SUPPLEMENTARY INFORMATION

Title: Tumor Suppressor BRCA1 epigenetically controls oncogenic miRNA-155

Authors: Suhwan Chang, Rui-Hong Wang, Keiko Akagi, Kyung-Ae Kim, Betty K. Martin, Luca Cavallone, kConFab, Diana C. Haines, Mark Basik, Phuong Mai, Elizabeth Poggi, Claudine Isaacs, Lai M. Looi, Kein S. Mun, Mark H. Greene, Stephen W. Byers, Soo H. Teo, Chu-Xia Deng and Shyam K. Sharan.

Supplementa	ry Table 1	Expression analysis of R1699Q embryoid bodies	
Column #	Probeset ID	Gene Title	Gene Symbol
Down-regulat	ed		
33597	1449289_a_at	beta-2 microglobulin	B2m
36731	1452428_a_at	beta-2 microglobulin	B2m
39742	1455439_a_at	lectin, galactose binding, soluble 1	Lgals1
44651	1460351_at	S100 calcium binding protein A11 (calgizzarin)	S100a11
6821	1422507_at	cystatin B	Cstb
40559	1456256_at	eukaryotic translation initiation factor 5	Eif5
6820	1422506_a_at	cystatin B	Cstb
7743	1423429_at	reproductive homeobox 5	Rhox5
378	1416039_x_at	cysteine rich protein 61	Cyr61
11440	1427126_at	heat shock protein 1B	Hspa1b
3912	1419573_a_at	lectin, galactose binding, soluble 1	Lgals1
11441	1427127_x_at	heat shock protein 1B	Hspa1b
32541	1448233_at	prion protein	Prnp
12397	1428083_at	RIKEN cDNA 2310043N10 gene	2310043N10Ri
22447	1438133_a_at	cysteine rich protein 61	Cyr61
8372	1424058_at	proline-rich coiled-coil 1	Prrc1
7262	1422948_s_at	histone cluster 1, H4h /// histone cluster 1, H4c /// h	Hist1h4a /// His
30331	1446017_at	Transcribed locus	
3648	1419309_at	podoplanin	Pdpn
24568	1440254_at	hypothetical protein LOC100041277 /// hypothetica	LOC100041277
3430	1419091_a_at	annexin A2	Anxa2
238	1415899_at	Jun-B oncogene	Junb
2910	1418571_at	tumor necrosis factor receptor superfamily, memb	Tnfrsf12a
43825	1459522_s_at	glycogenin	Gyg
33295	1448987_at	acyl-Coenzyme A dehydrogenase, long-chain	Acadl
34232	1449929_at	dynein light chain Tctex-type 3	Dynlt3
44614	1460314_s_at	histone cluster 2, H3c1 /// histone cluster 2, H2aa1	Hist1h3a /// His
32626	1448318_at	adipose differentiation related protein	Adfp
44157	1459854_s_at	dynein light chain Tctex-type 3	Dynlt3
2911	1418572_x_at	tumor necrosis factor receptor superfamily, memb	Tnfrsf12a
36621	1452318_a_at	heat shock protein 1B	Hspa1b
18817	1434503_s_at	lysosomal-associated membrane protein 2	Lamp2
12408	1428094_at	lysosomal-associated membrane protein 2	Lamp2
1101	1416762_at	S100 calcium binding protein A10 (calpactin)	S100a10
21485	1437171_x_at	gelsolin	Gsn
38321	1454018_at	tousled-like kinase 2 (Arabidopsis)	Tlk2
1748	1417409_at	Jun oncogene	Jun
32647	1448339_at	transmembrane protein 30A	Tmem30a
12017	1427703_at	platelet-activating factor acetylhydrolase, isoform	LOC10004658
23286	1438972_x_at	RIKEN cDNA 2810410L24 gene	2810410L24Ril

Up-regulated

34929 1450626_at 40644 1456341_a_at

10000 1100000 -1		22400E4E47D:
12602 1428288_at	RIKEN cDNA 2310051E17 gene	2310051E17Ril
35156 1450853_at	transducin-like enhancer of split 4, homolog of Dro	
491 1416152_a_at	splicing factor, arginine/serine-rich 3 (SRp20)	Sfrs3
34385 1450082_s_at	ets variant gene 5	Etv5
19231 1434917_at	cordon-bleu	Cobl
12366 1428052_a_at	zinc finger, MYM domain containing 1	Zmym1
33716 1449408_at	junction adhesion molecule 2	Jam2
36761 1452458_s_at	peptidylprolyl isomerase (cyclophilin) like 5	Ppil5
12603 1428289_at	Kruppel-like factor 9 /// RIKEN cDNA 2310051E17 g	2310051E17Ril
12456 1428142_at	ets variant gene 5	Etv5
2099 1417760_at	nuclear receptor subfamily 0, group B, member 1	Nr0b1
5312 1420998_at	ets variant gene 5	Etv5
18103 1433789_at	small nucleolar RNA host gene (non-protein coding	Snhg3
33065 1448757_at	promyelocytic leukemia	Pml
4412 1420085_at	fibroblast growth factor 4	Fgf4
33423 1449115_at	metal response element binding transcription factor	Mtf2
36643 1452340_at	RIKEN cDNA 6820424L24 gene	6820424L24Ril
21240 1436926 at	estrogen related receptor, beta	Esrrb
20097 1435783_at	RIKEN cDNA B230112C05 gene	B230112C05Ri
490 1416151 at	splicing factor, arginine/serine-rich 3 (SRp20)	Sfrs3
4413 1420086 x at	fibroblast growth factor 4	Fgf4
7383 1423069_at	activity-dependent neuroprotective protein	Adnp
2773 1418434 at	makorin, ring finger protein, 1	Mkrn1
12533 1428219 at	RING1 and YY1 binding protein /// predicted gene,	
11408 1427094 at	polymerase (DNA directed), epsilon 2 (p59 subunit	
41001 1456698_s_at	heterogeneous nuclear ribonucleoprotein D-like	Hnrpdl
4882 1420568 at	stimulated by retinoic acid gene 8	Stra8
24054 1439740 s at	uridine-cytidine kinase 2	Uck2
33198 1448890 at	Kruppel-like factor 2 (lung)	Klf2
6600 1422286_a_at	TG interacting factor 1	Tgif1
39296 1454993 a at	splicing factor, arginine/serine-rich 3 (SRp20)	Sfrs3
36340 1452037 at	mannoside acetylglucosaminyltransferase 2	Mgat2
32792 1448484 at	S-adenosylmethionine decarboxylase 1	Amd1
4420 1420093 s at	heterogeneous nuclear ribonucleoprotein D-like	Hnrpdl
36352 1452049 at	ribosomal protein L7-like 1	RpI7I1
8072 1423758 at	GTPase activating protein (SH3 domain) binding p	•
17884 1433570 s at	MAK10 homolog, amino-acid N-acetyltransferase s	-
12508 1428194 at		Usp9x
19071 1434757 at	ubiquitin specific peptidase 9, X chromosome	•
	core-binding factor, runt domain, alpha subunit 2,	
19315 1435001_at	phospholipase A2, activating protein	Plaa
2840 1418501_a_at	oxidation resistance 1	Oxr1
39603 1455300_at	RIKEN cDNA E130014J05 gene	E130014J05Ril
14034 1429720_at	MAK10 homolog, amino-acid N-acetyltransferase s	
890 1416551_at	ATPase, Ca++ transporting, cardiac muscle, slow t	-
33418 1449110_at	ras homolog gene family, member B	Rhob
7011 1422697_s_at	jumonji, AT rich interactive domain 2	Jarid2
1743 1417404_at	ELOVL family member 6, elongation of long chain	
17828 1433514_at	ethanolamine kinase 1	Etnk1
13039 1428725_at	protein inhibitor of activated STAT 2	Pias2

