Supplementary data for:

Human histone H3K79 methyltransferase DOT1L binds actively transcribing RNA polymerase II to regulate gene expression

Seung-Kyoon Kim^{‡,1}, Inkyung Jung^{§,1}, Hosuk Lee[‡], Keunsoo Kang[‡], Mirang Kim[¶], Kwiwan Jeong¹, Chang Seob Kwon[†], Yong-Mahn Han[‡], Yong Sung Kim[¶], Dongsup Kim[§], and Daeyoup Lee^{‡,2}

From the [‡] Department of Biological Sciences and the [§]Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea, [†]Department of Chemistry and Biology, Korea Science Academy of KAIST, Busan 614-822, Korea, and the [¶]Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea

*Running title: Interaction of hDOT1L with actively transcribing RNAPII

To whom correspondence should be addressed: Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea. Tel: +82-42-350-2623; Fax: +82-42-350-2610; E-mail: daeyoup@kaist.ac.kr

Keywords: Transcription; hDOT1L; RNA polymerase II; H2B monoubiquitylation; H3K79 methylation.

SUPPLEMENTARY PROCEDURES

Cell lines and construction of expression vectors–NCCIT and HEK293T cells were cultured in RPMI 1640 (Gibco) and DMEM (Hyclone), respectively, supplemented with 10% fetal bovine serum (FBS, Hyclone) and 1% antibiotic-antimycotic solution (Hyclone) at 37°C in a humidified atmosphere containing 5% CO₂.

The cDNA for *hDot11* was PCR amplified from the MegaMan library (Stratagene, La Jolla, CA, USA) and inserted into the mammalian expression vector, pME18SZ-FLAG. All sequences were verified by DNA sequencing. The primers for *hDot11* were as follows:

*hDot11*_F-<u>EcoRI</u>: 5'-GGG<u>GAATTC</u>ATGGGGGGAGAAGCTGGAG *hDot11*_R-<u>XhoI</u>: 5'-GGG<u>CTCGAG</u>CTAGTTACCTCCAACTGT

Illumina library construction and sequencing—The purified ChIP DNA fragments were ligated to paired adaptors designed for sequencing on the Illumina Genome Analyzer. The ligation products were size-fractioned on an agarose gel to obtain 200- to 300-bp fragments, and these fragments were subjected to 18 cycles of PCR amplification. Cluster generation and 72 cycles of single-read sequencing were performed.

Modification peak detection–Modification peaks were determined using MACS-1.3.7.1 (59) with default parameters, except that we changed the -mfold option to 5 and the –pvalue option to 1E-4. For the control, the un-treated input sequencing result (IgG) was used. The number of overlapping peaks between hDOT1L and RNAPII was calculated by counting the number of hDOT1L peaks located within 2 kb upstream and downstream of RNAPII peaks.

High-quality hDOT1L binding sites—To get a more stringent set of hDOT1L binding sites, we used the following thresholds: -mfold 5,25 and –pvalue 1E-5. A total of 8,953 hDOT1L binding sites were re-obtained and sorted by 'FDR' and 'enrichment folds' categories, which are attributes of each binding site. High-quality binding sites (the top 500) were defined as the regions containing lower FDRs and higher enrichment folds. To draw the average tag density graphs of hDOT1L, the RNAPII, as well as IgG (supplementary Fig. S2), flanking regions (+/- 10,000 bp) of each high-quality hDOT1L binding site were divided into 100-bp bins, and tags in each bin were summed. The average number of tags in each bin position around the high-quality hDOT1L binding sites was calculated and plotted. In case of the fold-enrichment graph (Fig. 6), the flanking regions (+/- 10,000 bp) of 223 high-quality hDOT1L binding sites containing the predicted hDOT1L motif were examined.

Ontology analysis using GREAT (version 1.5.1)–Ontology analysis was performed by GREAT with the following settings: Top Rows/Table, 40; Statistical Significance, *Raw P-value*; and View, *Significant By Region-based Binomial* (<u>http://great.stanford.edu</u>) (60). For input genomic sites, we used the defined

high-quality hDOT1L binding sites. Pathway commons category contains numerous pathways, including biochemical reactions, complex assembly, transport, and catalysis events, as well as physical interactions. The result describes significantly-associated pathways based on attributes of the gene products around binding sites. The test set of 500 hDOT1L binding sites picked 722 genes (4%) out of 17,506 tested genes. The pathway commons category contained 1,400 terms covering 4,665 (27%) of the 17,506 total genes.

