Supplemental Table I

Plasmids used in this study

Plasmids	Description	Source	
r iasinius Description Source			
ENTRIA OD and 20	Gateway cloning vectors	T	
pENTRIA, -2B and -3C	Gateway entry vectors		
pDest15	Bacterial OST fusion expression vector; 1 / promoter		
pDESI-IHI	Bacterial MBP fusion expression vector; tac promoter	(1)	
pDestEGFP-CI	Mammalian EGFP fusion expression vector; CMV promoter	(2)	
pDest-mCherry-C1	Mammalian mCherry fusion expression vector, backbone as pDestEGFP-C1	(3)	
pDest-3xFLAG	Mammalian triple FLAG-tag fusion expression vector; CMV promoter	(4)	
pDest-myc	Mammalian myc-tag fusion expression vector; backbone as pcDNA3.1	(2)	
pDest53	Mammalian GFP fusion expression vector, CMV and T7 promoter	Invitrogen	
pDestEGFP-Flp-In-FRT/TO	EGFP gene and downstream gateway cassette subcloned from pDestEGFP-	This study	
	C1 into polylinker of pcDNA5/FRT/TO		
	Other vectors	[· · ·	
pGEX-2T	Bacterial GST fusion expression vector; tac promoter	Amersham	
pcDNA5/FRT/TO	Mammalian Flp-In expression vector; Tet-inducible CMV promoter	Invitrogen	
cDNA constructs made by traditional subcloning or site-directed mutagenesis			
pENTR223.1-ULK1	Human ULK1 in Gateway entry vector (HsCD00082595)	DF/HCC DNA Resource	
		Core, Harvard	
pENTR-ULK1 F357A	Made by site-directed mutagenesis of pENTR223.1-ULK1	This study	
pENTR-ULK1 F357A/V360A	Made by site-directed mutagenesis of pENTR223.1-ULK1	This study	
pENTR-ULK1(1-350)	ULK1(1-350) in Gateway entry vector	This study	
pENTR-ULK1(1-370)	ULK1(1-370) in Gateway entry vector	This study	
pENTR-ULK1(371-1050)	ULK1(371-1050) in Gateway entry vector	This study	
pENTR-ULK1(351-400)	ULK1(351-400) in Gateway entry vector	This study	
pENTR-ULK1(351-370)	ULK1(351-370) in Gateway entry vector	This study	
pENTR-ULK1(351-400)	Made by site-directed mutagenesis of pENTR-ULK1(351-400)	This study	
point mutants			
(F357A, F357A/V360A)			
pcDNA3 1-ATG13-FLAG	Human ATG13 C-terminally tagged with FLAG in pcDNA3 1	(5)	
pENTR-ATG13	ATG13 from pcDNA3 1-ATG13-FLAG in Gateway entry vector	This study	
pENTR-ATG13 F444A	Made by site-directed mutagenesis of pENTR-ATG13	This study	
pENTR-ATG13 F444A/I447A	Made by site-directed mutagenesis of pENTR-ATG13	This study	