	1429446_at	serologically defined colon cancer antigen 1	Sdccag1
	1424516_at	RIKEN cDNA B230354K17 gene	B230354K17Ri
	1416177_at	RNA binding motif protein, X chromosome retroge	
	1437110_at	RIKEN cDNA 2810474O19 gene	2810474O19Ri
	1451285_at	fusion, derived from t(12;16) malignant liposarcom	
	1427142_s_at	jumonji, AT rich interactive domain 1B (Rbp2 like)	
	1440381_at	RIKEN cDNA 2410085M17 gene	2410085M17Ri
	1450038_s_at	ubiquitin specific peptidase 9, X chromosome	Usp9x
	1454617_at	arrestin domain containing 3	Arrdc3
	1435758_at	similar to Beta-1,4-galactosyltransferase 6 (Beta-1,	
	1421534_at	deafness, autosomal dominant 5 homolog (human	
	1415697_at	GTPase activating protein (SH3 domain) binding p	-
	1435497_at	RIKEN cDNA 5730590G19 gene /// hypothetical pro	
	1417022_at	solute carrier family 7 (cationic amino acid transpo	
	1456219_at	similar to OPR	LOC100045988
	1428845_at	BCL2-associated transcription factor 1	Bclaf1
	1426900_at	jumonji domain containing 1C	Jmjd1c
35017	1450714_at	antizyme inhibitor 1	Azin1
19078	1434764_at	A kinase (PRKA) anchor protein 11	Akap11
19019	1434705_at	C-terminal binding protein 2	Ctbp2
13697	1429383_at	casein kinase 1, gamma 3 /// similar to casein kinas	Csnk1g3 /// LO
2409	1418070_at	chromodomain protein, Y chromosome-like	Cdyl
35013	1450710_at	jumonji, AT rich interactive domain 2	Jarid2
12507	1428193_at	ubiquitin specific peptidase 9, X chromosome	Usp9x
5236	1420922_at	ubiquitin specific peptidase 9, X chromosome	Usp9x
11036	1426722_at	solute carrier family 38, member 2	SIc38a2
10852	1426538_a_at	transformation related protein 53	Trp53
11485	1427171_at	rearranged L-myc fusion sequence	RIf
39025	1454722_at	phosphatase and tensin homolog	Pten
12538	1428224_at	heterogeneous nuclear ribonucleoprotein D-like	Hnrpdl
18913	1434599_a_at	tight junction protein 2	Tjp2
501	1416162_at	RAD21 homolog (S. pombe)	Rad21
18217	1433903_at	expressed sequence AU021838	AU021838
14948	1430634_a_at	phosphofructokinase, platelet	Pfkp
8347	1424033_at	splicing factor, arginine/serine-rich 7	Sfrs7
19508	1435194_at	heat shock protein 4	Hspa4
25996	1441682_s_at	exportin, tRNA (nuclear export receptor for tRNAs)	Xpot
19081	1434767_at	expressed sequence C79407	C79407
18626	1434312_at	ADP-ribosylation factor 6	Arf6
44138	1459835_s_at	DnaJ (Hsp40) homolog, subfamily A, member 1	Dnaja1
35288	1450985_a_at	tight junction protein 2	Tjp2
34356	1450053_at	Kinesin family member 2A	Kif2a
34355	1450052_at	kinesin family member 2A	Kif2a
39655	1455352_at	expressed sequence AU023006	AU023006
8829	1424515_at	RIKEN cDNA B230354K17 gene	B230354K17Ri
11562	1427248_at	Wolf-Hirschhorn syndrome candidate 2 (human)	Whsc2
13086	1428772_at	exportin, tRNA (nuclear export receptor for tRNAs)	Xpot
12053	1427739_a_at	transformation related protein 53	Trp53
13197	1428883_at	transmembrane protein 57	Tmem57

7738 1423424_at	zinc finger protein of the cerebellum 3	Zic3
9037 1424723_s_at	cleavage stimulation factor, 3' pre-RNA, subunit 3	
39476 1455173_at	G1 to S phase transition 1	Gspt1
1267 1416928_at	RNA binding motif protein 12	Rbm12
39077 1454774_at	zinc finger protein 445	Zfp445
34993 1450690_at	RAN binding protein 2	Ranbp2
8667 1424353_at	leucine-rich PPR-motif containing	Lrpprc
36540 1452237_at	HIV-1 Rev binding protein	Hrb
12263 1427949_at	zinc finger protein 294	Zfp294
13902 1429588_at	RIKEN cDNA 2810474O19 gene	2810474O19Ri
42677 1458374_at	expressed sequence C79407	C79407
13762 1429448_s_at	CXXC finger 6	Cxxc6
18050 1433736_at	host cell factor C1	Hcfc1
8061 1423747_a_at	pyruvate dehydrogenase kinase, isoenzyme 1	Pdk1
18995 1434681_at	RIKEN cDNA 4932441K18 gene	4932441K18Ri
18616 1434302_at	Ras association (RalGDS/AF-6) and pleckstrin hom	r Raph1
3793 1419454_x_at	protein inhibitor of activated STAT 2	Pias2
21381 1437067_at	putative homeodomain transcription factor 2	Phtf2
33017 1448709_at	AT rich interactive domain 1A (Swi1 like) /// similar	Arid1a /// LOC
18108 1433794_at	senataxin	Setx
40406 1456103_at	promyelocytic leukemia	Pml
40308 1456005_a_at	BCL2-like 11 (apoptosis facilitator)	Bcl2l11
2987 1418648_at	EGL nine homolog 3 (C. elegans)	EgIn3
34340 1450037_at	ubiquitin specific peptidase 9, X chromosome	Usp9x
6578 1422264_s_at	Kruppel-like factor 9 /// RIKEN cDNA 2310051E17 g	2310051E17Ril
20284 1435970_at	nemo like kinase /// similar to nemo-like kinase	LOC100044468
18351 1434037_s_at	p300/CBP-associated factor	Pcaf
32538 1448230_at	ubiquitin specific peptidase 10	Usp10
18914 1434600_at	tight junction protein 2	Tjp2
20882 1436568_at	junction adhesion molecule 2	Jam2
13609 1429295_s_at	thyroid hormone receptor interactor 13	Trip13
567 1416228_at	protein (peptidyl-prolyl cis/trans isomerase) NIMA	-Pin1
9300 1424986_s_at	F-box and WD-40 domain protein 7, archipelago he	Fbxw7
19092 1434778_at	Transcribed locus	
869 1416530_a_at	purine-nucleoside phosphorylase /// similar to pur	i LOC100045567
28704 1444390_at	PR domain containing 14	Prdm14
44480 1460179_at	DnaJ (Hsp40) homolog, subfamily A, member 1	Dnaja1
11457 1427143 at	jumonji, AT rich interactive domain 1B (Rbp2 like)	Jarid1b
22057 1437743 at	AE binding protein 2	Aebp2
44978 1460678 at	kelch domain containing 2	Klhdc2
7028 1422714 at	ubiquitin-conjugating enzyme E2I /// predicted gen	EG546265 /// U
17993 1433679 at	far upstream element (FUSE) binding protein 3	Fubp3
36512 1452209 at	plakophilin 4	Pkp4
12845 1428531 at	integrator complex subunit 7	Ints7
33393 1449085_at	PHD finger protein 10	Phf10
1306 1416967 at	SRY-box containing gene 2	Sox2
111 1415772 at	nucleolin	Ncl
40267 1455964 at	Cdc2-related kinase, arginine/serine-rich	Crkrs
11648 1427334 s at	RIKEN cDNA 2810474O19 gene	2810474019Ri