Generation of hDOT1L expression constructs–Full-length hDOT1L cDNA was amplified by PCR from the MegaMan Human Transcriptome Libraries (Stratagene) and cloned into the pGEM-T Easy vector (Promega). The resulting hDOT1L cDNA clone was confirmed by sequence analysis and then subcloned into the pME18S-FLAG vector (addgene). The expression of FLAG-hDOT1L from the resulting pME18S-FLAG-hDOT1L plasmid was confirmed by western blotting using an anti- FLAG antibody (Sigma F1804). Next, we generated hDOT1L (WT), hDOT1L-si^R (si^R), hDOT1L-4K/618-627/4A (4K/4A), hDOT1L-N241A-si^R (N241A-si^R) in both pME18S-FLAG and pFastBac-FLAG vector (Invitrogen) for co-immunoprecipitation analyses and *in vitro* assay, respectively. Also, we generated hDOT1L deletion constructs; hDOT1L (1-467), (468-1002), and (1003-1537) in pFastBac-FLAG vector and overlapping truncations; hDOT1L (468-665), (666-820), (821-1002), (555-820), (555-820)-4K/618-627/4A, and (555-820)-Δ4K/618-627 in pET28a vector (Novagen) for peptide pull down assay.

Antibodies–The utilized antibodies recognizing hSNF5/INI1, yDot1, H3, NANOG, OCT4, and SOX2 were polyclonal rabbit antibodies produced in-house as previously described (31,61). The utilized commercial antibodies included those against H3K79me1 (abcam, ab2886), H3K79me2 (abcam, ab3594), H3K79me3 (abcam, ab2621), α -Rpb1 (Millipore, ABE30), α -RNAPII (abcam, ab817), α -RNAPII Ser5/2-P (Cell Signaling, 4735), α -RNAPII Ser5-P (abcam, ab5131), α -RNAPII Ser2-P (abcam, ab5095), H2Bmono-ub (Millipore, 17-650), hDOT1L (abcam, ab64077), ENL (abcam, 49052), FLAG (Sigma, F1804), HIS (Santa Cruz Biotechnology, sc-8036), and β-actin (Santa Cruz Biotechnology, sc-47778).

RNA isolation and reverse transcription (RT)–Total RNA was isolated from triplicate cultures of NCCIT cells using the TRIZOL[®] Reagent (Invitrogen) according to the manufacturer's protocols. Briefly, NCCIT cells grown in 100-mm diameter dishes were harvested. One ml of TRIZOL was added, and the cell lysate was passed through a pipette several times. The homogenized samples were incubated for 5 min at 25°C to permit the complete dissociation of nucleoprotein complexes, and 200 µl of chloroform was added. The sample tubes were shaken vigorously by hand for 15 sec and incubated at 25°C for 2 ~ 3 min. The samples were cleared by centrifugation at 12,000 × g for 15 min at 4°C, and the aqueous phase was transferred to a fresh tube. To precipitate the RNA from the aqueous phase, the

sample was mixed with 500 μ l isopropyl alcohol and incubated at 25°C for 10 min. The RNA samples were cleared by centrifugation at 12,000 × g for 15 min at 4°C and washed once with 75% ethanol, and the RNA pellet was briefly dried and dissolved in RNase-free water. Finally, cDNA was synthesized from 1 μ g of DNase-treated total RNA, using the Improme Kit (Promega) according to the manufacturer's guidelines.

Real-time PCR–qPCR analysis was performed with CFX96 (Bio-Rad). The DNA was amplified in a 20-µl reaction with 2X h-Taq real time mix (Solgent), 20X Evagreen (Biotium), 20X tetraethylammonium chloride, 10 pmol of each primer, and the template DNA. PCR reactions were carried out using the following conditions: an initial melting step of 95°C for 12 min, followed by 40 cycles of 95°C for 20 sec (denaturation), 57°C for 30 sec (annealing), and 72°C for 30 sec (extension), and then a final extension at 72°C for 5 min. The primer specificity for PCR amplification was tested by agarose gel electrophoresis. After PCR amplification, melting curve analysis was used to verify the amplification of a single PCR product. The threshold cycle (Ct) was determined for each reaction. For calculation purposes, the average Ct values of two copies of the IP DNA and input DNA from three independent reactions were termed A and B, respectively. The following formula was used to calculate fold enrichment (F) for each IP sample: $F = 1/2^{-(A-B)}$. The relative mRNA levels were quantified with respect to that of β -actin.

Histone methyltransferase (HMT) assay–In vitro histone methyltransferase assays were performed as previously described (62). Briefly, recombinant hDOT1L proteins were generated using a baculovirus expression system, and 500 ng purified recombinant protein was incubated at 30°C for 6 h in 20 μ l containing 50 mM Tris-HCl (pH 8.0), 5% glycerol, 20 mM KCl, 5 mM MgCl₂, 1 mM dithiothreitol, 1 mM PMSF, 1 μ l of [³H] methyl S-adenosyl-methionine (1 μ Ci, Amersham Biosciences), and 500 ng of HeLa long oligonucleosomes (LON) as a substrate. The reaction was stopped by the addition of SDS sample buffer, the samples were separated by 14% SDS-PAGE, and the results were visualized by radiography.

