AATTATGTTTTTTAGGAT	CCCTTTTACCACTACATA						
SP_U	GTTGT	СТСАА	121	-121 to 0	55	1.5	30	
	TTGGGACGTCGGAGAT	GACCCTCGAAAAAAAAA						
CDO1_MSP_M	AAC	CGA	145	-153 to -8	53	1.5	30	NM_001801
	TTTTTGGGATGTTGGAG	ААСССТСАААААААААА						
CDO1_MSP_U	ΑΤΑΑΤ	СААААС	148	-156 to -8	53	1.5	30	
	TTTTTTTTGTTTAYGTTTT	ACAAATCAAATTCAAAT		-280 to				
CDO1_BS	А	СТ	350	+70	49	1.7	30	
CLU_MSP_M	TTTTTTTTTTTGGAAGCG	AAAAAATACCGCGAAA	165	-147 to	52	2.4	30	NM_001831

Supplementary Table 5: Primer sequences, fragment size, and PCR conditions

	тс	AAC		+18				
	GGTTTTTTTTTTTGGAA	ССААААААТАССАСААА		-150 to				
CLU_MSP_U	GTGTT	ΑΑΑCΑ	170	+20	52	2.4	30	
CRISPLD2_MS		ACTCAACGTACCGCCTC						
P_M	TTCGTTTATTCGGCGTTC	тт	172	-178 to -6	52	1.5	30	NM_031476
CRISPLD2_MS	TTTTTTGTTTATTTGGTG	ΑΑΑΑCTCAACATACCAC						
P_U	ттт	СТСТТ	178	-181 to -3	52	1.5	30	
CSRP1_MSP_	ACGTGTAAGACGTTTTT	AACCCGACGATACTACC		-126 to				
М	CGC	СТС	147	+21	55	1.7	30	NM_004078
	GTATGTGTAAGATGTTT	ΑΑСССААСААТАСТАСС		-128 to				
CSRP1_MSP_U	TTTGT	СТССТ	149	+21	56	1.5	30	
	TCGGAGCGTATAAAAGT	CTATCGACCGAAACGAC		-34 to				
CTGF_MSP_M	ттс	TAC	122	+88	56	2.5	30	NM_001901
	GTTTGGAGTGTATAAAA	СТАТСААССААААСААС		-36 to				
CTGF_MSP_U	GTTTT	TACCA	124	+88	56	2.5	30	
DCLK1_MSP_	GCGTTTTGTTAAGAAGG	ACGCGCTCCCTTTTCTTA		-127 to -				
М	GC	т	108	19	53	1.5	30	NM_004734
	GTGTTTTGTTAAGAAGG	ACACACTCCCTTTTCTTA		-127 to -				
DCLK1_MSP_U	GT	т	108	19	53	1.5	30	
	AAGATTATTTGTGGGGA	ΑΑCCTCTCTCCCAAAA		-247 to				
DCLK1_BS	TTAGG	ΑΑΑΑ	271	+24	57	1.5	30	
DUSP5_MSP_	GAGTGAGTTTTTTAGCG	ATAAATACCGTCCGTAA		-192 to				
М	AAGC	CGC	198	+6	52	1.5	30	NM_004419
DUSP5_MSP_	GAGTGAGTTTTTTAGTG	ΑΤΑΑΑΤΑCCATCCATAA		-192 to				
U	AAGT	CAC	198	+6	52	1.5	30	
	TATATGGGTAGCGACGT	TCGCCGAACTATTAATC						NM_001136
EGR2_MSP_M	TAC	ΑΑΤΤΑ	104	-108 to -4	52	2.0	30	177
	TTATATATGGGTAGTGA	СССТСАССАААСТАТТА						
EGR2_MSP_U	TGTTAT	ΑΤCAATTA	110	-111 to -1	52	1.5	30	