38969 1454666 at similar to BKLF LOC10004685 potassium channel, subfamily K, member 5 6166 1421852 at Kcnk5 transcription factor AP-2, gamma Tcfap2c 33285 1448977 at cleavage stimulation factor, 3' pre-RNA subunit 2, 1Cstf2t 259 1415920 at 31938 1447624 s at storkhead box 2 Stox2 14048 1429734 at RIKEN cDNA 4632434111 gene 4632434I11Rik proteasome (prosome, macropain) 26S subunit, ncPsmd7 35359 1451056 at 13312 1428998 at PHD finger protein 3 Phf3 E1A binding protein p300 Ep300 19079 1434765 at 47 1415708 at taurine upregulated gene 1 Tug1 TAF4A RNA polymerase II, TATA box binding prote LOC100046932 36741 1452438 s at zinc finger protein of the cerebellum 3 23051 1438737 at Zic3 gene model 944, (NCBI) Gm944 21141 1436827 at sirtuin 1 ((silent mating type information regulatior Sirt1 2979 1418640 at 7012 1422698 s at jumonji, AT rich interactive domain 2 Jarid2 11067 1426753 at PHD finger protein 17 Phf17 AT hook containing transcription factor 1 35762 1451459 at Ahctf1 EGL nine homolog 1 (C. elegans) 8099 1423785 at EgIn1 ubiguitin-conjugating enzyme E2D 3 (UBC4/5 hom Ube2d3 7428 1423114 at ubiquitin carboxy-terminal hydrolase L1 32568 1448260 at Uchl1 ankyrin repeat domain 17 39066 1454763 at Ankrd17 serine/threonine kinase 4 20329 1436015 s at Stk4 cDNA sequence BC049349 BC049349 18610 1434296 at 40420 1456117 at ribosomal RNA processing 1 homolog B (S. cerevi: Rrp1b L-2-hydroxyglutarate dehydrogenase L2hgdh 9172 1424858 at **RAB** interacting factor 4254 1419927 s at Rabif 44629 1460329 at similar to Beta-1,4-galactosyltransferase 6 (Beta-1, LOC675709 2246 1417907 at ubiquitin-conjugating enzyme E2L 3 Ube2I3 17983 1433669 at A kinase (PRKA) anchor protein 8 Akap8 40814 1456511 x at ES cell-expressed Ras Eras 39799 1455496 at phosphoribosylformylglycinamidine synthase (FG Pfas 39134 1454831 at forkhead box N2 Foxn2 RIKEN cDNA 1110029105 gene /// hypothetical prote1110029105Rik 19658 1435344 at 12721 1428407 at heterogeneous nuclear ribonucleoprotein A0 Hnrpa0 SWI/SNF-related, matrix-associated actin-depende Smarcad1 36579 1452276 at chromodomain protein, Y chromosome-like Cdvl 2410 1418071 s at metal response element binding transcription fact(Mtf2 2853 1418514 at 18171 1433857 at FAT tumor suppressor homolog 1 (Drosophila) Fat1 SMT3 suppressor of mif two 3 homolog 1 (yeast) 22603 1438289 a at Sumo1 10761 1426447 at nucleoporin 35 Nup35 33188 1448880 at ubiquitin-conjugating enzyme E2L 3 Ube2I3 serologically defined colon cancer antigen 1 19334 1435020 at Sdccag1 6372 1422058 at nodal Nodal solute carrier family 12, member 2 /// similar to solt LOC100047237 1961 1417622 at membrane-bound transcription factor peptidase, s Mbtps1 32548 1448240 at splicing factor, arginine/serine-rich 3 (SRp20) /// pr EG632248 /// S 18826 1434512 x at minichromosome maintenance deficient 3 (S. cere¹LOC100045677 10967 1426653 at 2280 1417941 at N-acetylneuraminic acid phosphatase Nanp 35380 1451077 at ribosomal protein L5 /// similar to ribosomal protei EG665407 /// E

42057 4420242 -4	DNA hinding motif protoin V linked like 2 /// eimil	
13657 1429343_at	RNA binding motif protein, X-linked-like 2 /// simila	
6770 1422456_at	N-ethylmaleimide sensitive fusion protein	Nsf
39259 1454956_at	ribosomal protein S6 kinase, polypeptide 1	Rps6kb1
21236 1436922_at	peptidylprolyl isomerase (cyclophilin) like 5	Ppil5
19167 1434853_x_at	makorin, ring finger protein, 1	Mkrn1
19788 1435474_at	TAF5 RNA polymerase II, TATA box binding protei	
40918 1456615_a_at	bromodomain PHD finger transcription factor	Bptf
2620 1418281_at	RAD51 homolog (S. cerevisiae)	Rad51
12948 1428634_at	TWIST neighbor	Twistnb
19683 1435369_at	FAST kinase domains 5	Fastkd5
422 1416083_at	zinc finger, AN1-type domain 5 /// similar to zinc fi	n LOC10004789(
8225 1423911_at	protein phosphatase 2, regulatory subunit B (B56),LOC10004639
3333 1418994_at	RIKEN cDNA 2410116G06 gene	2410116G06Ri
39122 1454819 at		
1494 1417155 at	v-myc myelocytomatosis viral related oncogene,	n Mycn
18280 1433966_x_at	asparagine synthetase	Asns
19281 1434967 at	zinc finger, SWIM domain containing 6	Zswim6
37136 1452833 at	Rap guanine nucleotide exchange factor (GEF) 2	Rapgef2
35200 1450897 at	Rho GTPase activating protein 5	Arhgap5
32985 1448677 at	COX4 neighbor	Cox4nb
6371 1422057 at	nodal	Nodal
18531 1434217 at	RIKEN cDNA C330019G07 gene	C330019G07Ri
4724 1420410 at	nuclear receptor subfamily 5, group A, member 2	Nr5a2
19256 1434942 at	ESF1, nucleolar pre-rRNA processing protein, hor	
18353 1434039_at	amyloid beta precursor protein (cytoplasmic tail)	
—		
12683 1428369_s_at	Rho GTPase activating protein 21	Arhgap21
3754 1419415_a_at	retinoic acid receptor, gamma	Rarg
20706 1436392_s_at	transcription factor AP-2, gamma	Tcfap2c
17841 1433527_at	iron responsive element binding protein 2	Ireb2
22592 1438278_a_at	cDNA sequence BC003993	BC003993
10665 1426351_at	heat shock protein 1 (chaperonin)	Hspd1
40118 1455815_a_at	tyrosine 3-monooxygenase/tryptophan 5-monoox	•
21609 1437295_at	protein kinase N2	Pkn2
10942 1426628_at	transmembrane protein 34	Tmem34
20092 1435778_at	ankyrin repeat domain 11	Ankrd11
5637 1421323_a_at	GTPase activating protein (SH3 domain) binding p	•
2322 1417983_a_at	ubiquitin-conjugating enzyme E2 variant 2	Ube2v2
1094 1416755_at	DnaJ (Hsp40) homolog, subfamily B, member 1	Dnajb1
8187 1423873_at	LSM1 homolog, U6 small nuclear RNA associated	(Lsm1
8543 1424229_at	dual-specificity tyrosine-(Y)-phosphorylation regu	ıl Dyrk3
39251 1454948_at	ubiquitin specific peptidase 7	Usp7
17835 1433521_at	ankyrin repeat domain 13c	Ankrd13c
5266 1420952_at	Son cell proliferation protein	Son
33525 1449217_at	caspase 8 associated protein 2	Casp8ap2
18996 1434682_at	zinc finger protein 770	Zfp770
	pyrophosphatase (inorganic) 2 /// similar to Pyrop	hLOC10004814
6926 1422612_at	hexokinase 2 /// hypothetical protein LOC1000434	
11398 1427084 a at	mitogen-activated protein kinase kinase kinase ki	
18148 1433834 at	membrane-associated ring finger (C3HC4) 6	6-Mar
	······································	

00450 4440444	had a second a second second back and second size A/D	11
32452 1448144_at	heterogeneous nuclear ribonucleoprotein A/B	Hnrpab
26722 1442408_at	sulfatase 2	Sulf2
6045 1421731_a_at	flap structure specific endonuclease 1	Fen1
12785 1428471_at	sorbin and SH3 domain containing 1	Sorbs1
35620 1451317_at	YTH domain family 2	Ythdf2
1384 1417045_at	BH3 interacting domain death agonist	Bid
18835 1434521_at	regulatory factor X domain containing 2 homolog	•
38960 1454657_s_at	MAK10 homolog, amino-acid N-acetyltransferase	s Mak10
38419 1454116_a_at	MTERF domain containing 1	Mterfd1
18352 1434038_at	DnaJ (Hsp40) homolog, subfamily C, member 13	Dnajc13
13120 1428806_at	casein kinase 1, gamma 1	Csnk1g1
40824 1456521_at	nuclear receptor subfamily 5, group A, member 2	Nr5a2
1742 1417403_at	ELOVL family member 6, elongation of long chain	Elovi6
17851 1433537_at	RIKEN cDNA 4833408C14 gene	4833408C14Ri
35161 1450858_a_at	ubiquitin-conjugating enzyme E2D 3 (UBC4/5 hom	(Ube2d3
11194 1426880_at	enhancer trap locus 4	Etl4
18193 1433879_a_at	RIKEN cDNA C130032J12 gene	C130032J12Ri
6798 1422484 at	cytochrome c, somatic	Cycs
459 1416120_at	ribonucleotide reductase M2	Rrm2
21662 1437348 at	F-box protein 28	Fbxo28
408 1416069 at	phosphofructokinase, platelet	Pfkp
2241 1417902 at	solute carrier family 19 (thiamine transporter), me	•
33900 1449592 at	transcription factor 15	Tcf15
23134 1438820 at	ring finger protein 17	Rnf17
19314 1435000_at	G1 to S phase transition 1	Gspt1
19554 1435240 at	bromodomain adjacent to zinc finger domain, 2B	Baz2b
772 1416433_at	replication protein A2	Rpa2
11096 1426782_at	G protein-coupled receptor 125	Gpr125
19384 1435070_at	AE binding protein 2	Aebp2
39117 1454814 s at	expressed sequence AU021838	AU021838
1254 1416915_at	mutS homolog 6 (E. coli)	Msh6
19454 1435140 at	insulin degrading enzyme	lde
35589 1451286 s at	fusion, derived from t(12;16) malignant liposarcon	
6359 1422045_a_at	protein tyrosine phosphatase, non-receptor type 1	
35944 1451641 at	debranching enzyme homolog 1 (S. cerevisiae)	Dbr1
37017 1452714 at	tetratricopeptide repeat, ankyrin repeat and coiled	
1505 1417166 at	PC4 and SFRS1 interacting protein 1	Psip1
19697 1435383 x at	necdin	Ndn
23379 1439065 x at	Predicted gene, OTTMUSG00000010173	OTTMUSG000
35754 1451451 at	grancalcin	Gca
	5	
8215 1423901_at	thyroid hormone receptor interactor 12	Trip12
35383 1451080_at	ubiquitin specific peptdiase 1	Usp1
264 1415925_a_at	nucleoporin 62	Nup62
3360 1419021_at	mcf.2 transforming sequence	Mcf2
21054 1436740_at	similar to p47 protein	LOC100041567
23071 1438757_at	RIKEN cDNA C130069I09 gene /// similar to crooke	
627 1416288_at	DnaJ (Hsp40) homolog, subfamily A, member 1	Dnaja1
33019 1448711_at	minichromosome maintenance deficient 3 (S. cere	мстзар
11899 1427585_at	DNA cytosine methyltransferase mRNA	