Alkaline phosphatase assays–Alkaline phosphatase activity was measured using an alkaline phosphatase detection kit (Millipore, SCR004) according to the manufacturer's guidelines, with minor modifications. Briefly, NCCIT cells were plated in 12-well plates, incubated overnight, and transfected with 60 nM *Egfp*- and 100 nM *hDot1l*-siRNA. For rescue approaches, si^R, 4K/4A, and N241A-si^R were transfected into NCCIT cells that had been depleted of endogenous hDOT1L. After three days of siRNA transfection, the cells were fixed, stained, and washed. Images were obtained under a microscope.

SUPPLEMENTARY REFERENCES

- 60. McLean, C. Y., Bristor, D., Hiller, M., Clarke, S. L., Schaar, B. T., Lowe, C. B., Wenger, A. M., and Bejerano, G. (2010) GREAT improves functional interpretation of cis-regulatory regions. *Nat Biotechnol* **28**, 495-501
- 61. Hwang, S., Lee, D., Gwack, Y., Min, H., and Choe, J. (2003) Kaposi's sarcoma-associated herpesvirus K8 protein interacts with hSNF5. *J Gen Virol* **84**, 665
- 62. Shi, X., Hong, T., Walter, K. L., Ewalt, M., Michishita, E., Hung, T., Carney, D., Lan, F., Kaadige, M. R., and Lacoste, N. (2006) ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. *Nature* **442**, 96-99

SUPPLEMENTARY FIGURES AND TABLES

Supplementary FIGURE 1. The purified recombinant proteins used in this study. Left panel, Full-length FLAG-hDOT1L was purified from a Sf-21 insect cell-based baculovirus system, and 6xHIS-ySet2p was purified from a bacterial system. The two proteins were resolved by SDS-PAGE and stained with Coomassie blue. Right panel, The full-length FLAG-hDOT1L was resolved by SDS-PAGE and immunoblotted using the indicated antibody.

Supplementary FIGURE 2. Complete data from the genome-wide analysis of hDOT1L, RNAPII, and histone modifications near the TSS and TES. ChIP-seq results for hDOT1L, RNAPII, H3K79me1, H3K79me2, H3K79me3, and H2BUb1 are shown. The average intensity of the mapped sequence read counts is presented for the high (top 30%), middle, and low (bottom 30%) levels of gene expression. The profiles show 5 kb upstream and downstream of the TSS and TES.

Supplementary FIGURE 3. Comprehensive analysis of high-quality hDOT1L binding sites. *A*-*C*, A total of 8,953 hDOT1L-enriched regions were obtained from a re-analysis of our ChIP-seq results using MACS (see Methods) (59). Among the 8,953 hDOT1L-enriched regions, the top 500 sites that showed low FDRs (false discovery rates) and high-fold enrichment were regarded as high-quality hDOT1L binding sites. *A*, The high-quality hDOT1L binding sites are highly occupied by actively transcribing RNAPII (ChIP using anti-RNAPII phospho CTD Ser-5). *B*, The expression level of whole transcripts (n = 15,979) in the NCCIT cell line were measured using RNA-seq, and compared with the high-quality hDOT1L binding site-associated transcripts (n = 318) (see Methods) (60). *C*, Functional annotation analysis of high-quality hDOT1L binding sites in the promoter regions was performed with GREAT (see Supplementary Methods), which infers the functions of binding sites by exploiting available gene annotation databases. The top 40 terms in the 'Pathway Commons' category, which were significantly associated with the binding sites (binomial P-value < $4.3x10^{-3}$), were clustered by keywords, and the number of terms in each cluster was counted. *D*, Genes targeted by both hDOT1L and RNAPII tend to be highly expressed. The median gene expression levels and standard deviations of hDOT1L-targeted genes, and genes targeted by both hDOT1L and RNAPII

were plotted using 100 iterations randomly selecting 90% of the genes in each group (y-axis). The P-values between the co-occupied gene set and hDOT1L or RNAPII occupied genes were 0.0015 and 0.001, respectively (KS-test). 'Others' indicates genes that were targeted by neither hDOT1L nor RNAPII (n = 12,010).

Supplementary FIGURE 4. Patterns of genome-wide co-occurrence between hDOT1L and other modification patterns in gene body regions. *A*, Box plots illustrate modification signals in hDOT1L-enriched (red, top 30%) and -depleted genes (cyan, bottom 30%), with the fold enrichment between gene groups shown. Due to scale differences between the modifications, the ChIP-seq signals were quintile-normalized. *B*, Boxplots of modification signals in H2BUb1-enriched (red, top 30%) and -depleted genes (cyan, bottom 30%) with the fold enrichment between gene groups.