pENTR ATG13(1.457)	ATC13(1.457) in Gateway entry vector	This study	
pENTR ATG13(1-437)	ATC13(1-457) in Cateway entry vector	This study	
pENTR-ATG13(1-457)	ATC13(12457) in Cateway entry vector	This study	
pENTR-ATG13(438-317)	ATC12(428-517) III Galeway entry vector	This study	
pENTR-AIGI3(438-457)	ATG13(438-457) in Gateway entry vector	This study	
pENTR-AIGI3(458-517)	ATG15(458-517) in Gateway entry vector	This study	
pDONR221-FIP200	Human FIP200 in Gateway DONR vector (HscD00044465)	DF/HCC DNA Resource	
ENTER L COA		Core, Harvard	
PENTR-LC3A	Human LC SA in Galeway entry vector	(3)	
PENIR-GABARAP	Human GABARAP in Gateway entry vector	(3)	
pENTR-GABARAP	Made by site-directed mutagenesis of pENIR-GABARAP	This study	
point mutants (K46A, K48A,			
Y49A, L50A, R6/A, F//A)			
pENTR-GABARAP(1-26)	Human GABARAP(1-26) in Gateway entry vector	This study	
pENTR-GABARAP(28-117)	Human GABARAP(28-117) in Gateway entry vector	This study	
pENTR-GABARAPL1	Human0 GABARAPL1 in Gateway entry vector	(3)	
pDONR221-yAtg1	Yeast Atg1 in gateway donor vector (HsCD00025090)	DF/HCC DNA Resource	
		Core, Harvard	
pDONR201-yAtg8	Yeast Atg8 in gateway donor vector (HsCD00011665)	DF/HCC DNA Resource	
		Core, Harvard	
pUASp-GFP-Atg8A	Drosophila Atg8A in pUASp-hrGFP	(6)	
pENTR-DmAtg8A	Drosophila Atg8A from pUASp-GFP-Atg8A in Gateway entry vector	This study	
pDONR221-DmAtg1B	Drosophila Atg1B was isolated by PCR using cDNA made from RNA	This study	
	isolated from S2R+ cells, and then inserted into pDONR221 by Gateway BP		
	reaction		
pDONR221-DmAtg1B	Made by site-directed mutagenesis of pDONR221-Atg1B	This study	
point mutants (F391A, V394A,			
F391A/V394A)			
pENTR-FYCO1(1276-1294)	Human FYCO1 in Gateway entry vector	This study	
pGEX4T1-LC3C(\DeltaG)	Human LC3C in pGEX4T1	(7)	
pEGFP-C1-LC3C(\Delta G)	Human LC3C in pEGFP-C1	(7)	
	cDNA constructs made by Gateway LR reactions	-	
pDest15-ULK1(351-400) ULK1(351-400) in pDest15 This study			
pDest15-ULK1(351-400)	ULK1(351-400) F357A in pDest15	This study	
F357A	(100) - 00/ 100/ 100 P20000		
pDest15-ULK1(351-400)	ULK1(351-400) F357A/V360A in pDest15	This study	
F357A/V360A	(····· ······ ·	