7589 1423275_at	integrator complex subunit 6	Ints6
8195 1423881_at	SAPS domain family, member 3	Saps3
22406 1438092_x_at	H2A histone family, member Z	H2afz
44902 1460602_at	deleted in liver cancer 1	DIc1
18534 1434220_at	nucleoporin 98	Nup98
11012 1426698_a_at	heterogeneous nuclear ribonucleoprotein M	Hnrpm
2109 1417770_s_at	proteasome (prosome, macropain) 26S subunit, A	IPsmc6
472 1416133_at	RIKEN cDNA C920006C10 gene	C920006C10Ri
18875 1434561_at	additional sex combs like 1 (Drosophila)	Asxl1
40893 1456590_x_at	aldo-keto reductase family 1, member B3 (aldose r	Akr1b3
32435 1448127_at	ribonucleotide reductase M1	Rrm1
12777 1428463_a_at	protein phosphatase 2, regulatory subunit B (B56)	, Ppp2r5e
16356 1432042_a_at	smu-1 suppressor of mec-8 and unc-52 homolog ((Smu1
8327 1424013_at	eukaryotic translation termination factor 1	Etf1
36483 1452180_at	PHD finger protein 17	Phf17
17910 1433596_at	DnaJ (Hsp40) homolog, subfamily C, member 6	Dnajc6
19255 1434941_s_at	ESF1, nucleolar pre-rRNA processing protein, hom	Esf1
36589 1452286_at	SLAIN motif family, member 2	Slain2
21623 1437309_a_at	replication protein A1	Rpa1
15820 1431506_s_at	peptidyl prolyl isomerase H /// similar to peptidyl p	EG665989 /// L
12547 1428233_at	cleavage and polyadenylation specific factor 6	Cpsf6
25029 1440715_s_at	DNA segment, Chr 11, ERATO Doi 497, expressed	D11Ertd497e
10291 1425977_a_at	STE20-like kinase (yeast)	Slk
12642 1428328_at	nucleoporin 50	Nup50
381 1416042_s_at	nuclear autoantigenic sperm protein (histone-bind	LOC100043974
2453 1418114_at	recombination signal binding protein for immunog	l Rbpj
7612 1423298_at	adducin 3 (gamma)	Add3
37566 1453263_at	MAK10 homolog, amino-acid N-acetyltransferase s	Mak10
8062 1423748_at	pyruvate dehydrogenase kinase, isoenzyme 1	Pdk1
39507 1455204_at	phosphatidylinositol transfer protein, cytoplasmic	Pitpnc1
2361 1418022_at	NMDA receptor-regulated gene 1	Narg1

	Probeset ID	Systematic Name	Fold Change (WT vs. MI)	Fold Change (WT vs. RQ)
	3674		1.52	3.18
	8598	miR-155	1.31	2.92
Un normlated	4476		1.34	2.66
Up-regulated	14869		-1.09	1.61
	2246	miR-652	-1.15	1.57
	836		-1.17	1.54
	8889	miR-148	-1.19	-1.69
	18032		-1.17	-1.66
	6907		-1.19	-1.64
	1739		-1.14	-1.62
Dama an anlatad	4328		1.10	-1.66
Down-regulated	10016	miR-152	1.02	-1.57
	6331		1.08	-1.56
	4115		-1.03	-1.64
	9932	miR-744	-1.01	-1.61
	11089		-1.00	-1.60

Supplementary Table 2. Summary of miRNA array analysis

Up-regulated Pathway	-Log (P-value)
Hypoxia Signaling in the Cardiovascular System	5.90E+00
Protein Ubiquitination Pathway	5.60E+00
Wnt/b-catenin Signaling	5.35E+00
Cell Cycle: G2/M DNA Damage Checkpoint Regulation	2.83E+00
Estrogen Receptor Signaling	2.68E+00
PI3K/AKT Signaling	2.68E+00
Tight Junction Signaling	2.63E+00
p53 Signaling	2.43E+00
Down-regulated Pathway	-Log (P-value)
IGF-1 Signaling	2.20E+00

Supplementary Table 3. Altered signaling pathways in R1699Q embryoid body

Tg	Number/Gen	Tumor	Age (months)
M1652I	28 Male	Liver	20
	29 Male	Liver	23
	30 Male	Liver	20
	169 Female	Liver	14
R1699Q	93 Male	Liver	18
	163 Male	Skin	14
	435 Male	GI*	15
	489 Male	GI	15
	491 Male	Skin	15
	515 Female	Mammary	14
	519 Male	GI	16
	578 Male	Liver	13

Supplementary Table 4. Tumors analyzed from the $Brca1^{ko/+}$; $Trp53^{ko/+}$; Tg^{R1699Q} and $Brca1^{ko/+}$; $Trp53^{ko/+}$; Tg^{M1652I} mice

* GI : Gastrointestinal tract

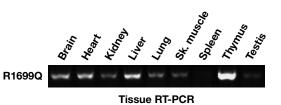
Supplementary Table 5. Primers used in this study

Primers for BAC Mutagenesis	Sequences
M1652I M1 (Hit Forward))	CTGCTGGGTATAATGCAATGGAAGAAGTGTGAGCAGGGAGAAGCCAGAATTGAC AGCTTCAACAGAAAGGGTCAACAAAGGATCCTAGAATTCCTCGAG
M1652I M2 (Hit Backward)	TCTTTCCAGAATGTTGTTAAGTCTTAGTCATTAGGGAGATACATATGGATACACTCA CAAATTCTTCTGGGGTCAGGCCACTCGAGGAATTCTAGGATCC
M1652I M3 (Fix Forward)	CTGCTGGGTATAATGCAATGGAAGAAGAAGTGTGAGCAGGGAGAAGCCAGAATTGAC AGCTTCAACAGAAAGGGTCAACAAAAGAATGTCCATCGTGGTGTC
M1652I M4 (Fix Backward)	TCTTTCCAGAATGTTGTTAAGTCTTAGTCATTAGGGAGATACATATGGATACACTCA CAAATTCTTCTGGGGTCAGGCCAGACACCACGATGGACATTCT
R1699Q M1 (Hit Forward)	GCTTCTTAGGACAGCACTTCCTGATTTTGATTTGGATCCTAGAATTCCTTGAGTGTTTT TCATTCTGCAGATGCTGAGTTTGGATCCTAGAATTCCTCGAG
R1699Q M2 (Hit Backward)	AAGGGAGGAGGGGGAGAAATAGTATTATACTTACAGAAATAGCTAACTACCCATTTT CCTCCCGCAATTCCTAGAAAATATCTCGAGGAATTCTAGGATCC
R1699Q M3 (Fix Forward)	GCTTCTTAGGACAGCACTTCCTGATTTTGTTTTCAACTTCTAATCCTTTGAGTGTTTT TCATTCTGCAGATGCTGAGTTTGTGTGTGTGAACAGACACTGAA
R1699Q M4 (Fix Backward)	AAGGGAGGAGGGGGAGAAATAGTATTATACTTACAGAAATAGCTAACTACCCATTTT CCTCCCGCAATTCCTAGAAAATATTTCAGTGTCTGTTCACACAC
Chm	9
ChIP primers	Sequences AAG TTT GCA ACT TCC CCT GC
mBIC Brca1-1 ChIP	
	TCG TGA CTC ATA ACC GAC CAG
mBIC Brca1-2 ChIP	GAG CTT CTG TGC CTG TTT GC
	CTA ATA GAT CGG GTC CAT TCC
hBIC BRCA1 ChIP1	CTG TAG GTT CCA AGA ACA GG
	TCC GCT ATC CGC TCC CTT CC
hBIC BRCA1 ChIP2	GAC CAG AGA TTG CGC TGG AT
	AAG AAA GGC AAC CGC TCG GC
hEsrrg ChIP	GTT CTG ATG GCC ATT CAT GG
	CAC ATT GAT TCC AGC TGT TCG
hStat5a ChIP	GAA AAG CCC TAG CCG TCG AG
	ACA GAG ATG GTG AGG AGT GG
hCyclinB1 ChIP	CTG ATT TTC CCA TGA GAG GC
-	GAT TGT CCA GTT TCC CAA GG
Genotyping primers	sequences
Brca1 Conditional	TAT CAC CAC TGA ATC TCT ACC G
	GAC CTC AAA CTC TGA GAT CCA C
	TAT TCT TAC TTC GTG GCA CAT C
	TCC ATA GCA TCT CCT TCT AAA C
K14 Cre	TTT TCA AGG CAA TCA GGG TA
	CAT CAC TCG TTG CAT CGA CC
Brca1 knockout	GGA CGG CAG ATA AAT CCA TTT CTT CC
Dicar Knockout	