Supplementary FIGURE 5. Schematic representation of the full-length yDot1 and human hDOT1L constructs used in the experiment. *A*, Several purified recombinant proteins were used in this study. FLAG-hDOT1L (1-467), (468-1002) and (1003-1537) were purified from an Sf-21 insect cell-based baculovirus expression system, while the others were purified from a bacterial system. All proteins were resolved by SDS-PAGE and stained with Coomassie blue. FLAG-hDOT1L (468-1002) and (1003-1537) take on multiple forms, possibly due to a post-translational modification such as glycosylation. *B*, Full-length yDot1p and hDOT1L are compared. The CTD binding patch of hDOT1L identified in this study is shown within the long undefined middle and C-terminal regions of hDOT1L.

Supplementary FIGURE 6. Actively-transcribed pluripotency maintenance-related genes are co-occupied by both hDOT1L and RNAPII. *A*, All ChIP-seq data were mapped to the human genome (UCSC hg18 assembly based on NCBI build 36.1). The y-axis indicates the read counts of sequence tags in 10-bp increments. The figure shows the results from the RNA-seq and six different ChIP-seq results for hDOT1L, RNAPII, H3K79me1, H3K79me2, H3K79me3, and H2BUb1. The random distribution of IgG along the genome and its strong enrichment in specific regions may reflect

sequencing bias and the normalization process. *B*, top left, Box plot of gene expression levels in pluripotency-related genes. The utilized genes were extracted from the Gene Ontology database. We focused on nine pluripotency maintenance-related genes along with 25,132 total genes and representative development-related genes (27 endoderm genes, 108 mesoderm genes, and 30 ectoderm genes). *B*, top right and bottom left, hDOT1L and RNAPII were enriched at pluripotency maintenance-related genes.

Supplementary FIGURE 7. SiRNA-mediated knock-down of hDOT1L. *A*, DNA sequence comparison of the *hDot11* siRNA used in this study versus its target sequences in the WT, si^R, 4K/4A, and N241A-si^R constructs. Amino acid sequences for the corresponding DNA sequences of the *hDot11* constructs are also shown. *B*, The *hDot11* siRNA was transiently transfected into NCCIT cells, followed by transfection with control vector, WT, si^R, 4K/4A, and N241A-si^R. Whole-cell extracts were immunoprecipitated overnight with anti-DOT1L at 4°C. IP samples were resolved by SDS-PAGE and immunoblotted with the indicated antibodies. A nonspecific band in the hDOT1L immunoblot is indicated by an asterisk.

Supplementary FIGURE 8. The decrease in H3K79me3 was rescued by exogenous hDOT1L but not by an enzymatic activity-defective mutant. Schematic representation of the *Oct4* locus, along with the location of the primers and ChIP analyses. Control vector, si^R, 4K/4A, and N241A-si^R were transfected into hDOT1L-knockdown NCCIT cells, and ChIP analyses were carried out with indicated antibodies. All signals were normalized with respect to the input and total histone H3. Error bars denote standard deviations from three biological replicates, each consisting of three qPCR reactions.

Supplementary Table 1. Real-time qPCR primers

Gene	Seq (5' → 3')	Product size
hDot11-RT-F	CAGCTTCAGTGATGGTGCTTCT	132
hDot11-RT-R	AGCTGCCTCTTGCTCAGGAAA	152
Nanog-RT-F	ACCTTCCAATGTGGAGCAACCA	184
Nanog-RT-R	TGCATGCAGGACTGCAGAGATT	101
Oct4-RT-F	AAACCCACACTGCAGCAGATCA	126
Oct4-RT-R	TCGTTGTGCATAGTCGCTGCTT	120
Sox2-RT-F	TGTGGTTACCTCTTCCTCCCACT	138
Sox2-RT-R	TGGTAGTGCTGGGACATGTGAA	100

Supplementary Table 1. Primer sets used in real-time qPCR. Primer sets were designed using the online IDT program (<u>http://eu.idtdna.com/Scitools/Applications/Primerquest/</u>).

