
1 Mathematical details of the methods

A Method by Pepe

The method constructs a dataset with genotypes and disease status for a
hypothetical population. The method requires risk allele frequencies and
odds ratios (ORs) of the genetic variants, population disease risk, and num-
ber of individuals as input parameters. The dataset is constructed using a
simulation procedure that involves three steps:

1. Modelling genotype data: For each variant, the distribution of the
three genotypes in the hypothetical population is based on genotype
frequencies, which are calculated from the risk allele frequencies assum-
ing Hardy-Weinberg Equilibrium. Genotypes are randomly distributed
over individuals.

2. Modelling individual disease risks: Step 3 requires disease risks
to assign disease status to all individuals. Disease risks are calculated
from the logistic regression equation:

Logit(riski) = α0 +
G∑

g=1

αgKgi,

where

riski is disease risk for individual i,
α0 is log(odds of disease for those who carry zero risk alleles),
αg = log(ORg), with ORg being the OR of the risk allele of variant
g,
Kgi is the number or risk alleles (0, 1 or 2) for each variant g in
individual i.

When αg and Kgi are known, α0 is obtained by solving the logistic
regression equation such that the average risk in the hypothetical pop-
ulation is equal to the specified population disease risk. Note that the
above equation implies that the method explicitly uses weighted risk
scores (

∑G
g=1 αgKgi), defined as the sum of number of risk alleles, each

weighted by their corresponding log(OR).

3. Modelling disease status: Disease status (0 or 1) is assigned to each
individual with the probability of developing disease (1) being equal to
riski.
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The area under the receiver-operating characteristic curve (AUC) is obtained
using the method of Hanley and McNeill (1982).

B Method by Janssens

Like the method of Pepe, this method constructs a dataset with genotypes
and disease status for a hypothetical population. The method requires fre-
quencies and ORs of the genetic variants, population disease risk, and number
of individuals as input parameters. There are two differences between this
method and that of Pepe. The method of Pepe requires per allele ORs and
frequencies, where this method can handle per allele, per genotype and dom-
inant/recessive effects of the risk alleles. And the method of Pepe estimates
disease risks using the logistic regression equation, where this method follows
Bayes’ theorem. The steps are similar to the method of Pepe and include:.

1. Modelling genotype data: For each variant, the distribution of the
three genotypes is based on genotype frequencies, which can be directly
specified as input parameters or be calculated from risk allele frequen-
cies assuming Hardy-Weinberg Equilibrium. Genotypes are randomly
distributed over individuals.

2. Modelling individual disease risks: Also this method requires dis-
ease risks in step 3 to assign disease status to all individuals. Disease
risks are calculated from the posterior (disease) odds using Bayes’ the-
orem:

(posterior odds)i = (prior odds)×
G∏

g=1

LRgji

where

prior odds are given by d
1−d

, with d the population disease risk,
LRgji is the likelihood ratio for genotype j of variant g in individ-
ual i.

LRs are calculated from the frequencies and ORs of the genetic variants
and the population disease risk. Note that this method also considers
different effect sizes for genetic variants, which is similar to calculating
weighted risk scores.

3. Modelling disease status: The third step is the same as in the
method of Pepe. Disease status (0 or 1) is assigned to each individual
with the probability of developing disease (1) being equal to riski.
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The area under the receiver-operating characteristic curve (AUC) is obtained
using the method of Hanley and McNeill (1982).

C Method by Lu

The method estimates the AUC using genotype frequencies and relative risks
(RRs) or ORs of the genetic variants, and population disease risk as input
parameters. The method involves following six steps.

1. Obtaining genotype frequency in cases: When effect sizes are
specified as RRs, the method calculates the frequency of genotypes in
those who will develop the disease (D) using the equation

p(Kgj|D) =
rrgj fgj∑3
j=i rrgj fgj

,

where

rrgj is the RR for genotype j of variant g,
fgj is the frequency for variant j in genotype g in the population,
Kgj is the number of risk alleles (0, 1, 2) in genotype j of variant g
with j = 1, 2, 3.

When effect sizes are specified as ORs, the equation is

p(Kgj|D) =
p(D|Kgj)fgj

d
,

where

p(D|Kgj) is the probability of having the disease given genotype,
d is the population disease risk.