	GGA ATG TTT CCA CCC AAT GTC GAG C
	CATC AGA GCC GATT GTC TGT TG
Trp53	CGT GAT ATT GCT GAA GAC CTT GGC
11p55	CCT CAA TAA GCT ATT CTG CCA GCT G
	CTG TCT TCC AGA TAC TCG GGA TAC
Brca1 R1699Q /	
M1652I BAC TG	ATG GAG GAA CCC ACA TAG GC
	TAT GGG ATA GAG GTG AGA TCC
Real-time PCR primers	sequences
Oct4	CCG TGT GAG GTG GAG TCT GGA G
	GCG ATG TGA GTG ATC TGC TGT AGG
Nanog	GAA ATC CCT TCC CTC GCC ATC
	CTC AGT AGC AGA CCC TTG TAA GC
B-T	TAC ACA CCA CTG ACG CAC ACG
	GAG GCT ATG AGG AGG CTT TG
mBrca1	CAG GTC TAT TGT TGT GAG CC
	TCT GTA CCA GGT AGG CAT CC
hBRCA1 (LOH)	AAC CAC AGT CGG GAA ACA AG
	TAA CTG TCT GTA CAG GCT TG
Gadd45a	TAG CTG AGC TGC TGC TAC TG
	GTT CCG GGA GAT TAA TCA CG
CyclinB1	GAG AAG CTT TCT CCT GAA CC
	TTT GGT CTA ACT GAC TGC TC
pri-miR155	CCT CAT GAA ACC AGC TCA TCT G
	CAG GTA GGA GTC AGT CAG AG
Actin	TCC TCC TGA GCG CAA GTA CT
	ACG CGT TCA ATC CAA AAC AG
Lamb1	CTA TCC AAC TGG ATT TGG AAG C
	TCC GTT GAG GGT TCA ATG TCG
mmu-miR-155	Mm_miR-155_1 miScript Primer Assay (UUAAUGCUAAUUGUGAUAGGGGU)
Hs miR-155	Hs_miR-155_1 miScript Primer Assay
	(UUAAUGCUAAUCGUGAUAGGGGU)
RNU6B_2	miScript PCR control (Cat no.218380)
RNU5A_1	miScript PCR control (Cat no. MS00013993)
Northern / Southern primers	sequences
mmu-miR-155 probe	CCC CTA TCA CAA TTA GCA TTA A
Hs-miR-155 probe	CCC CTA TCA CGA TTA GCA TTA A
Hs U6 Probe	AAC CGT ATG CGT GTT GTC AGG
mmu U6 probe	GCT AAT CTT CTC TGT ATC GT
mBRCA1 Probe (LOH)	AAC TGC TAA AGC GTC TCC AC
	CAA CAT AAA CGC TAA CCA ACC

Others	sequences
miR-155 Reporter construct	CTA GCC CCT ATC ACA ATT AGC ATT AA
	AGC TTT AAT GCT AAT TGT GAT AGG GG
R1699Q Site-Directed Mutagenesis	GCT GAG TTT GTG TGT GAA CAG ACA CTG AAA TAT TTT CTA GG
BRCA1 ShRNA	Target set for NM_007294 (12 Clones, Open Biosystem Cat. No.RHS4529-NM_007294)
Promoter mutagenesis	
BIC Br1-2 Mut1	5'- ACC TCG AGT AGA TGG TAC AAA CCC TAA TAG ATC GGG TCC ATT CCT GAA AGC TGA AAC AAA CAA ACA AAC AAA ACA ACA AAA CAA CAA AAA AGT GAC CTA CGC TCCTAG GAG ATT TCT GAG AAA AAA AAA AGC AAA AAA CAA AAC AAA GCC GCC GCC GCC GCC GCC GAA AAA CCG CCG
BIC Br1-2 Mut2F	CGT AGG TCA CTT TTT TCG GCT TTT CGG CTT TTG TTT GTT TGT TTG
BIC Br1-2 Mut2R	CAA ACA AAC AAA CAA AAG CCG AAA AGC CGA AAA AA

1 Cable, P. L. *et al.* Novel consensus DNA-binding sequence for BRCA1 protein complexes. *Mol Carcinog* **38**, 85-96 (2003).


Tumor Sample No.	Tumor ID	Specific Mutations	
1	143	R1751X	
2	628	E402X	
3	696	IVS 4-1G>C	
4	764	185 delAG	
5	967	E879X	
6	1097	S1383X	
7	1118	S157X	
8	8798	187delAG	
9	8799	L752X	
10	8801	5385insC	
11	8804	C61G (300T>G)	
12	8805	del exon 1	
13	8806	C61G (300T>G)	
14	8808	187delAG	

Supplementary Table 6. Specific mutations in BRCA1 in human breast tumors

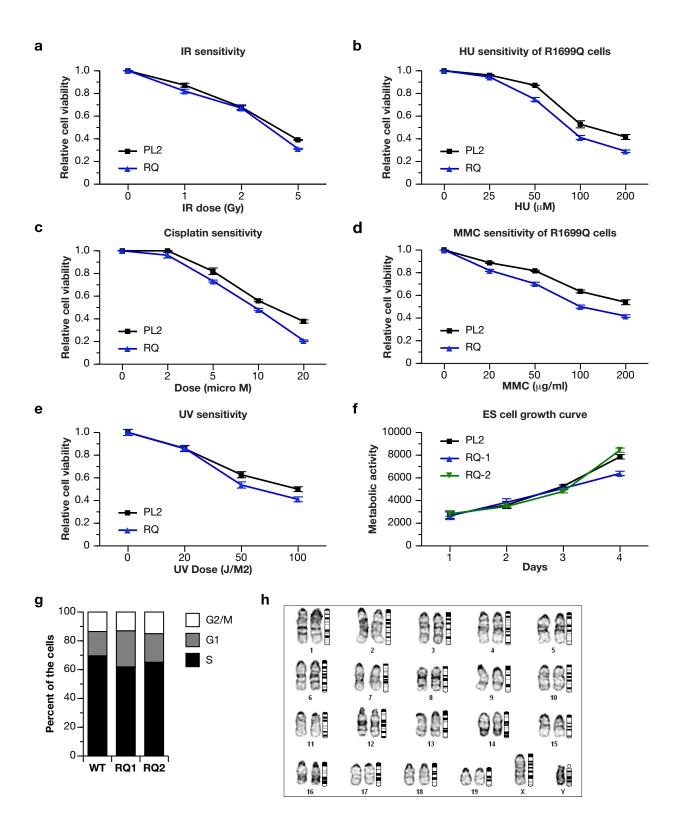
SUPPLEMENTARY FIGURES

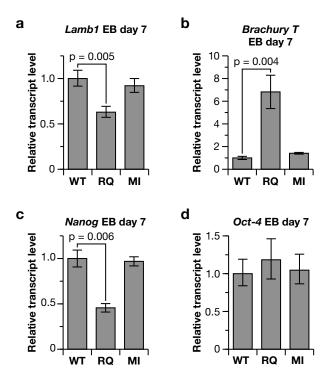
Supplementary Figure 1. R1699Q BAC transgenic expression does not rescue the embryonic lethality of *Brca1*^{ko/ko} mice. **a**. Representative expression profile of R1699Q RNA in multiple tissues from a R1699Q BAC transgenic mouse. **b**. Summary of the number of newborns from *Brca1*^{+/ko}; Tg^{R1699Q} intercrosses. **c**. Representative picture of embryos dissected on E7.5. Genotypes of embryos are indicated at the top (scale bar=100µM).