Supplementary Table 2. Conventional ChIP primers

Gene	Seq (5' → 3')	Product size		
Nanog2,698_F	TGGTCAGCTCCTTTACTGCAACCT			
Nanog2,698_R	TGGGAGAGAACACGGCAACTAA			
Nanog1,506_F	AAGAGAGACAGGAGGGCAAGTT			
Nanog1,506_R	TGCTCCCACACAAGCTGACTTT	234		
Nanog576_F	TTTGAGACGTAGTCCCGCTCTGTT	211		
Nanog576_R	GAGTTTGAAACCAGCCTGGCCAACAT	- 211		
Nanog_+636_F	ATGGGCTTAGGCATGGTGGAAA	297		
Nanog_+636_R	AGCTGCCCAGTAACATCCACAA	207		
Nanog_+2,931_F	TAACACCCAGTGTGGGAGCTTT	268		
Nanog_+2,931_R	ATCTCCTGGGTTCAAGCGATTCTCCT	208		
Nanog_+6,184_F	AACAGCTGGGATTTACAGGCGT	205		
Nanog_+6,184_R	AGCCTCCCAATCCCAAACAATACG	203		
<i>Oct4</i> 2,549_F	GAGGATGGCAAGCTGAGAAA	148		
<i>Oct4</i> 2,549_R	CTCAATCCCCAGGACAGAAC	140		
<i>Oct4</i> 1,672_F	AGCCCCACTAAACAAAGCAC 162			
<i>Oct4</i> 1,672_R	GCAATCCCCTCAAAGACTGA	102		
<i>Oct4</i> 264_F	AGTCTGGGCAACAAAGTGAGA 169			
<i>Oct4</i> 264_R	AGAAACTGAGGCGAAGGATG	107		
<i>Oct4_</i> +990_F	ATCTCCTGTTTGGGCTGTGTGT			
<i>Oct4_</i> +990_R	TTCAATCCCGCAGCAGCTCTAT	230		
<i>Oct4</i> _+2,825_F	ACTTCAGGGCCTTGCCACATTA	207		
<i>Oct4</i> _+2,825_R	TTTGCAGTGAGCCAAGATCGCA	207		
<i>Oct4</i> _+6,131_F	AACCTGGAGTTTGTGCCAGGGTTT	202		
<i>Oct4</i> _+6,131_R	TGTCTATCTACTGTGTCCCAGGCT	202		
<i>Sox2</i> 2,133_F	TCTCCAGGTCCGTGTTTACCTT 102			
<i>Sox2</i> 2,133_R	TTTCCAATCAACCTTCCTGCCC			
<i>Sox2227_</i> F	AAAGGTTTCTCAGTGGCTGGCA			
<i>Sox2227_R</i>	TGGGTTTCTAGCGACCAATCAG	190		
<i>Sox2</i> _+561_F	TGAATGCCTTCATGGTGTGGTC			
<i>Sox2</i> _+561_R	TGCTGATCTCCGAGTTGTGCAT			
<i>Sox2</i> _+1,581_F	AAACCGCGATGCCGACAAGAAA	198		

Sox2_+1,581_R	TGCAAACTTCCTGCAAAGCTCC	
<i>Cd4</i> 1,897_F	AATACCTAGGCTTTCTCGGGCA	119
<i>Cd4</i> 1,897_R	AAGTTCTTGCAGGCAGTGTGCT	
<i>Cd4</i> 416_F	TTGCAGTGGTGCAATCTTGGCT	163
<i>Cd4</i> 416_R	AGCCTGGCCAACATGGTGAAA	100
<i>Cd4</i> _+272_F	TGATCTCGGCTCACTGCAATCT	152
<i>Cd4</i> _+272_R	AGCCTGGCCAACATGGTGAAA	102
<i>Cd4</i> _+19,337_F	TCTTTGTTCCTGCAGCCGGTTT	176
<i>Cd4</i> _+19,337_R	TGGCAAATTGTAGAGGAGGCGA	110

Supplementary Table 2. Primer sets used in conventional ChIP. Primer sets were designed using the online IDT program (<u>http://eu.idtdna.com/Scitools/Applications/Primerquest/</u>).

Accession number	Gene	GO number	Function
NM_003106	SOX2	GO:0035019	Transcription factor SOX-2
NM_000222	KIT	GO:0035019	Mast/stem cell growth factor receptor
NM_000038	APC	GO:0035019	Adenomatous polyposis coli protein
NM_002701	POU5F1	GO:0035019	POU domain, class 5, transcription factor 1
NM_006766	MYST3	GO:0035019	Histone acetyltransferase MYST3
NM_005170	ASCL2	GO:0035019	Achaete-scute homolog 2
NM_024865	NANOG	GO:0035019	Homeobox protein NANOG
NM_001265	CDX2	GO:0035019	Homeobox protein CDX-2
NM_206937	LIG4	GO:0035019	DNA ligase 4

