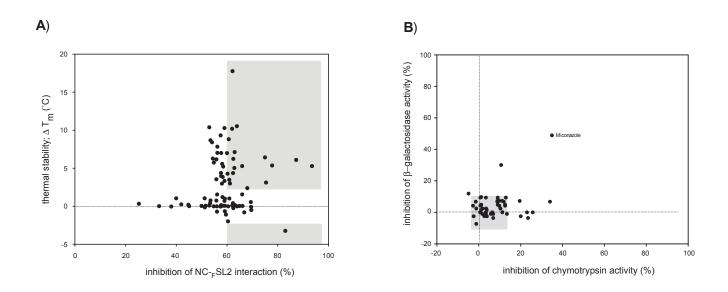
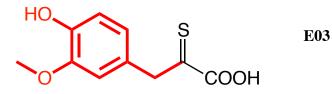

Supporting Information

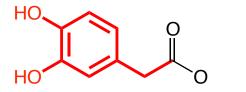
Identification of HIV-1 Inhibitors Targeting The Nucleocapsid Protein

Sebastian Breuer, Max W. Chang, Jinyun Yuan, and Bruce E. Torbett*


Department of Molecular and Experimental Medicine, The Scripps Research Institute, CA, 92037, USA

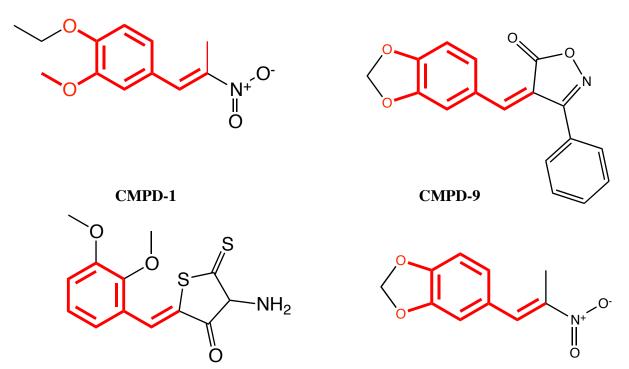
Contents	Page
Supplementary Figure 1 - Quality control and assay development of the FP-based HTS.	S2
Supplementary Figure 2 - Positive and negative hit selection.	S4
Supplementary Figure 3 - Structural comparison of small-molecule NC' inhibitor compounds.	S5
Supplementary Table 1 - Summary of mass spectrometry analyses.	S6
Supplementary Table 2 - Summary of assay results in PubChem database.	S7
References	S 8




Supplementary Figure 1. Quality control and assay development of the FP-based HTS. (A) SDS-PAGE analysis of protein samples taken during the different stages of NC' purification using affinity chromatography ~ 90 % purity. (B) MALDI Mass spectrometry analysis of NC' confirmed the correct size of the fusion protein. (C) Native PAGE analysis of the NC'-SL-2 complex. Shown is the fluorescence scan of a Native Page gel. A fluorescent protein variation of NC', GST-p2-NC-mVenus¹, was incubated with or without SL-2 DNA before analysis on a Native Page gel. The presence of SL-2 DNA stabilizes GST-p2-NC-

mVenus, which is seen as a distinct protein band in the middle gel lane. In contrast, in the absence of SL-2 DNA the GST-p2-NC-mVenus is seen only as a "smear" in the first lane of the gel. When DNAse is added to the GST-p2-NC-mVenus-SL-2 complex the DNA is digested and only a smear is seen showing the same pattern as GST-p2-NC-mVenus in lane one. (D and E) Optimization of the fluorescence polarization signal for HTS use. Shown is the influence of the detergent pluronic F127 on the H/L ratio and the signal over the time.

Supplementary Figure 2. Positive and negative hit selection. (A) Correlation of DSF-based thermal stability versus FP-based inhibition of Hits identified by NC'-_FSL-2 FP HTS. Only compounds with a $\Delta T_m \ge 2$ °C and inhibition $\ge 60 \%$ (grey shading) were selected for further evaluation. (B) Correlation of beta-galactosidase inhibition versus chymotrypsin inhibition. Compounds that showed more than 15 % inhibition (grey shading) were eliminated from further consideration. The known promiscuous inhibitor miconazole was chosen as the control for promiscuous inhibition.²



H04

compounds identified by Breuer et al., 2011

CMPD-5

Supplementary Figure 3. Structural comparison of small-molecule NC' inhibitor compounds. Structural comparison between previously identified inhibitors by Shvadchak and colleagues³ and the selected 5 compounds identified herein, similarities are emphasized by red for compounds 1, 5, 8 and 9.

Supplementary Table 1. Summary of the mass spectrometry analysis of the protein – compound complexes of compounds **1**, **5**, **8**, **9**, and **10** and NC'.

	theoretical mass of the CMPD-protein complex	analyzed mass of the CMPD- protein complex	molecular weight of the CMPD
DMSO		34056	
CMPD-1	34351.38	34117.79	295.38
CMPD-5	34349.27	34143.42	293.27
CMPD-8	34293.25	34093.29	237.25
CMPD-9	34263.19	34123.91	207.19
CMPD-10	34499.44	34140.23	443.44

Supplementary Table 2. Summary of assays results for compounds 1, 5, 8, 9, and 10 in the NCBI PubChem database^a

Name	Compound ID	Assays tested	Assays active
CMPD-1	5712383	14	0
CMPD-5	5394836	7	0
CMPD-8	5376876	8	0
CMPD-9	5375839	78	13
CMPD-10	5704563	7	1

^ahttp://pubchem.ncbi.nlm.nih.gov/

REFERENCES

(1) Breuer, S.; Sepulveda, H.; Chen, Y.; Trotter, J.; Torbett, B. E. A cleavage enzyme-cytometric bead array provides biochemical profiling of resistance mutations in HIV-1 Gag and protease. *Biochem.* **2011**, 50, 4371-4381.

(2) Seidler, J.; McGovern, S. L.; Doman, T. N.; Shoichet, B. K. Identification and prediction of promiscuous aggregating inhibitors among known drugs. *J. Med. Chem.* **2003**, 46, 4477-4486.

(3) Shvadchak, V.; Sanglier, S.; Rocle, S.; Villa, P.; Haiech, J.; Hibert, M.; Van Dorsselaer, A.; Mely, Y.; de Rocquigny, H. Identification by high throughput screening of small compounds inhibiting the nucleic acid destabilization activity of the HIV-1 nucleocapsid protein. *Biochimie.* **2009**, 91, 916-923.