b

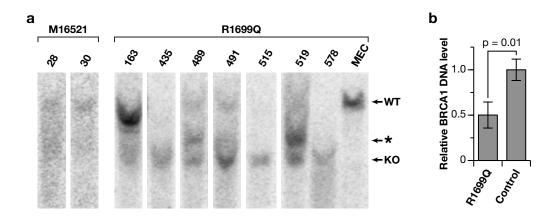
R1699Q	Brca1		
	+/+	+/-	-/-
Non-TG	27	62	0
TG	57	125	0

Brca1+/-; Tg^{R1699Q}

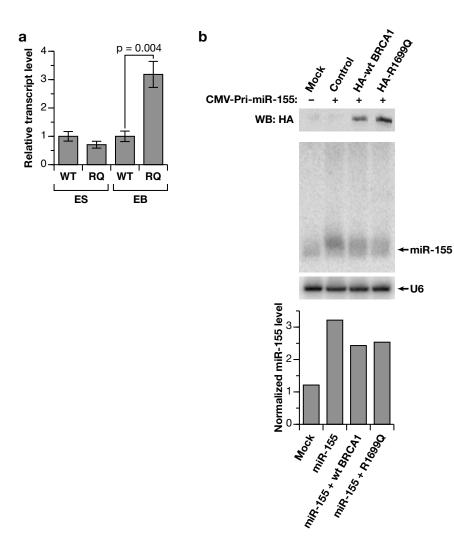

С



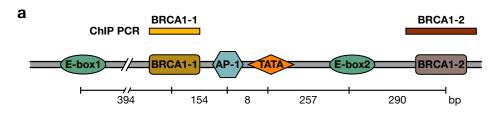
Supplementary Figure 2. R1699Q ES cells do not show hypersensitivity to DNA damaging agents (a-e), and show normal cell growth (f, g) and karyotype (h). PL2F8a expressing wild type BRCA1 (PL2) and R1699Q ES cells were treated with Cisplatin, MMC, HU, UV and IR with indicated doses. After 48 hours, the metabolic activity of the cells was measured by alamar blue assay. Cell growth was tested in 96-well plates without feeder cells. Cell cycle was analyzed by PI-BrdU staining (g). For karyotyping, ES cells in 6-well plates were treated with colcemid and chromosomes at metaphase were examined. One representative picture is shown out of two independent clones analyzed.


Chang – Sup Figure 2

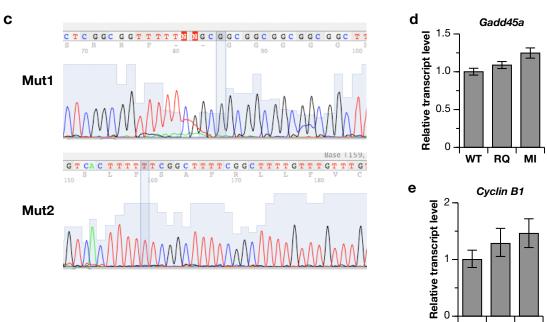
Supplementary Figure 3. Differential expressions of *Lamb1* (**a**), *Brachury T* (**b**), *Nanog* (**c**) and *Oct-4* (**d**) in R1699Q EBs. Wild type (WT), R1699Q (RQ), M1652I (MI) ES cells were cultured in suspension to generate EBs. On day 7, cells were harvested and transcript level of each gene was measured by real-time PCR.


Supplementary Figure 4. LOH analysis of tumors with R1699Q mutation

a. Southern hybridization of *Brca1* shows LOH of *Brca1* in 6 out of 7 tumors from $Brca1^{ko/+}$; $Trp53^{ko/+}$; Tg^{R1699Q} mouse. Note that the tumor 163 with no LOH had low level of miR-155 in the Fig 3a (asterisk : signal from partial digested DNA). b. Real time PCR quantitation of *BRCA1* gene in the FFPE human tumor with R1699Q mutation. Control is a normal breast tissue. *CYCLIN B1* was used as normalizer.


Chang – Sup Figure 4

Supplementary Figure 5. BRCA1 R1699Q mutation specifically increases miR-155 transcription. **a**. Real-time PCR quantitation of pri-miR-155 in WT and R1699Q ES cells and EBs on day 7. **b**. The effect of BRCA1 on the processing of miR-155 was tested in BRCA1 deficient MDA-MB 436 cells. A construct expressing pri-miR-155 (CMV-pri-miR-155) was co-transfected with HA-tagged WT or R1699Q BRCA1 expression plasmids. Top panel : Western blot of BRCA1, two middle panels : Northern blot of miR-155 and U6 snRNA. Bottom panel: Quantitation of the matured form of miR-155, normalized by U6 snRNA.

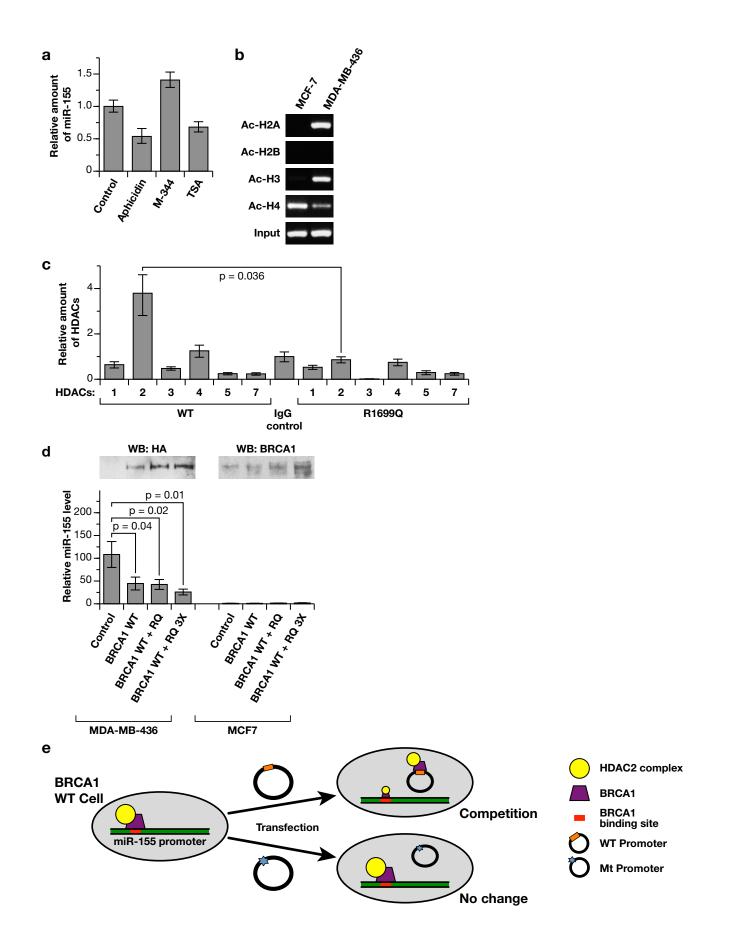

Chang – Sup Figure 5

Supplementary Figure 6. BRCA1 binding on miR-155 promoter. **a**. Schematic diagram showing the two putative BRCA1 binding regions in the miR-155 promoter. **b**. Sequence of the BRCA1-2 region showing two clusters of putative BRCA1 binding sites (open box : first cluster, shaded box : second cluster). Out of 8 base pair of proposed consensus sequence (T/G-T/G-N-T-GTTG¹), the last four stringent bases were colored as red (in the first cluster) or blue (in the second cluster). **c**. Sequencing results showing the generation of mutants (Mut1: for the first cluster, Mut2 : for the second cluster and Double : mutant of both clusters (not shown)) in BRCA1-2 region. **d** and **e**. Real-time PCR quantitation of know transcriptional targets of BRCA1 in embryoid bodies generated from *Brca1^{ko/ko}* ES cells rescued by WT, R1699Q (RQ) and M1652I (MI) BRCA1: *Gadd45a* (d) and *Cyclin B1* (e) in EB cells.

b Mouse miR-155 promoter (BRCA1-2)

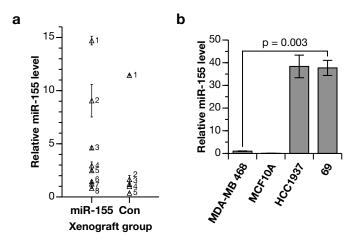
CAGTTCATAA GGGACCGGCT АТААТССА ТААТСТ TAGG CCCG AGAATGAAGCC TCCTGAGGCACTTGAGTTGTCT GGT **GTTGTTG**TTTGTTTTGTTTTTGCT TTT TAGGAGCGTAGGTCACTT<mark>TTTTGTTGTTTGTTG</mark>TTTTGTTTGTTTGT TTTTTCTCAGAAATCT CC **TTG**TTTCAGCTTTCAGGAATGGACCCGATCTAT TACCATCTAAATCAG

MI


RQ

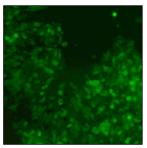
WΤ

Chang – Sup Figure 6


Supplementary Figure 7. BRCA1 epigenetically controls the miR-155 promoter.