Supplementary Table 3. Pluripotency maintenance-related genes

Supplementary Table 4. Endoderm development-related genes

Accession number	Gene	GO number	Function
NM_030761	WNT4	GO:0007492	Protein Wnt-4
NM_002293	LAMC1	GO:0007492	Laminin subunit gamma-1
NM_020909	EPB41L5	GO:0007492	Band 4.1-like protein 5
NM_001904	CTNNB1	GO:0001711	Catenin beta-1
NM_022454	SOX17	GO:0001706	Transcription factor SOX-17
NM_000127	EXT1	GO:0007492	Exostosin-1
NM_015193	ARC	GO:0007492	Activity-regulated cytoskeleton-associated protein
NM_017617	NOTCH1	GO:0007492	Neurogenic locus notch homolog protein 1
NM_012242	DKK1	GO:0007492	Dickkopf-related protein 1
NM_004329	BMPR1A	GO:0048382	Bone morphogenetic protein receptor type-1A
NM_002729	HHEX	GO:0007492	Hematopoietically-expressed homeobox
			protein HHEX
NM_003393	WNT8B	GO:0007492	Protein Wnt-8b
NM_004626	WNT11	GO:0007492	Protein Wnt-11
NM_014212	HOXC11	GO:0007492	Homeobox protein Hox-C11
NM_003317	NKX2-1	GO:0007492	Homeobox protein Nkx-2.1
NM_006194	PAX9	GO:0007492	Paired box protein Pax-9
NM_004498	ONECUT1	GO:0007492	Hepatocyte nuclear factor 6
NM_005902	SMAD3	GO:0007492	Mothers against decapentaplegic homolog 3
NM_005568	LHX1	GO:0001706	LIM/homeobox protein Lhx1
NM_000458	HNF1B	GO:0042663	Hepatocyte nuclear factor 1-beta
NM_004459	BPTF	GO:0007492	Nucleosome-remodeling factor subunit BPTF
NM_182641	BPTF	GO:0007492	Nucleosome-remodeling factor subunit BPTF
NM_005257	GATA6	GO:0007492	Transcription factor GATA-6
NM_005901	SMAD2	GO:0007492	Mothers against decapentaplegic homolog 2
NM_001003652	SMAD2	GO:0007492	Mothers against decapentaplegic homolog 2
NM_005359	SMAD4	GO:0007492	Mothers against decapentaplegic homolog 4
NM_000660	TGFB1	GO:0007492	Transforming growth factor beta-1
NM_021784	FOXA2	GO:0007492	Hepatocyte nuclear factor 3-beta
NM_153675	FOXA2	GO:0007492	Hepatocyte nuclear factor 3-beta

Supplementary Table 5. Mesoderm development-related genes

Accession number	Gene	GO number	Function
NM_004431	EPHA2	GO:0048320	Ephrin type-A receptor 2
NM_012090	MACF1	GO:0001707	Microtubule-actin cross-linking factor 1, isoform 4
NM_033044	MACF1	GO:0001707	Microtubule-actin cross-linking factor 1, isoform 4
NM_005424	TIE1	GO:0007498	Tyrosine-protein kinase receptor Tie-1
NM_018230	NUP133	GO:0048339	Nuclear pore complex protein Nup133
NM_016170	TLX2	GO:0001707	T-cell leukemia homeobox protein 2
NM_031283	TCF7L1	GO:0048319	Transcription factor 7-like 1
NM_020909	EPB41L5	GO:0048339	Band 4.1-like protein 5
NM_001616	ACVR2A	GO:0007498	Activin receptor type-2A
NM_001105	ACVR1	GO:0007498	Activin receptor type-1
NM_001204	BMPR2	GO:0001707	Bone morphogenetic protein receptor type-2
NM_001106	ACVR2B	GO:0007498	Activin receptor type-2B
NM_003212	TDGF3	GO:0007500	Putative teratocarcinoma-derived growth factor 2
NM_003741	CHRD	GO:0001707	Chordin
NM_003722	TP63	GO:0007499	Tumor protein 63
NM_002111	HTT	GO:0048341	Huntingtin
NM_016269	LEF1	GO:0048341	Lymphoid enhancer-binding factor 1
NM_005900	SMAD1	GO:0001710	Mothers against decapentaplegic homolog 1
NM_001003688	SMAD1	GO:0001710	Mothers against decapentaplegic homolog 1
NM_002715	PPP2CA	GO:0007498	Serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform
NM_001453	FOXC1	GO:0048343	Forkhead box protein C1
NM_033229	TRIM15	GO:0007500	Tripartite motif-containing protein 15
NM_003131	SRF	GO:0001707	Serum response factor
NM_003376	VEGFA	GO:0007498	Vascular endothelial growth factor A
NM_198392	TCF21	GO:0007498	Transcription factor 21
NM_003206	TCF21	GO:0007498	Transcription factor 21
NM_003181	Т	GO:0007498	Brachyury protein