Andresen et al., Supplementary

FAM3B_MSP_	GGGGAACGGGTTTATTT	GCGACCAATCGAACAAA		-120 to				
М	ттс	т	137	+17	53	1.5	30	NM_058186
FAM3B_MSP_	GGGGAATGGGTTTATTT	ΑCAACCAATCAAACAAA		-120 to				
U	ттт	т	137	+17	53	1.5	30	
	TCGTGTAGTGGGTAGA	CTCCGCCGAACGATAAA		-160 to				
FHL1_MSP_M	GTTC	т	165	+5	57	1.5	30	NM_001449
	TTTTTGTGTAGTGGGTA	CCCCTCCACCAAACAAT		-163 to				
FHL1_MSP_U	GAGTTT	AAAT	171	+8	57	1.5	30	
FKBP1B_MSP_	GGTTCGTTAATAGTCGG	CTAAAATCGAAACCTAC		-158 to -				
М	GC	GCG	126	32	55	2.0	30	NM_054033
FKBP1B_MSP_	TTAGGTTTGTTAATAGT	ΑСТААААТСААААССТА		-161 to -				
U	TGGGT	САСААА	130	31	52	1.5	30	
GNG11_MSP_	TCGGATGTGATTTGGAA	CGCGAAAAACGACTAA		-48 to				
М	AC	ACT	112	+64	56	1.5	30	NM_004126
GNG11_MSP_	ATTTGGATGTGATTTGG	СССАСААААААСААСТА		-50 to				
U	AAAT	AACT	116	+66	56	1.5	30	
GPR124_MSP_	GGGTTTAGGTTTGGTCG	CCGCTCCGTACCATAAA						
М	с	ТАА	119	-124 to -5	55	2.5	30	NM_032777
GPR124_MSP_	AGAGGGTTTAGGTTTG	CCACCACTCCATACCAT						
U	GTTGT	ΑΑΑΤΑΑ	125	-127 to -2	55	1.5	30	
GREM1_MSP_	AGTAGATAAAGAGGCG	AAATACCGACGACAAAA		-198 to -				
М	AGGC	CG	172	26	53	1.5	30	NM_013372
GREM1_MSP_	GGGAGTAGATAAAGAG	ΑΑΑΤΑCCAACAACAAAA		-201 to -				
U	GTGAGGT	CACAA	175	26	53	1.5	30	
HABP4_MSP_	CGTGACGTGATAGTAGT	CTATCCGACCCCTACCG		-115 to				
М	CGGTC	AC	149	+34	58	1.5	30	NM_014282
HABP4_MSP_	GTGTGATGTGATAGTAG	CCTATCCAACCCCTACC		-116 to				
U	TTGGTT	AAC	151	+35	59	1.5	30	
ID3_MSP_M	TTCGGAGGAGTTGTGGT	CGCTAATACCGAAAAAA	173	-32 to	55	1.5	30	NM_002167

	тс	AACG		+141				
	GATTTTGGAGGAGTTGT	САСТААТАССААААААА		-35 to				
ID3_MSP_U	GGTTT	AACAAAC	176	+141	55	1.5	30	
INPP5A_MSP_	TTAGCGGATTTAATGGT	TAACCGAAACTCCGACC		-20 to				
М	TGC	тс	113	+93	50	1.5	30	NM_005539
INPP5A_MSP_	TTAGTGGATTTAATGGT	ТААССААААСТССААСС		-20 to				
U	TGT	тс	113	+93	50	1.5	30	
	ATTTAGGGTTTAGTTCG	ACACTTTAAAACGACTC		-146 to				
ITPR1_MSP_M	GGC	CGAA	148	+2	55	2.5	30	NM_002222
	TTTATTTAGGGTTTAGTT	ΑCTACACTTTAAAACAA		-149 to				
ITPR1_MSP_U	TGGGT	СТССААА	154	+5	55	2.0	30	
	TGCGGTTGTGGTTTTTT	CCGAAACGACGTTCTCA		-69 to				
LHX6_MSP_M	с	т	100	+31	54	1.5	30	NM_014368
	TATTGTGGTTGTGGTTT	ACACCAAAACAACATTC		-72 to				
LHX6_MSP_U	ттттт	ТСАТ	106	+34	54	1.5	30	
LMCD1_MSP_	GGTAGTCGGCGTTTAGT	CGCAACTAAACCGCTTT		-176 to -				
М	ттс	AAT	165	11	55	1.5	30	NM_014583
LMCD1_MSP_	TAGGGTAGTTGGTGTTT	ΑΑΑCΑCΑΑCΤΑΑΑCCAC						
U	AGTTTT	TTTAAT	171	-179 to -8	55	1.5	30	
MLLT11_MSP_	TTTTTCGGGTTAGTTTTG	AACCGAACGAATTTCGT						
М	С	AAT	110	-118 to -8	51	1.8	30	NM_006818
MLLT11_MSP_	GGGTTTTTTGGGTTAGT	CCAAACCAAACAAATTT						
U	TTTGT	САТААТ	116	-121 to -5	52	1.5	30	
	GTTTAGGGGATTTTGCG	ACAACCGACCGCTACTT		-110 to				
MT1F_MSP_M	ттс	ТАА	147	+37	55	1.5	30	NM_005949
	GTTTAGGGGATTTTGTG	ACAACCAACCACTACTT		-110 to				
MT1F_MSP_U	ттт	ТАА	147	+37	55	1.5	30	
	GGTTTACGGGTTGTTGT	AAAAACCGACGACTCTC						
MT1X_MSP_M	ATTC	ттт	129	-136 to -7	55	1.5	30	NM_005952