If the odds ratio for genotype j of variant g is defined as ORgj, then
p(D|Kgj) for any variant g are obtained by solving the equations

p(D|Kgj) =
ORgj p(D|Kg1)

1 +ORgj p(D|Kg1)− p(D|Kg1)
,

and
3∑

j=1

p(D|Kgj)fgj = d

where the odds ratio for the reference genotype, ORg1 = 1. Note
that the method considers different effect sizes for genetic variants and
therefore implicitly uses weighted risk scores.
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2. Frequencies of genotype combinations in the population: The
frequencies of all genotype combinations (Xn = (K1j, . . . , KGj)) in the
population are calculated as

p(Xn) =
G∏

g=1

fgj,

with n = 1, . . . , 3G.

3. Frequencies of genotype combinations conditional on disease
status: The frequencies of the genotype combinations for those who
do (D) and those who will not develop the disease (D̄) are calculated
using the equations:

p(Xn|D) =
G∏

g=1

p(Kgj|D)

and

p(Xn|D̄) =
p(Xn)− p(Xn|D)d

1− d
.

4. Likelihood ratios (LRs) of genotype combinations: The likeli-
hood ratios (LRs) are calculated as

LRn =
p(Xn|D)

p(Xn|D̄)
.

5. Obtaining true and false positive rates: The method then ar-
ranges p(Xn|D) and p(Xn|D̄) in descending order of their LRn and
calculates the true positive rate (TPR) and false positive rate (FPR)
for all cutoff values defined by LRn using the equations:

TPRn =
n∑

(n)=1

p(X(n)|D)

and

FPRn =
n∑

(n)=1

p(X(n)|D̄),

where (n) is the nth genotype combination in the sequence of descending
order of likelihood ratios.
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6. Obtaining AUC: The AUC is obtained using the trapezoidal rule:

AUC =
1

2

3G∑
n=1

(TPRn + TPRn−1)× (FPRn − FPRn−1) .

D Method by Moonesinghe

The method estimates the AUC using frequencies and RRs for dominant or
recessive effects of the genetic variants as input parameters. The method
involves two steps.

1. Constructing distributions of genotype combinations: The dis-
tributions of genotype combinations in those who will develop the dis-
ease and in those who will not are approximated by normal distributions
when the number of variants is large. When frequencies and RRs are
identical for all variants, fg = f and rrg = rr. Under this assump-
tion the mean and variance of the normal distribution are Gf ∗ and
Gf ∗(1−f ∗) in those who will develop the disease, and Gf and Gf(1−f)
for those who will not develop the disease, with f ∗ = rr f

rr f+(1−f)
.

Note that the method considers different effect sizes for genetic variants
and therefore implicitly uses weighted risk score.

2. Calculating AUC: AUC is obtained from the equation:

Φ

[
G(f ∗ − f)√

Gf ∗(1− f ∗) +Gf(1− f)

]

when RRs and frequencies are identical for all variants, or

Φ

√√√√ G∑
g=1

(f ∗
g − fg)2

f ∗
g (1− f ∗

g ) + fg(1− fg)


when RRs and frequencies differ between variants,

where

Φ is the cumulative distribution function of a standard normal
distribution,

f ∗
g is calculated in the same way as f ∗.
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E Method by Gail

The method estimates the AUC using risk allele frequencies and ORs of
genetic variants as input parameters. The method involves following four
steps:

1. Obtaining relative risks for genotype combinations: Assuming
that the disease is rare, the method computes RRs for all genotype
combinations (Xn = (K1j, . . . , KGj)) using the equation:

rr(Xn) =
G∏

g=1

(ORg)
Kgj ,

where n = 1, . . . , 3G and

Kgj is the number of risk alleles (0, 1, 2) in genotype j of variant g,

ORg is the OR of the risk allele for variant g.

Note that the above equation implies that the method explicitly uses
weighted risk scores, as

∏G
g=1(ORg)

Kgj can be rewritten in the loga-
rithmic scale as

∑G
g=1 log(ORg)Kgi. This formula defines the sum of

number of risk alleles weighted by their corresponding log(OR). This
formula is similar to that used by Pepe.

2. Obtaining distributions of relative risks: The cumulative distri-
butions of RRs in the total population (Frr(t)) and in those who will
develop the disease (FDrr(t)) are obtained from the distributions of
the genotype combinations, and calculated using the equations:

Frr(t) =
∑

Xn:rr(Xn)≤t

p(Xn)

and

FDrr(t) =

∑
Xn:rr(Xn)≤t

rr(Xn) p(Xn)∑
all Xn

rr(Xn) p(Xn)

where

t is any threshold value (here of RR),
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p(Xn) =
∏G

g=1 fgj, with fgj the frequency of genotype j in variant
g. Genotype frequencies are calculated from risk allele frequencies
assuming Hardy-Weinberg Equilibrium.