NM_002192	INHBA	GO:0048333	Inhibin beta A chain
NM_006060	IKZF1	GO:0007498	DNA-binding protein Ikaros
NM_177524	MEST	GO:0007498	Mesoderm-specific transcript homolog protein
NM_177525	MEST	GO:0007498	Mesoderm-specific transcript homolog protein
NM_002402	MEST	GO:0007498	Mesoderm-specific transcript homolog protein
NM_000193	SHH	GO:0007502	Sonic hedgehog protein
NM_023106	FGFR1	GO:0048378	Basic fibroblast growth factor receptor 1
NM_023105	FGFR1	GO:0048378	Basic fibroblast growth factor receptor 1
NM_023111	FGFR1	GO:0048378	Basic fibroblast growth factor receptor 1
NM_015850	FGFR1	GO:0048378	Basic fibroblast growth factor receptor 1
NM_023110	FGFR1	GO:0048378	Basic fibroblast growth factor receptor 1
NM_023107	FGFR1	GO:0048378	Basic fibroblast growth factor receptor 1
NM_023108	FGFR1	GO:0048378	Basic fibroblast growth factor receptor 1
NM_003068	SNAI2	GO:0007499	Zinc finger protein SNAI2
NM_000127	EXT1	GO:0007498	Exostosin-1
NM_003923	FOXH1	GO:0048318	Forkhead box protein H1
NM_004972	JAK2	GO:0007498	Tyrosine-protein kinase JAK2
NM_173198	NR4A3	GO:0001707	Nuclear receptor subfamily 4 group A member 3
NM_173199	NR4A3	GO:0001707	Nuclear receptor subfamily 4 group A member 3
NM_006981	NR4A3	GO:0001707	Nuclear receptor subfamily 4 group A member 3
NM_173200	NR4A3	GO:0001707	Nuclear receptor subfamily 4 group A member 3
NM_004235	KLF4	GO:0007500	Krueppel-like factor 4
NM_004329	BMPR1A	GO:0048378	Bone morphogenetic protein receptor type-1A
NM_000401	EXT2	GO:0001707	Exostosin-2
NM_207122	EXT2	GO:0001707	Exostosin-2
NM_004561	OVOL1	GO:0007498	Putative transcription factor Ovo-like 1
NM_005430	WNT1	GO:0048332	Proto-oncogene Wnt-1
NM_005811	GDF11	GO:0007498	Growth/differentiation factor 11
NM_182742	TXNRD1	GO:0001707	Thioredoxin reductase 1, cytoplasmic
NM_182743	TXNRD1	GO:0001707	Thioredoxin reductase 1, cytoplasmic

NM_003330	TXNRD1	GO:0001707	Thioredoxin reductase 1, cytoplasmic
NM_182729	TXNRD1	GO:0001707	Thioredoxin reductase 1, cytoplasmic
NM_016569	ТВХ3	GO:0048332	T-box transcription factor TBX3
NM_005996	ТВХ3	GO:0048332	T-box transcription factor TBX3
NM_000545	HNF1A	GO:0048341	Hepatocyte nuclear factor 1-alpha
NM_006237	POU4F1	GO:0007498	POU domain, class 4, transcription factor 1
NM_130850	BMP4	GO:0048392	Bone morphogenetic protein 4
NM_130851	BMP4	GO:0048392	Bone morphogenetic protein 4
NM_001202	BMP4	GO:0048392	Bone morphogenetic protein 4
NM_005902	SMAD3	GO:0001707	Mothers against decapentaplegic homolog 3
NM_003502	AXIN1	GO:0048320	Axin-1
NM_181050	AXIN1	GO:0048320	Axin-1
NM_004608	ТВХ6	GO:0007498	T-box transcription factor TBX6
NM_005251	FOXC2	GO:0048343	Forkhead box protein C2
NM_183231	IKZF3	GO:0007498	Zinc finger protein Aiolos
NM_183230	IKZF3	GO:0007498	Zinc finger protein Aiolos
NM_183232	IKZF3	GO:0007498	Zinc finger protein Aiolos
NM_012481	IKZF3	GO:0007498	Zinc finger protein Aiolos
NM_183229	IKZF3	GO:0007498	Zinc finger protein Aiolos
NM_183228	IKZF3	GO:0007498	Zinc finger protein Aiolos
NM_030753	WNT3	GO:0001707	Proto-oncogene Wnt-3
NM 212471	PRKAR1A	GO:0001707	cAMP-dependent protein kinase type I-alpha
	T MAININ	00.0001707	regulatory subunit
NM 002734	PRKAR1A	GO:0001707	cAMP-dependent protein kinase type I-alpha
			regulatory subunit
NM 212472	PRKAR1A	GO:0001707	cAMP-dependent protein kinase type I-alpha
			regulatory subunit
NM_003004	SECTM1	GO:0007498	Secreted and transmembrane protein 1
NM_020648	TWSG1	GO:0001707	Twisted gastrulation protein homolog 1
NM_005901	SMAD2	GO:0001707	Mothers against decapentaplegic homolog 2
NM_001003652	SMAD2	GO:0001707	Mothers against decapentaplegic homolog 2
NM_005359	SMAD4	GO:0007498	Mothers against decapentaplegic homolog 4
NM_000479	AMH	GO:0007506	Muellerian-inhibiting factor
NM_002378	MATK	GO:0007498	Megakaryocyte-associated tyrosine-protein

