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1. The experiment protocol of E2-stimulated time-series ERα ChIP-seq: 

MCF7 cells were maintained in a hormone-free medium (phenol red–free MEM with 2 mmol/L 

L-glutamine, 0.1 mmol/L nonessential amino acids, 50 units/mL penicillin, 50 Ag/mL streptomycin, 

6 ng/mL insulin, and 10% charcoal-stripped FBS) for three days. 

MCF7 cells were treated with DMSO (as 0 hour time point) or E2 (108 mol/L) for 1, 4 and 24 

hours. 5 x 107 cells were cross-linked with 1% formaldehyde for 10 min, at which point 0.125 M 

glycine was used to stop the crosslinking. In brief, after crosslinking, cells were treated by lysis 

buffers and sonicated to fragment the chromatin to a size range of 500bp-1kb. Chromatin fragments 

were then immunoprecipitated with 10ug of antibody/magnetic beads. The antibodies against ERα 

were purchased from Santa Cruz Biotechnology (Santa Cruz, sc-8005 X). After 

immunoprecipitation, washing, and elution, ChIP DNA was purified by phenol:chloroform:isoamyl 

alcohol and solubilized in 70 μl of water. The ChIP DNA sample was run in 12% PAGE and the 

100-300bp DNA fraction was excised and eluted from the gel slice overnight at 4 °C in 300 μl of 

elution buffer (5:1, LoTE buffer (3 mM Tris-HCl, pH 7.5, 0.2 mM EDTA)-7.5 M ammonium 

acetate) and was purified using a QIAquick purification kit (Qiagen, Cat#28104). The library was 

constructed using Illumina genomic DNA prep kit by following its protocol (Illumina, cat# FC-102-

1002), clusters were generated on the Illumina cluster station (Illumina, cat# FC-103-1002), DNA 

samples (20 nM per sample) quantified by an Agilent Bioanalyzer, were loaded onto Illumina 

Genome Analyzer IIx (GAIIx) for sequencing according to the manufacturer’s protocol. Reads 

generated from the Illumina GAIIx pipeline were aligned to the Human Genome Assembly (NCBI 

build 36.1/hg18) using ELAND algorithm. 
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2. ChIP-seq data peak-calling analysis: 

After mapped to the corresponding reference genome (HG18), the processed data sets need 

peak-calling and further identification of ER binding sites, currently there are quite a few programs 

and scripts available for such tasks, such as FindPeaks 1, Quest 2, and MACS 3, etc. Our ChIP-seq 

data sets were performed peak-calling by the in-house program, wBELT, developed in our 

laboratory 4. 

And more details on performance comparison and implementation can be retrieved from the 

corresponding references. 

 

3. Bayesian multivariate statistical modeling of genetic transcription rates: 

In most cases, Bayesian statistical models are concerned with learning the parameter set 

θ=(θ1, …, θl) of the dimension l, containing uncertain quantities (fixed and random effects), 

hierarchical parameters (hyperparameters), unobserved and/or latent variables, and even missing 

data 5. 

In the Bayesian statistical modeling schema, prior information about the model parameter is 

denoted by the probability density function p(θ), the likelihood function is represented as p(X|θ), 

and the inference purpose is to derive the posterior density function p(θ|X). According to the Bayes 

theorem, the general inference can be formulated as, 
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For the multivariate case, p(X) can be specified by the decomposition, 
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which can be regarded as a normalized constant by integrating over all values of θ in the product 

p(X|θ)p(θ). Thus, the equation above can be formulated as, 

( | ) ( | ) ( )p X p X p                                                       (3) 

The strength of the observation data and corresponding prior knowledge influence those diverse 

weights on the beliefs inferred from the multiple sources. 

Due to a relatively small sample size of E2-stimulated time-series gene expression data which 

contain no knowledge of transcription factors, binding information and direct target genes, the 

conventional Bayesian modeling has its limitation. In order to infer ERα-centered regulatory 

network, we integrate the time-series E2-stimulated ERα ChIP-seq data, where it can detect 

transcription factors and hubs, and facilitate the further reverse-engineering of the regulatory 

network by means of inferring parameters in the Bayesian statistical framework. 