pDest15-ATG13	ATG13 in pDest15	This study
pDest15-LC3A	LC3A in pDest15	(3)
pDest15-LC3B	LC3B in pDest15	(3)
pDest15-GABARAP	GABARAP in pDest15	(3)
pDest15-GABARAPL1	GABARAPL1 in pDest15	(3)
pDest15-GABARAPL2	GABARAPL2 in pDest15	(3)
pDest15-GABARAP(1-26)	GABARAP(1-26) in pDest15	This study
pDest15-GABARAP(28-117)	GABARAP(28-117) in pDest15	This study
pDest15-yAtg8	Yeast Atg8 in pDest15	This study
pDest15-DmAtg8A	Drosophila Atg8A in pDest15	This study
pDest15-GABARAP K46A	GABARAP K46A in pDest15	This study
pDest15-GABARAP K48A	GABARAP K48A in pDest15	This study
pDest15-GABARAP Y49A	GABARAP Y49A in pDest15	This study
pDest15-GABARAP L50A	GABARAP L50A in pDest15	This study
pDest15-GABARAP R67A	GABARAP R67A in pDest15	This study
pDest15-GABARAP F77A	GABARAP F77A in pDest15	This study
pDest-TH1-GABARAP	GABARAP in pDest-TH1	This study
pDestEGFP-LC3A	LC3A in pDestEGFP-C1	This study
pDestEGFP-LC3B	LC3B in pDestEGFP-C1	(7)
pDestEGFP-GABARAP	GABARAP in pDestEGFP-C1	This study
pDestEGFP-GABARAPL1	GABARAPL1 in pDestEGFP-C1	This study
pDestEGFP-GABARAPL2	GABARAPL2 in pDestEGEP-C1	(7)
pDest-3xFLAG-ULK1	ULK1 in nDest-3xFLAG	This study
pDest-3xFLAG-ULK1	ULKI E357A/V360A in nDest-3xELAG	This study
F357A/V360A	OEKI I 557A/ V500A III pDest-5XI EAG	This study
nDest-3xFLAG-GABARAP	GABARAP in nDest-3xFLAG	This study
pDest-mCherry-UI K1	ULK1 in nDest-mCherry	This study
pDest-mCherry-ULK1	ULK1 mpDest-menery	This study
F357A/V360A	OLKI 1557A/ V500A in pDest-incherry	This study
nDest-myc-ULK1	ULK1 in nDest-myc	This study
pDest-myc-ULK1(1-370)	ULK1(1-370) in pDest-myc	This study
pDest-myc-UI K1(1370)	ULK1(1370) in pDest-myc	This study
nDest-myc-ULK1 F357A	ULK1 F357A in pDest myc	This study
pDest-myc-ULK1 F357A/V360A	ULK1 F357A/V360A in nDest-myc	This study
pDest-myc-ATG13	ATG13 in pDest-myc	This study
pDest-myc-FIP200	FIP200 in pDest-myc	This study
nDest-myc-vAtg1	Yeast Atg1 in nDest-myc	This study
nDest-myc-DmAtg1B	Dosophila Atg1B in pDest-myc	This study
pDest myc-DmAtg1B F391A	Dosophila Atg1B F391A in pDest-myc	This study
pDest-myc-DmAtg1B V391A	Dosophila Atg1B V39/A in pDest-myc	This study
pDest-myc-DmAtg1B	Dosophila Atg1B F301 A/V304 A in pDest-myc	This study
F391A/V394A	Dosophila Algi D 1 371A V 374A in pDest-inye	This study
nDest53-ULK1(1-350)	ULK1(1-350) in pDest53	This study
nDest53-ULK1(351-400)	ULK1(351-400) in pDest53	This study
pDest53-ULK1(351-370)	ULK1(351-370) in pDest53	This study
pDest53-0EK1(551-570)	ATG13 in pDest53	This study
pDest53_ATG13(1_457)	ATG13(1.457) in pDect53	This study
pDest53-ATC13(1-437)	ATC12(1.427) in pDest53	This study
pDest53-ATC13(1-437)	ATC12(428, 517) in pDest52	This study
pDest52 ATC12(429 457)	ATG13(430-517) III pDcsb3	This study
pDest52 ATC12(458-457)	ATG12(450-437) III PD0803	This study
pDest52_ATC12_E444A	ATC12 E444A in pDost52	This study
pDest53-ATG13 F444A	ATO15 F444A III pDest53	This study
pDest53-A1G13 F444A/I44/A	A 1 U 1 5 F 4 4 4 A / 1 4 4 / A 1 1 p Dest5 5	This study
pDest53-GABARAP	GABAKAP in pDest53	This study
pDest53-FYCO1(1276-1294)	Human FYCO1 LIR motif in pDest53	This study
pDest53-p62(321-349)	Human p62 LIR motif in pDest53	(3)
pDestEGFP-Flp-In-FRT/TO- ULK1	Human ULK1 in pDestEGFP-Fip-In-FRT/TO	This study
pDestEGFP-Flp-In-FRT/TO- ULK1 F357A/V360A	Human ULK1 F357A/V360A in pDestEGFP-Flp-In-FRT/TO	This study