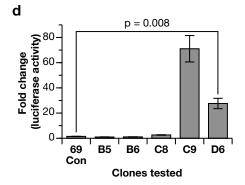
a. Effect of different HDAC inhibitors on miR-155 level in BRCA1-deficient HCC1937 cells. **b.** ChIP analysis of BRCA1-positive MCF7 and BRCA1-deficient MDA-MB-436 cells. Antibodies specific to acetylated histones H2A, H2B, H3 and H4 were used to test differential histone acetylation on the miR-155 promoter. **c.** ChIP analysis to test association of HDAC1- HDAC5 and HDAC7 on the miR-155 promoter in WT or R1699Q EBs on day 7. Rabbit IgG was used as negative control. **d.** Increasing amount HA-R1699Q expression plasmid was transfected into MDA-MB-436 cells or MCF7 cells along with HA-wt BRCA1. The miR-155 level from the transfected cells is shown. Note that basal level of miR-155 (Con; vector only) in MDA-MB-436 cells is much higher than that in MCF7 cells. **e.** Schematic diagram showing the experimental design of Fig 4i, Note that the possible competition between mouse and human miR-155 promoters for the BRCA1-HDAC2 complex, only when WT but not the mutant mouse miR-155 promoter is transfected into human cell line.

Chang – Sup Figure 7

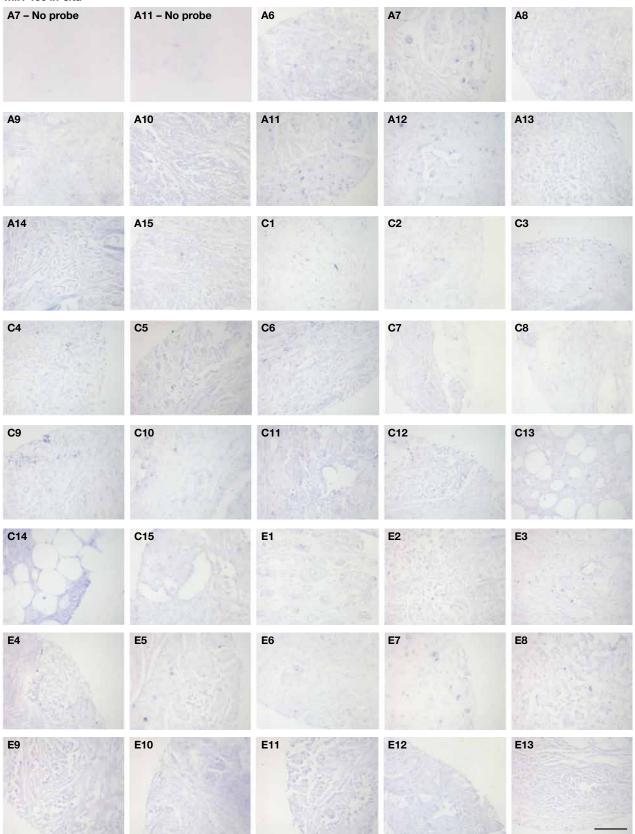

Supplementary Figure 8. *In vivo* effect of miR-155 on tumor growth. **a** Real time PCR quantitation of miR-155 from the tumors shown in Fig 5a. **b**. Real time PCR quantitation of miR-155 in mouse Brca1 deficient tumor cell line 69. Note that the miR-155 level is comparably high to human BRCA1 deficient HCC1973 cell **c**. Validation of antagomiR (Sponge). GFP-miR-155 construct was transfected with control or miR-155 expression plasmid (CMV-Pri-miR-155) and the efficient reduction of GFP signal was checked under the fluorescence microscope. **d**. Screening of clones with stable miR-155 knockdown. miR-155 luciferase reporter was transfected into 96 candidate clones and two clones (C9 and D6) showed high luciferase activity compared to parental or other clonal cells.