Herein we propose a Bayesian multivariate statistical approach for modeling the time-variant 

ERα transcriptional regulatory network. The basic model framework is illustrated as follows, 

,

( ) ( ) , 1,..., , 1,...,i ij j
i j

y t x t i M j N                                         (4) 

where ( )iy t  denotes the ith gene's transcription rate, xj(t) for the jth gene's expression level at the 

investigated time, αij for the corresponding regulatory argument or strength of the jth gene which 

has any possible transcription regulatory activity on the ith gene, and ε represents the potential 

stochastic effects during the transcription regulatory process, which normally follows a normal 

distribution, i.e. 2~ (0, )N  .  

Thus for a genetic regulatory network containing M transcription factors at T time points, the 

above equation can be organized as, 

[ ]M T M T M TY AX                                                            (5) 
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where 1 2( ... ) 'MY y y y    denotes the transcription rate matrix of M transcription factors, 

1 2( ... ) 'MA a a a  denote the regulatory coefficient matrix, 1 2( ... ) 'NX x x x  gene matrix and 

1 2( ... ) 'M    the error term. Thus, inference of coefficient matrix A in the above equation is to 

acquire concrete knowledge about the transcription regulatory strength of transcription factors over 

diverse target genes under investigation. Following the Bayes theorem, the above equation can be 

formulated as, 

 ( | , )M T M N N T M TY A X A X                                                        (6) 

and the error term   is specified as an independent and normally distributed random vector with N-

dimensional zero mean and a N N covariance  . And the multivariate N-dimensional normal 

distribution for errors is represented as, 

' 11 1
2 2( | ) | | i i

ip e  
                                                                  (7) 

where εi is the N-dimensional error vector. And from the multivariate normal error specification, the 

observation vector also follows a multivariate normally distribution, denoted as, 

11 1
2 2 ( ) ' ( )( | , , ) | | i iy Ax y Ax

ip y A x e
                                                  (8) 

then with extension to matrix model representation, the above equation can be formulated as, 

11 1
2 2 ( ) ' ( )( | , , ) | | tr Y AX Y AXp Y A X e

      
                                          (9) 

where the trace operator tr defines the sum of the diagonal entries of its matrix argument. Here, we 

denote the conditional prior distribution for A as p(A|Σ), which follows normal distribution, denoted 

as, 

1 11
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And the prior distribution for the error covariance matrix Σ as p(Σ), and normally the inverse 

Wishart distribution (IWD) 6,7 is considered as the conjugate prior for the covariance matrix Σ of the 

multivariate normal distribution, depicted as, 

11
2 2( )
d tr Sp e

                                                                    (11) 

where M, d and S are hyperparameters. According to the Bayes theorem, the joint posterior 

distribution of the coefficient matrix can be denoted as, 

( , | , ) ( ) ( | ) ( | , , )p A Y X p p A p Y A X                                    (12) 

      For the multivariate modeling, inference of the coefficient matrix contains two sub-problems, 

i.e. to determine the parameters' posterior distributions for the model, and then to apply the 

marginal posterior mean estimation for the parameter inference. Thus to determine the marginal 

posterior distributions for coefficient matrix A, the joint posterior distribution can be marginalized 

with integration on Σ, illustrated as, 
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where 1
0 0( )D X X  , X0 is the prior input matrix, δ=(n-p+q)/2>0 and Q is a high-order matrix 

independent of A. The integration for the posterior distribution is taken as the same form as an 

inverse Wishart distribution in Bayesian multivariate statistical estimation6,7. And denote

1
0 0( ) ( ) '( ) ( ) ( ) 'S A Y X Y X A A D A A Q        , where A0 is the prior mean matrix. Thus the 

maximum of posterior coefficient mean estimation A  should satisfy the following partial derivative, 
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      Meanwhile, due to the unobservability of the transcriptional rate, Y , hence the argument can be 

approximated as follows, 
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
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where Δt denotes the sampling interval. Thus the first-order differential of transcription rate can be 

replaced with the observable vector, Y(t). 

Furthermore, due to proportionality characteristics of coefficient matrix inferred by Bayesian 

statistical analysis, we normalize those coefficients by scaling them with the range within -1 to 1. 

 

4. Summary of sequenced reads of the E2-stimulated time-series ERα ChIP-seq data: 

Time 0 hour: 

 

Time 1 hour: 

 

Time 4 hours: 

 

Time 24 hours: 

 

Note: UM: Unique-Match, NM: Non-Match, MM: Multiple-Match, QC: Quality-Control. 