3. Calculation of absolute risks: Absolute risks are calculated by mul-
tiplying the RRs of the genotype combinations with the proportional
constant k, which is the risk of disease for those who carry zero risk
alleles. The method calculates the cumulative distributions of absolute
risks in the population (Fr(t)) and in those who will develop the disease
(FDr(t)) across all threshold values (here of absolute risk) by:

Fr(t) = Frr(t/k)

and

FDr(t) = FDrr(t/k).

4. Calculating AUC: A curve is constructed that plots [1 − FDr(t)]
against [1 − Fr(t)] across all values of the risk threshold t. The area
under this curve is similar to the AUC under the assumption that the
disease is rare.
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2 Source codes of the methods
We compared the five most common methods that estimate the AUC of pre-
diction models on the basis of epidemiological parameters. All analyses were
programmed in R. The R source codes for three methods (Pepe, Janssens
and Lu) were available online and for the two others, we programmed our
own implementations based on the equations from the papers.

A Method of Pepe

Source code:

The source code and documentation are available from http://labs.
fhcrc.org/pepe/dabs/mgrp-Main.html [accessed 16 December 2011].

Reference:

Pepe MS, Gu W, Morris DE (2010). The Potential of Genes and Other
Markers to Inform about Risk. Cancer Epidemiology, Biomarkers
and Prevention 19(3):655-665.

B Method of Janssens

Source code:

The source code (simulatedDataset) is included in the R package Pre-
dictABEL, which together with the documentation is available from
http://www.genabel.org/packages/PredictABEL [accessed 16 Decem-
ber 2011].

Reference:

Janssens AC, Aulchenko YS, Elefante S, Borsboom GJ, Steyerberg EW,
van Duijn CM. Predictive testing for complex diseases using multiple
genes: fact or fiction? Genet Med. 2006;8:395-400.

Kundu S, Aulchenko YS, van Duijn CM, Janssens AC. PredictABEL:
an R package for the assessment of risk prediction models. Eur J
Epidemiol. 2011;26:261-4.
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C Method of Lu

Source code:

The source code is available from http://darwin.cwru.edu/~qlu/
[accessed 16 December 2011].

Reference:

Lu Q, Elston RC. Using the optimal receiver operating characteristic
curve to design a predictive genetic test, exemplified with type 2 dia-
betes. Am J Hum Genet. 2008;82:641-51.

D Method of Moonesinghe

Source code when odds ratio (OR) and frequency are the same for
all variants considered.

Arguments

Pg Frequency of risk alleles

d Population disease risk (prevalence)

ORg Odds ratio (OR) of risk alleles

g Number of genetic variants included

Value

AUCDom Estimate AUC assuming dominant effects of the risk al-
leles

AUCRec Estimate AUC assuming recessive effects of the risk al-
leles

Example

AUCMoonesinghe (Pg=.25, d=.25, ORg=2, g=50)

Function
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AUCMoonesinghe <- function (Pg,d,ORg,g)
{
#============================================================
# Reconstruct 2*3 table from allelic OR and p to obtain data
# for calculating dominant/recessive RR and frequencies
#============================================================
reconstruct.2x3tableHWE <- function (OR,p,d){
OR1 <- OR
OR2 <- OR^2
p1 <- 2*p*(1-p)
p2 <- p*p
a <- .00001
eOR <- 0
while (eOR<=OR2){
b <- p2*(1-d)
snew <- 1-a-b
p1new <- p1/(1-p2)
dnew <- (d-(a)) / ((d-(a))+ ((1-d)-b))
c <- (OR1*p1new*snew*(1-dnew)*dnew*snew) / ((1-p1new)*snew*(1-

dnew)+OR1*p1new*snew*(1-dnew))
dd <- p1new * ((1-d)-b)
e <- (d-a)-c
f <- ((1-d)-b) - dd
eOR <- (a*f) / (b*e)
tabel <- cbind(a, b, c, dd, e, f, OR1, OR2)
a <- a + .00001
tabel }

tabel }
tab3x2 <- reconstruct.2x3tableHWE(OR=ORg, p=Pg, d=d)
FreqDom <- (tab3x2[1] + tab3x2[2] + tab3x2[3] + tab3x2[4])
FreqRec <- (tab3x2[1] + tab3x2[2])
RRDom <- ((tab3x2[1] + tab3x2[3]) / (tab3x2[1] + tab3x2[2] + tab3x2[3]