	GGGTTTATGGGTTGTTG	CAAAAACCAACAACTCT						
MT1X_MSP_U	ТАТТТ	СТТТ	131	-137 to -6	55	1.5	30	
MT2A_MSP_	GTGTGTAGAGTCGGGT	AAAACCGAAACGAATAC		-108 to -				
М	GC	ΑΑΑΑ	132	240	55	1.5	30	NM_005953
	GTGTGTAGAGTTGGGT	ΑΑΑΑCCAAAACAAATAC		-108 to -				
MT2A_MSP_U	GT	ΑΑΑΑ	132	240	55	1.5	30	
NAP1L2_MSP_	GCGTAATTATATTGCGG	TACGTTAACCGATCCTA		+8 to				
М	ТАТС	САА	116	+124	56	1.5	30	NM_021963
NAP1L2_MSP_	GTTGTGTAATTATATTG	ΑΑCTACATTAACCAATC		+5 to				
U	TGGTATT	СТАСАА	122	+127	56	1.5	30	
NR4A3_MSP_	TTTTCGTATACGCGGAA	TCGACACGTCATTTATA		-126 to				
М	тс	CCAC	142	+16	52	1.5	30	NM_173198
NR4A3_MSP_	TTTTTTTTGTATATGTGG	СТСТСААСАСАТСАТТТА		-129 to				
U	AATT	TACCAC	148	+19	52	1.5	30	
PDE2A_MSP_	ATTAGGCGAAGTTGTCG	CGACTCGTCCGACTTAA		+10 to				NM_001143
М	С	AA	161	+171	53	1.8	30	839
PDE2A_MSP_	GGATTAGGTGAAGTTGT	ΑΑCAACTCATCCAACTT		+8 to				
U	TGT	ΑΑΑΑ	165	+173	53	1.8	30	
REEP1_MSP_	GGACGCGTTCGTTTTTA	AACCGCGACACGTTCTA		-162 to -				NM_001164
М	GTC	AC	149	13	55	2.5	30	732
	GTAGGATGTGTTTGTTT	ΑΑССАСААСАСАТТСТА		-165 to -				
REEP1_MSP_U	TTAGTT	ACAAC	152	13	55	2.5	30	
RNASE4_MSP_	TAAATTTCGGACGAGTT	TCGCGAAACAATTTATA		-143 to -				
М	ттс	тттс	101	42	53	2.5	30	NM_002937
RNASE4_MSP_	GTTTAAATTTTGGATGA	CCATCACAAAACAATTT		-146 to -				
U	GTTTTT	ΑΤΑΤΤΤΟ	107	39	53	1.5	30	
SFRP1_MSP_	TAGTAAATCGAATTCGT	TACGCGAAACTCCTACG		-138 to				
Μ	TCGC	AC	141	+3	45	1.5	30	NM_003012
SFRP1_MSP_U	TTTTAGTAAATTGAATTT	ТАСАСААААСТССТАСА	144	-141 to	45	1.5	30	

	GTTTGT	ACCAA		+3				
SLC46A3_MSP	GTTGAGTGGTTGTTCGG	CCCGACTCTCCTACGAT						
_M	тс	ТАА	151	-152 to -1	57	1.5	30	NM_181785
SLC46A3_MSP	GTGTTGAGTGGTTGTTT	TACCCAACTCTCCTACA		-154 to				
_U	GGTT	ΑΤΤΑΑ	155	+1	58	1.5	30	
SYT11_MSP_	CGTTTTGGAATTATAGC	TTCCGAATAATCCTCGA		-222 to -				
М	GC	АА	158	64	50	1.8	30	NM_152280
	TTTTGTTTTGGAATTATA	СТСТТССАААТААТССТС		-225 to -				
SYT11_MSP_U	GTGT	ΑΑΑΑ	164	61	50	1.8	30	
TCF4_MSP_M	GAATTTGTAATTTCGTG	ΑΑΑΑΑΑΑΑΤΟΤΟΟΟΤΑ		+322 to				NM_001083
*	CGTTTC	CACCG	258	+580	57	1.5	60	962
	TGAATTTGTAATTTTGT	ΑΑΑΑΑΑΑΑΤΟΤΟΟΑΤΑ		+321 to				
TCF4_MSP_U*	GTGTTTTG	CACCACC	259	+580	57	1.5	60	
	ATCGTCGGGGTTTTTTT	AACAAAAACACGACCCG						NM_001145
TPM2_MSP_M	AGTC	AC	152	-156 to -4	61	1.5	30	822
	GTATTGTTGGGGTTTTT	ΑΑΑCAAAAACACAACCC						
TPM2_MSP_U	TTAGTT	AACC	155	-158 to -3	61	1.5	30	
ZNF331_MSP_	GGTAGGACGTTTTTAGG	ATACAACTCTACACGAC		-120 to				
М	GTC	GCA	143	+23	55	1.7	30	NM_018555
ZNF331_MSP_	TAAGGTAGGATGTTTTT	ΑΑCATACAACTCTACAC		-120 to				
U	AGGGTT	AACACA	143	+23	55	1.5	30	
ZSCAN18_MSP	GTTTAAAATGACGTAGG	AATACCGCGAAACTATA		-52 to				
_M	CGTC	CCG	131	+79	55	1.8	30	NM_023926
ZSCAN18_MSP	GGTGTTTAAAATGATGT	ΑCAATACCACAAAACTA		-55 to				
_U	AGGTGTT	TACCAC	131	+79	55	1.5	30	
	TTTTGGTTGTTAGGGGT	ACCCACCTACTACRCAA		-106 to				
ZSCAN18_BS	TTATT	СТАС	302	+196	59	1.5	30	

From hg18 to hg19, the transcription start point of *DCLK1* NM_004734 was moved 50 bp upstream. The MSP primers were originally designed to be located -177 to -69 relative to the

transcription start site. *Primer sequences and amplification conditions were obtained from Kim and colleagues.¹⁶