 

5. Summary of identified ERα target genes: 

      For each time point, i.e. 0, 1, 4, 24 hours, we have identified the related gene lists at their 

corresponding regulatory regions, i.e. transcription start site (TSS), intragenic, proximal regions, etc. 
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A list of genes with annotation is provided in the Supplemental file 1 (Excel files). 

 

 
Figure S1. The global peak number and FDR distributions in the optimal argument selection 

for the ERα ChIP-seq data at time point 0 hour. (A) The upper and lower plots illustrate the 

peak number and FDR distributions as the related p-threshold varies, respectively; (B) The track 

rate plots for the peak number and FDR with respect to the interval number N. 

 
Figure S2. The global peak number and FDR distributions in the optimal argument selection 

for the ERα ChIP-seq data at time point 1 hour. (A) The upper and lower plots illustrate the 
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peak number and FDR distributions as the related p-threshold varies, respectively; (B) The track 

rate plots for the peak number and FDR with respect to the interval number N. 

 

 
Figure S3. The global peak number and FDR distributions in the optimal argument selection 

for the ERα ChIP-seq data at time point 24 hours. (A) The upper and lower plots illustrate the 

peak number and FDR distributions as the related p-threshold varies, respectively; (B) The track 

rate plots for the peak number and FDR with respect to the interval number N. 
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6. The inferred network structure and network properties at diverse time points 

 
Figure S4. The ERα transcription regulatory network structure and related analysis at time 0 

hour. (A) The ERα-centered regulatory network structure at the time 0 hour. The red edges denote 

positive activation, and dashed blue edges denote negative inhibition; (B) The hierarchical 

topological structure of the inferred ERα transcription regulatory network at time 0 hour; (C) and 

(D) illustrate the connectivity distribution, Pearson correlation and p-value distributions (between 
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the regulatory coefficients and SNRs) as the functions of uniform regulatory strength for the 

network structure at the time 0 hour. 

 
Figure S5. The ERα transcription regulatory network structure and related analysis at time 1 

hour. (A) The ERα-centered regulatory network structure at the time 1 hour. The red edges denote 

positive activation, and dashed blue edges denote negative inhibition; (B) The hierarchical 

topological structure of the inferred ERα transcription regulatory network at time 1 hours; (C) and 

(D) illustrate the connectivity distribution, Pearson correlation and p-value distributions (between 

the regulatory coefficients and SNRs) as the functions of uniform regulatory strength for the 

network structure at the time 1 hour. 
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Figure S6. The ERα transcription regulatory network structure and related analysis at the 

time 24 hours. (A) The ERα-centered regulatory network structure at the time 24 hours. The red 

edges denote positive activation, and dashed blue edges denote negative inhibition; (B) The 

hierarchical topological structure of the inferred ERα transcription regulatory network at time 24 

hours; (C) and (D) illustrate the connectivity distribution, Pearson correlation and p-value 

distributions (between the regulatory coefficients and SNRs) as the functions of uniform regulatory 

strength for the network structure at the time 24 hours. 
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7. Identification of recurrent regulatory motif patterns: 

      From the those regulatory modularity analysis, we mainly find the four recurrent regulatory 

motif patterns, i.e. self-loop,  interactive loop, feed-forward loop, feedback loop and bi-span loop 

(Figure S7). 

 

Figure S7. The four recurrent motif patterns identified from the ERα-centered regulatory 

module, i.e., (a) Self-loop, (b) Interactive loop, (c) Feed-forward loop and (d) Bi-span loop patterns. 

 

Within those recurrent motif patterns, the regulatory edge may denote activation or inhibition 

activity. For example the (a) self-loop may denote self-activation and self-inhibition, and the (b) 

interactive loop may represent three cases, i.e. both nodes activate each other, both inhibit each 

other, or one activates and one inhibits. 

Actually, such motif patterns implement specific biological functions in genetic regulatory 

processes, i.e. (i) Self-regulation: the regulatory activities include simple self-activation or self-

inhibition on those genes under investigation, see Figure S7 (a) self-loop; (ii) Cooperative 

activation and inhibition regulation: more than two regulators cooperatively regulate (activate or 

inhibit) one or several target genes, see Figure S7 (c) feed-forward loop and (d) bi-span; (iii) 

Feedback mechanism: one or more feedback loops exist in source regulators and target genes. 
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Such feedback loops directly reflect the regulatory effects on target genes to source regulators, 

thus simultaneously the source regulators self-tune their regulatory activities. Normally there exists 

a dynamic equilibrium between source and target genes' activities, see Figure S7 (b) interactive 

loop. 