+ tab3x2[4])) / (tab3x2[5]/(tab3x2[5] + tab3x2[6]))
RRRec <- (tab3x2[1] / (tab3x2[1] + tab3x2[2])) / ((tab3x2[3] + tab3x2

[5]) / (tab3x2[3] + tab3x2[4] + tab3x2[5] + tab3x2[6]))
#============================================================
# Obtain AUC by Moonesinghe's formula
#============================================================
GstarDom <- (FreqDom*RRDom) / ( (FreqDom*RRDom)+(1-FreqDom) )
GstarRec <- (FreqRec*RRRec) / ( (FreqRec*RRRec)+(1-FreqRec) )
xDom <- (g * (GstarDom-FreqDom)) / sqrt((g*GstarDom*(1-GstarDom)) + (g*

FreqDom*(1-FreqDom)))
xRec <- (g *(GstarRec-FreqRec)) / sqrt((g*GstarRec*(1-GstarRec)) + (g*

FreqRec*(1-FreqRec)))
AUCDom <- pnorm(xDom)
AUCRec <- pnorm(xRec)
list(AUCDom=AUCDom, AUCRec=AUCRec)

}
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Source code when odds ratios and frequencies differ between
variants.

Arguments

ORg Matrix with ORs of the genetic variants. The matrix
contains two columns and the number of rows is same
as the number of genetic variants considered. Genetic
variants can be specified as per genotype, per allele, or
as dominant/recessive effect of the risk allele. When per
genotype data are used, OR of the heterozygous and ho-
mozygous risk genotypes are mentioned in the first and
second columns. When per allele data are used, the
ORs of the risk allele are specified in the first column
and the second column is coded as 1. When dominan-
t/recessive effects of the risk alleles are used, the OR of
the dominant/recessive variant are specified in the first
column, and the second column is coded as 0.

Pg Matrix with frequencies of the genetic variants. The
matrix contains two columns and the number of rows is
same as the number of genetic variants considered. Like
ORg, the frequencies can be specified as per genotype,
per allele, or as dominant/ recessive effect of the risk
allele, and the corresponding coding is same as indicated
in ORg.

d Population disease risk (prevalence)

Value

AUCDom Estimate AUC assuming dominant effects of the risk al-
leles

AUCRec Estimate AUC assuming recessive effects of the risk al-
leles

Example

# specify the matrix containing the ORs of genetic variants.
# In this example per allele effects of the risk variants are used
OR<-cbind(c(1.35,1.20,1.24,1.16), rep(1,4))

# specify the matrix containing the frequencies of genetic variants
p<-cbind(c(.41,.29,.28,.51),rep(1,4))
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# Obtain the AUC
AUCMoonesinghe(Pg=p,d=.10,ORg=OR)

Function

AUCMoonesinghe <- function (ORg,Pg,d)
{
#=========================================================
# Reconstruct 2*2 table from dominant/recessive ORs and
# frequencies to obtain data for calculating
# dominant/recessive RR
#=========================================================
reconstruct.2x2table <- function(p,d,OR)
{
a <- 0
b <- 0
c <- (OR*p*(1-d)*d)/((1-p)*(1-d)+OR*p*(1-d))
dd <- p-c
e <- d-c
f <- (1-p)-e
tabel <- cbind(a,b,c,dd,e,f,OR)
tabel

}

#============================================================
# Reconstruct 2*3 table from genotypic OR and p to obtain
# data for calculating dominant/recessive RR and frequencies
#============================================================
reconstruct.2x3table <- function(OR1,OR2,p1,p2,d){
a <- .00001
eOR <- 0
while (eOR<=OR2){
b <- p2*(1-d)
snew <- 1-a-b
p1new <-p1/(1-p2)
dnew <- (d-(a)) / ((d-(a))+ ((1-d)-b))
c <- (OR1*p1new*snew*(1-dnew)*dnew*snew) / ((1-p1new)*snew*(1-

dnew)+OR1*p1new*snew*(1-dnew))
dd <- p1new * ((1-d)-b)
e <- (d-a)-c
f <- ((1-d)-b) - dd
eOR <- (a*f) / (b*e)
tabel <- cbind(a, b, c, dd, e, f, OR1, OR2)
a <- a + .00001
tabel