			kinase
NM 139354	MATK	GO:0007498	Megakaryocyte-associated tyrosine-protein
			kinase
NM 139355	MATK	GO:0007498	Megakaryocyte-associated tyrosine-protein
_			kinase
NM_016581	ECSIT	GO:0001707	Evolutionarily conserved signaling
			intermediate in Toll pathway, mitochondrial
NM_002730	PRKACA	GO:0001707	cAMP-dependent protein kinase catalytic
			subulit alpha
NM_207518	PRKACA	GO:0001707	subunit alpha
NM 203486	DLL3	GO:0048339	Delta-like protein 3
NM 016941	DLL3	GO:0048339	Delta-like protein 3
NM 004609	TCF15	GO:0007498	Transcription factor 15
NM 002110	НСК	GO:0007498	Tyrosine-protein kinase HCK
NM 172110	EYA2	GO:0007501	Eves absent homolog 2
NM 005244	EYA2	GO:0007501	Eves absent homolog 2
 NM 005985	SNA11	GO:0001707	Zinc finger protein SNAI1
 NM_001719	BMP7	GO:0001707	Bone morphogenetic protein 7
NM_181832	NF2	GO:0001707	Merlin
NM_181831	NF2	GO:0001707	Merlin
NM_181833	NF2	GO:0001707	Merlin
NM_181828	NF2	GO:0001707	Merlin
NM_181825	NF2	GO:0001707	Merlin
NM_000268	NF2	GO:0001707	Merlin
NM_181829	NF2	GO:0001707	Merlin
NM_016418	NF2	GO:0001707	Merlin
NM_181830	NF2	GO:0001707	Merlin
NM_203281	BMX	GO:0007498	Cytoplasmic tyrosine-protein kinase BMX
NM_001721	BMX	GO:0007498	Cytoplasmic tyrosine-protein kinase BMX
NM_000061	BTK	GO:0007498	Tyrosine-protein kinase BTK
NM_003308	TSPY1	GO:0007506	Testis-specific Y-encoded protein 1

Supplementary Table 6. Ectoderm development-related genes

Accession number	Gene	GO number	Function
NM_003443	ZBTB17	GO:0007398	Zinc finger and BTB domain-containing protein 17
NM_015872	ZBTB7B	GO:0007398	Zinc finger and BTB domain-containing protein 7B
NM_012476	VAX2	GO:0007398	Ventral anterior homeobox 2
NM_020909	EPB41L5	GO:0007398	Band 4.1-like protein 5
NM_003507	FZD7	GO:0042666	Frizzled-7
NM_001904	CTNNB1	GO:0007398	Catenin beta-1
NM_003220	TFAP2A	GO:0007398	Transcription factor AP-2-alpha
NM_181349	SMURF1	GO:0007398	E3 ubiquitin-protein ligase SMURF1
NM_020429	SMURF1	GO:0007398	E3 ubiquitin-protein ligase SMURF1
NM_000193	SHH	GO:0007398	Sonic hedgehog protein
NM_004329	BMPR1A	GO:0007398	Bone morphogenetic protein receptor type-1A
NM_001422	ELF5	GO:0007398	ETS-related transcription factor Elf-5
NM_198381	ELF5	GO:0007398	ETS-related transcription factor Elf-5
NM_005555	KRT6B	GO:0007398	Keratin, type II cytoskeletal 6B
NM_005554	KRT6A	GO:0007398	Keratin, type II cytoskeletal 6A
NM_001980	STX2	GO:0007398	Syntaxin-2
NM_194356	STX2	GO:0007398	Syntaxin-2
NM_005568	LHX1	GO:0001705	LIM/homeobox protein Lhx1
NM_021784	FOXA2	GO:0001705	Hepatocyte nuclear factor 3-beta
NM_153675	FOXA2	GO:0001705	Hepatocyte nuclear factor 3-beta
NM_181832	NF2	GO:0007398	Merlin
NM_181831	NF2	GO:0007398	Merlin
NM_181833	NF2	GO:0007398	Merlin
NM_181828	NF2	GO:0007398	Merlin
NM_181825	NF2	GO:0007398	Merlin
NM_000268	NF2	GO:0007398	Merlin
NM_181829	NF2	GO:0007398	Merlin
NM_016418	NF2	GO:0007398	Merlin

NM_181830	NF2	GO:0007398	Merlin
NM_001399	EDA	GO:0007398	Ectodysplasin-A
NM_001005615	EDA	GO:0007398	Ectodysplasin-A
NM_001005612	EDA	GO:0007398	Ectodysplasin-A
NM_001005611	EDA	GO:0007398	Ectodysplasin-A
NM_001005609	EDA	GO:0007398	Ectodysplasin-A
NM_001005610	EDA	GO:0007398	Ectodysplasin-A