 

8. Gene expression characteristics regulated by Modules I and II: 

 

Figure S8. The expression profile plots for the regulated genes by Modules I and II across the 

four time points. (A) At the time point 0 hour, Module I directly regulates 321 genes; at the time 

point 1 hour, 512 genes are regulated by Module I; at the time point 4 hours, the regulated genes 

fall down to 435, and 317 at the time point 24 hours. (B) Module II regulates 376 genes at the time 

point 0 hour, 632 at the time point 1 hour, 591 at the time point 4 hours and 358 at the time point 24 

hours.  
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9. Gene Ontology (GO) analysis on Modules I and II: 

 

Figure S9. The GO (Gene Onotology) annotation results for Module I across the four time 

points. On these plots, the horizontal axes denot the calculated p-values, and the vertical axes 

illustrate the GO annotation terms for each time points, (A) for time 0 hour, (B) for 1 hour, (C) for 4 

hours and (D) for 24 hours. 
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Figure S10. The GO (Gene Onotology) annotation results for Module II across the 4 time 

points. On these plots, the horizontal axes denot the calculated p-values, and the vertical axes 

illustrate the GO annotation terms, (A) for time 0 hour, (B) for 1 hour, (C) for 4 hours and (D) for 

24 hours. 
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10. Time-series network inference error plots: 

 

Figure S11. The inference errror plot for the 11 TF hubs across the four time points. It is 

based on Equation (6), i.e. regulatory coefficients, gene expression and transcription rates. The left 

panel gives the transcript rates for each TF hubs and the left one illustrates the inference errors for 

those TF hubs across the four time points. 
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11. The Kaplan-Meier survival analysis based on diver patient cohorts: 

For the clinical outcome analysis, the gene signatures are the specific genes that characterized 

the diverse clustered patient subgroups.  

In determining the gene signature and clinical outcome analysis, we firstly adopted the k-means 

clustering approach to analyze the three patient cohorts containing 337, 251 and 137 patients, 

respectively. Since initially we have no concrete group information about the signatures, actually 

the k-means clustering here is an unsupervised approach.  

A too small subgroup number may cluster diverse clinical pathological features into a single 

group and a too large subgroup number may render the similar clinical pathological features in two 

or more subgroups, thus the both situations cannot ensure the statistically sounding results. In the 

exploratory analysis we selected diverse cluster numbers (i.e. 2, 3, 4 and 5, etc.), then each clustered 

subgroups containing gene signature information were further processed with the Kaplan-Meier 

survival probability analysis and corresponding log-rank test. Based on the analysis results on the 

three diverse patient cohorts, we found the clustered group number 4 was significantly capable of 

rendering statistically meaningful results (with each log-rank test p-value < 0.05), thus we reported 

the analysis results with the group number 4 in the work.  
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Figure S12. The Kaplan-Meier survival analysis based on the regulated target genes by the 

three modules. The clinical survival information of 251 breast cancer patients is selected from 

Miller et al. 8. The subplot (A) gives the statiscally siginificant result between the patient groups 

PG:1 vs PG:3 (Module I), and their corresponding group estrogen receptor status and survival stage 

(grade) information are also provided on the left bottom (log-rank test p-value: 0.026086). The 

subplots (B) and (C) depict the analysis results on the patient groups PG:1 vs PG:4 (Module II), and 

PG:2 vs PG:3 (Module III), respectively. 
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Figure S13. The clinical survival analysis based on the regulated target genes by three 

modules. The clinical survival information of 137 breast cancer patients is selected from Sotiriou et 

al. 9. The subplot (A) gives the statiscally siginificant result between the patient groups PG:1 vs 

PG:2 (Module I), and their corresponding group estrogen receptor status and survival stage (grade) 

information are also provided on the left bottom (log-rank test p-value: 0.026475). The subplots (B) 

and (C) depict the analysis results on the patient groups PG:1 vs PG:3 (Module II), and PG:2 vs 

PG:4 (Module III), respectively. 
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12. Supplemental Tables: 

Table S1. The network elements' SNR statistics (dB) in Module I. 

 

 

Table S2. The network elements' SNR statistics (dB) in Module II. 

 

 

Table S3. The network elements' SNR statistics (dB) in Module III. 
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