References

- 1. Hammarstrom, M., Hellgren, N., van Den Berg, S., Berglund, H., and Hard, T. (2002) *Protein Sci* **11**, 313-321
- 2. Lamark, T., Perander, M., Outzen, H., Kristiansen, K., Øvervatn, A., Michaelsen, E., Bjørkøy, G., and Johansen, T. (2003) *J Biol Chem* **278**, 34568-34581

- 3. Pankiv, S., Clausen, T. H., Lamark, T., Brech, A., Bruun, J. A., Outzen, H., Overvatn, A., Bjorkoy, G., and Johansen, T. (2007) *J Biol Chem* **282**, 24131-24145
- 4. Jain, A., Lamark, T., Sjøttem, E., Bowitz Larsen, K., Awuh, J. A., Øvervatn, A., McMahon, M., Hayes, J. D., and Johansen, T. (2010) *J Biol Chem* **285**, 22576-22591
- 5. Chan, E. Y., Longatti, A., McKnight, N. C., and Tooze, S. A. (2009) *Mol Cell Biol* **29**, 157-171
- 6. Rusten, T. E., Vaccari, T., Lindmo, K., Rodahl, L. M., Nezis, I. P., Sem-Jacobsen, C., Wendler, F., Vincent, J. P., Brech, A., Bilder, D., and Stenmark, H. (2007) *Curr Biol* **17**, 1817-1825
- Kirkin, V., Lamark, T., Sou, Y. S., Bjorkoy, G., Nunn, J. L., Bruun, J. A., Shvets, E., McEwan, D. G., Clausen, T. H., Wild, P., Bilusic, I., Theurillat, J. P., Overvatn, A., Ishii, T., Elazar, Z., Komatsu, M., Dikic, I., and Johansen, T. (2009) *Mol Cell* 33, 505-516

10% INPUT 11/1050 Α Mycut Minato ³⁵S-Myc-ULK1 constructs Mycill KA 10% input MUNN AR kDa 35 СВВ 25 GST GST-GABARAP В ³⁵S-GFP-ULK1 constructs GPULKNISS 3701 Stenut Minason 100 GFPJUKNIJS 10% input 10% input MUM AR 35 СВВ 25

Supplemental Figure 1

Supplemental Figure 1. Amino acids 351-370 of ULK1 are required for GABARAP binding. (**A**) and (**B**). The indicated ULK1 constructs were *in vitro* translated in the presence of [³⁵S]methionine and tested in GST pulldown assays for binding to recombinant GST or GST-GABARAP. Autoradiographs (AR, upper panels) and Coomassie staining of immobilized GST or GST fusion proteins (bottom panels) are shown.

+

GST

+

GST-GABARAP

Supplemental Figure 2

Supplemental Figure 2. The LIR motif in ULK1 is needed for efficient co-localisation of overexpressed ULK1 with GABARAP in co-transfected cells. (**A-C**). HEK293 cells were transfected with mCherry-tagged ULK1 (wild-type or F357/V360 point mutations), either alone (**A**) or together with GFP-tagged GABARAP (**B** and **C**). Cells were analyzed by confocal microscopy 24 h after transfection. Bars, 10 µm.

Supplemental Figure 3

Supplemental Figure 3. The interaction of GABARAP with ULK1, ATG13, and FIP200 involve both the C-terminal ubiquitin-like domain and the N-terminal extensions. (**A-C**). GFP fusions of the indicated LIR motifs from p62, ULK1, and ATG13 were *in vitro* translated and tested for binding to GST or the indicated GST-GABARAP constructs in GST pulldown assays. (**D**). Full-length ULK1, ATG13, and FIP200 were *in vitro* translated and tested for binding to GST or the indicated GST-GABARAP constructs in GST pulldown assays. (**A**-**D**). Autoradiographs (AR, upper panels) and Coomassie staining of immobilized GST or GST fusion proteins (bottom panels) are shown.

Supplemental Figure 4

Supplemental Figure 4. (**A**). Flow cytometry diagrams showing equal expression levels of wild type and LIR-mutated GFP-ULK1 in HEK293 Flp-In T-Rex cells. Expression of GFP-ULK1 (wild type or mutated) was induced for 24 hours with tetracycline. (**B**). Triple co-localization of GFP-ULK1, endogenous WIPI2, and endogenous LC3B or GABARAP L1 in dots of HEK293 Flp-In T-Rex cells expressing wild type GFP-ULK1. Expression of GFP-ULK1 (wild type or mutated) was induced for 24 hours with tetracycline. Cells were fixed and stained as indicated with antibodies against LC3B, GABARAP L1, and WIPI2. Cells were then analysed by confocal microscopy. Representative images are shown, the circles indicating dots with triple co-localization.