}
tabel
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}

#============================================================
# Reconstruct 2*3 table from allelic OR and p to obtain data
# for calculating dominant/recessive RR and frequencies
#============================================================
reconstruct.2x3tableHWE <- function (OR,p,d){
OR1 <- OR
OR2 <- OR^2
p1 <- 2*p*(1-p)
p2 <- p*p
a <- .00001
eOR <- 0
while (eOR<=OR2){
b <- p2*(1-d)
snew <- 1-a-b
p1new <-p1/(1-p2)
dnew <- (d-(a)) / ((d-(a))+ ((1-d)-b))
c <- (OR1*p1new*snew*(1-dnew)*dnew*snew)/((1-p1new)*snew*(1-dnew)

+OR1*p1new*snew*(1-dnew))
dd <- p1new * ((1-d)-b)
e <- (d-a)-c
f <- ((1-d)-b)-dd
eOR <- (a*f)/(b*e)
tabel <- cbind(a, b, c, dd, e, f, OR1, OR2)
a <- a + .00001
tabel

}
tabel

}

#======================================
# Obtain AUC by Moonesinghe's formula
#======================================
FreqDom <- NULL
FreqRec <- NULL
RRDom <- NULL
RRRec <- NULL
GstarDom <- NULL
GstarRec <- NULL
xDom <- NULL
xRec <- NULL
for(i in 1:dim(ORg)[1])
{
tab3x2 <- if(Pg[i,2]==0)
{
reconstruct.2x2table(p=Pg[i,1], d, OR=ORg[i,1])

}
else
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{
if(Pg[i,2]==1)
{
reconstruct.2x3tableHWE(OR=ORg[i,1], p=Pg[i,1], d)

}
else
{
reconstruct.2x3table(OR1=ORg[i,1], OR2=ORg[i,2], p1=Pg[i,1],

p2=Pg[i,2], d)
}

}
if((tab3x2[1]==0 && tab3x2[2]==0) )
{
FreqDom[i] <- (tab3x2[3]+tab3x2[4])
FreqRec[i] <- FreqDom[i]
RRDom[i] <- ((tab3x2[3])/(tab3x2[3]+tab3x2[4]))/(tab3x2[5]/(

tab3x2[5]+tab3x2[6]))
RRRec[i] <- RRDom[i]

}
else
{
FreqDom[i] <- (tab3x2[1]+tab3x2[2]+tab3x2[3]+tab3x2[4])
FreqRec[i] <- (tab3x2[1]+tab3x2[2])
RRDom[i] <- ((tab3x2[1]+tab3x2[3])/(tab3x2[1]+tab3x2[2]+tab3x2

[3]+tab3x2[4]))/(tab3x2[5]/(tab3x2[5]+tab3x2[6]))
RRRec[i] <- (tab3x2[1]/(tab3x2[1]+tab3x2[2]))/((tab3x2[3]+tab3x2

[5])/(tab3x2[3]+tab3x2[4]+tab3x2[5]+tab3x2[6]))
}

GstarDom[i] <- (FreqDom[i]*RRDom[i]) / ( (FreqDom[i]*RRDom[i])+(1-
FreqDom[i]))

GstarRec[i] <- (FreqRec[i]*RRRec[i]) / ( (FreqRec[i]*RRRec[i])+(1-
FreqRec[i]))

xDom[i] <- (GstarDom[i] -FreqDom[i])^2/ ((GstarDom[i]*(1-GstarDom[i
]))+(FreqDom[i]*(1-FreqDom[i])))

xRec[i] <- (GstarRec[i] -FreqRec[i])^2/ ((GstarRec[i]*(1-GstarRec[i
]))+(FreqRec[i]*(1-FreqRec[i])))

}
AUCDom <- pnorm(sqrt(sum(xDom)))
AUCRec <- pnorm(sqrt(sum(xRec)))
list(AUCDom=AUCDom, AUCRec=AUCRec)

}

Reference:

Moonesinghe R, Liu T, Khoury MJ. Evaluation of the discriminative
accuracy of genomic profiling in the prediction of common complex dis-
eases. Eur J Hum Genet. 2010;18:485-9.
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E Method of Gail

Arguments

Pg Frequency of risk alleles

ORg Odds ratio (OR) of risk alleles

g Number of genetic variants included

Value
AUCintegrate

Estimate the area under the ROC curve using integra-
tion

AUCtrapizoidal
Estimate the area under the ROC curve using trape-
zoidal rule

Example

# when OR and frequency are same for all variants
AUCGail (Pg=.05, ORg=2, g=6)

# when OR and frequency are different for all variants
AUCGail (Pg=c(.05,.1,.12,.14), ORg=c(1.2,1.4,1.1,1.5), g=4)

Function

AUCGail <- function (Pg,ORg,g)
{
# if same OR and frequencies, run:
p <- as.matrix(rep(Pg,g))
OR <- as.matrix(rep(ORg,g))

# if different ORs and frequencies, remove # and run:
# p <- as.matrix(Pg)
# OR <- as.matrix(ORg)

# warning: setting the following 'Max' value to a large
# value can cause the program to run out of memory
Max <- dim(p)[1]
if(Max>14) {Max=14}
Fp <- c()
for(i in 1:dim(p)[1])
{
Fp <- rbind(Fp, c(p[i,1]^2,(2*p[i,1]*(1-p[i,1])),(1-p[i,1])^2))
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}
Fc <- c()
for(i in 1:dim(OR)[1])
{
Fc <- rbind(Fc, c(OR[i,1]^2,OR[i,1],1))

}
Dc <- Dp <- 1
for(i in 1:Max)
{
Dc <- as.vector(outer(Dc, Fc[i,]))
Dp <- as.vector(outer(Dp, Fp[i,]))

}
Tab <- data.frame (cbind("Freq"=Dp, "RR"=Dc))
dim(Tab)
attach(Tab)
Frr <- function(number, Table)
{
TableSub <- Table[Table$RR <= number,]
sum(TableSub$Freq)

}
FDr <- function(k, number, Table)
{
TableSub <- Table[(k*Table$RR) <= number,]
s1 <- sum(apply(TableSub, 1, prod))
s2 <- sum(apply(Table, 1, prod))
s1/s2

}
FDrr <- function(number, Table)
{
TableSub <- Table[Table$RR <= number,]
p1 <- sum(apply(TableSub, 1, prod))
p2 <- sum(apply(Table, 1, prod))
p1/p2

}
k <- 1
memory.size(max = TRUE)
RealNumbers <- k * c(min(Tab$RR)-1, sort(unique((Tab$RR))), max(Tab$RR)

+1)
Frt <- NULL
FDrt <- NULL
Frrt <- NULL
FDrrt <- NULL
for(i in 1:length(RealNumbers))
{
memory.size(max = TRUE)
Frrt[i] <- Frr(number=(RealNumbers[i]), Table=Tab)
Frt[i] <- Frr(number=(RealNumbers[i]/k), Table=Tab)
FDrt[i] <- FDr(k=k, number=RealNumbers[i], Table=Tab)
FDrrt[i]<- FDrr(number=(RealNumbers[i]), Table=Tab)
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}

plot(0, 0, xlim = c(0, 1), ylim = c(0, 1), type = 'l',
main = "ROC like curve using Gail's model", xlab="1 - Fr(t)",
ylab = "1 - FDr(t)", pty = 's')

segments(0, 0, 1, 1, col = 1)
lines(1-Frt, 1-FDrt, type = 'l', col = 2, lwd = 2)

# There are two ways to obtain AUC, i.e. by integration or by
# using the trapezoidal rule. Both methods yield similar results.
# We report results from trapezoidal rule in the paper.
AUC1 <- integrate( approxfun(Frt, (1-FDrt)), 0, 1)

trapz <- function (x, y)
{
idx = 2:length(x)
return(as.double((x[idx] - x[idx - 1]) %*% (y[idx] + y[idx -1]))/2)

}
AUC2 <- trapz(x=Frt, y= (1-FDrt)) # AUC using tripezoidal rule
list(AUCintegrate=AUC1, AUCtrapizoidal=AUC2)

}

Note We used k = 1 in the calculation of the AUC values, which means
that we calculated AUC from the distributions of relative risks instead of
the distributions of predicted disease risks. This choice does not impact the
estimates.

Reference:

Gail MH.Discriminatory accuracy from single-nucleotide polymorphisms
in models to predict breast cancer risk. J Natl Cancer Inst. 2008;
100: 1037-41.
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