С

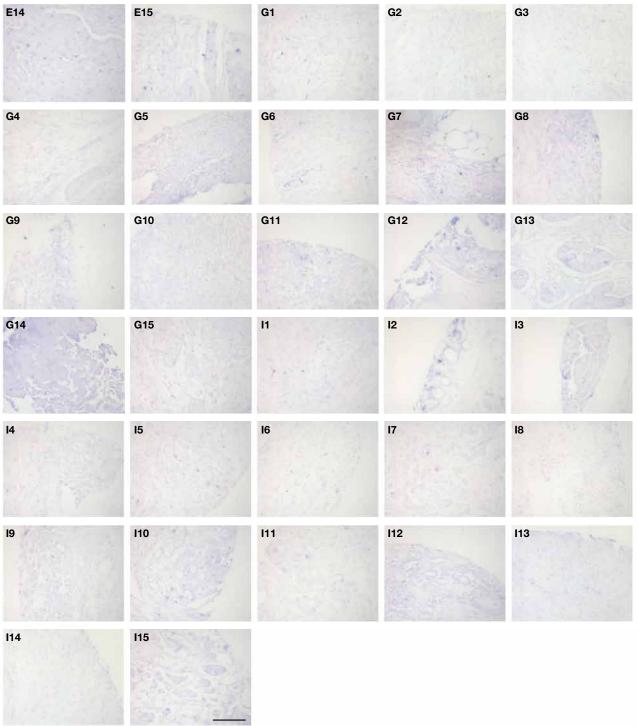
GFP-miR-155 Construct

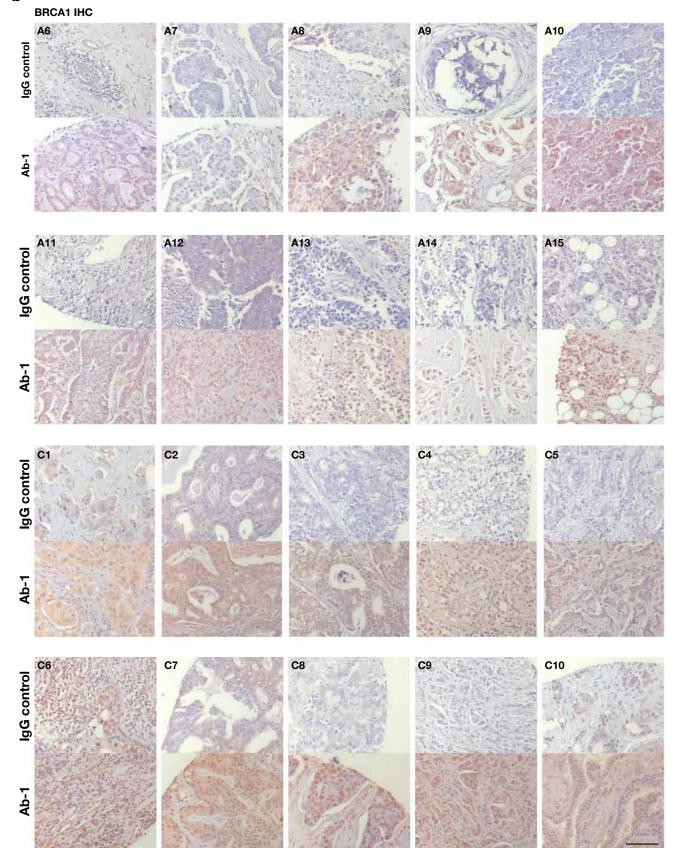


GFP-miR-155 only


GFP-miR-155 + miR-155

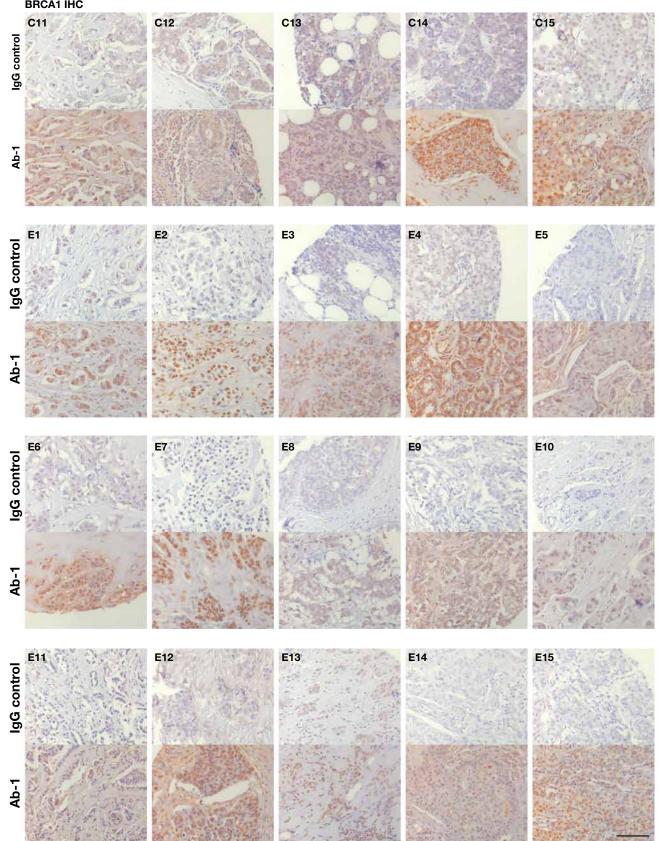
Supplementary Figure 9. Human breast tumor tissue array analysis **a**. BRCA1 IHC of 70 tumor tissues with IgG control. **b**. miR-155 *in-situ* hybridization of 70 tumor tissues and two representative pictures of no probe controls.


а

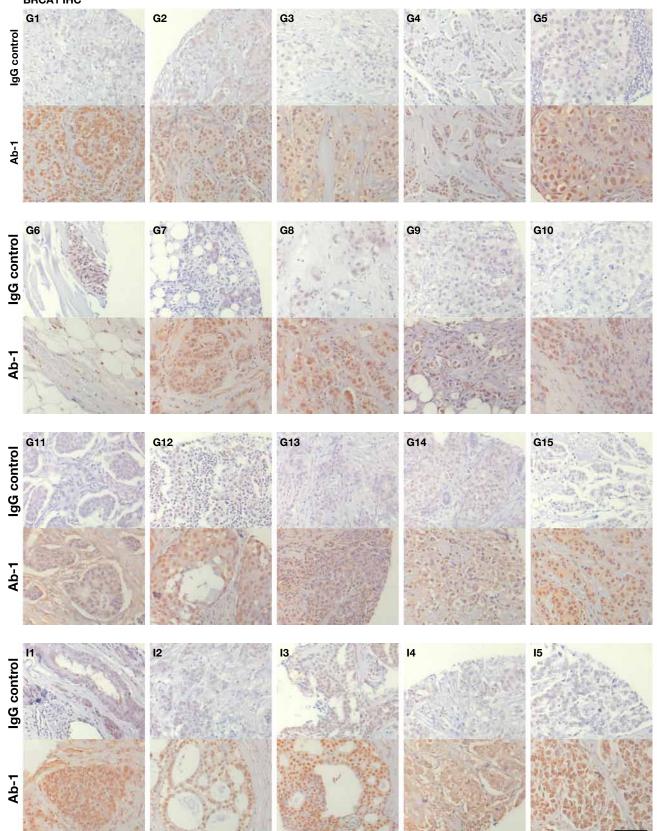

miR-155 in-situ

Chang – Sup Figure 9a

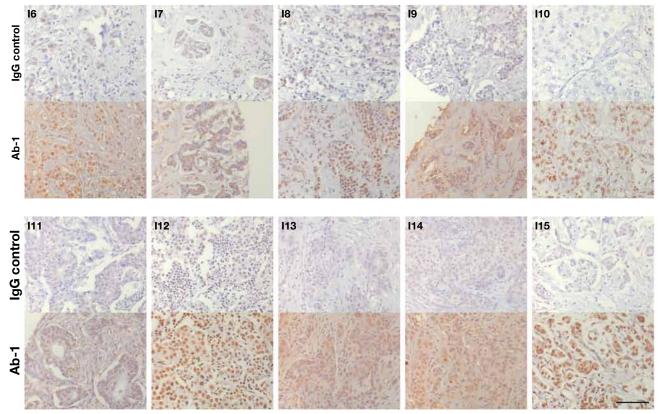
a (continued) miR-155 in-situ



b


Chang – Sup Figure 9b

b (continued) BRCA1 IHC


Chang – Sup Figure 9b

b (continued) BRCA1 IHC

Chang – Sup Figure 9b

b (continued) BRCA1 IHC

SUPPLEMENTARY METHODS

Cell culture and transfection

ES cells were cultured on mitotically inactivated feeder cells as described earlier¹. The Human breast cancer cell lines MCF7, HCC1937, MDA-MB-436 (obtained from American Type Culture Collection (ATCC), Rockville, MD), HEK 293 and MDA-MB-468 (generous gift from Dr. Esta Sterneck, NCI) were cultured in DMEM supplemented with 10% FBS and antibiotics. MCF10A cells were cultured in F-12/DMEM (1:1) with supplements as described (ATCC, CRL-10317). Mouse BRCA1 deficient cell line (#69) was cultured in DMEM supplemented with 10% FBS and antibiotics. For transfection of MDA-MB 436 cells, 15µl of Lipofectamine 2000 (Invitrogen) was mixed with 5µg of DNA per one 100mm culture dish with 5ml of Opti-MEM (Invitrogen). For the reporter assay in HCC1937 or MDA-MB-468 cells, the cells in 24 well plates were transfected with 20ng-100ng of DNA mixed with 0.1-0.5 µl of lipofectamine 2000. For stable knockdown of BRCA1 in HEK293 cells, 12 clones of BRCA1 shRNA set (see the supplementary Table 6) was transfected and the cells were selected under 1mg/ml G-418 for 1 week. The G-418 positive clones were further expanded to 6 wells and analyzed for BRCA1 level.

DNA constructs

A bacterial artificial chromosome clone (RPCI 11-812-50) containing the full-length human *BRCA1* was used to generate R1699Q using recombineering-based "Hit and Fix" method as described previously². M1652I variant was described previously¹. Sequence of oligonucleotides used to generate the mutations in the BAC is described in Supplementary Table 6. The reporter plasmid of miR-155 promoter was constructed by cloning 1.5 kb genomic fragment of mouse BIC prompter containing the TATA box into pGL3 Enhancer plasmid (Promega). The first mutation on the BIC promoter (Mut1) was generated by designing a 200mer oligonucleotide with 9 TGGT > GCCG change for putative BRCA1 binding sites. The second mutation (Mut2) was generated by QuickChange II site directed mutagenesis kit (Stratagene). The double mutant was generated by introducing Mut2 in Mut1 reporter construct. miRNA-155 luciferase reporter was constructed by cloning the oligonucleotide of the complementary sequence for matured miR-155 into pMIR-REPORT luciferase reporter plasmid (Ambion). The GFP sponge of miR-155 was generated by using the same oligonucleotide for luciferase reporter, cloned into pEGFP-C1 (Clontech). The HA tagged BRCA1 expression plasmid (BRCA1-HA) is a generous gift from Dr. David M. Livingston. The R1699Q mutation (c.5095G>A) was introduced in BRCA1-HA using QuickChange II site directed mutagenesis kit (Stratagene). For the inducible miR-155, two complementary oligonucleotides with the sequence of the miR-155 precursor were cloned into pSUPERIOR.retro.puro plasmid (OligoEngine) into the *Bgl*II and *Hind*III sites. pcDNA/TR6 vector (Invitrogen) was used to express Tet repressor. The pCS2+BIC134-283 (Designated as CMV-pri-miR-155, generous gift from Dr. David L. Turner) was used for the over-expression of miR-155. All DNA constructs were confirmed by sequencing.

Embryoid body analysis

To generate embryoid bodies, ES cells were trypsinized and the feeder cells were removed by incubating the cells on gelatinized plate for one hour. The ES cells in supernatant were counted and diluted to 5X10⁴ cells/ml. The cell suspension was cultured in Petri dish, in DMEM-10 media. The media was changed on day 3 and later it was changed every other day. After 14 days, the embryoid bodies were collected. For histology, the embryoid bodies were fixed in 10% formalin and embedded in paraffin and sectioned. The sections were stained with H&E. To analyze cell death, DeadEnd TUNEL staining kit (Promega) was used as per the manufacture's protocol. For miRNA *in situ* hybridization in embryoid body, DIG labeled LNA-miR-155 probe (Exiqon) was used, followed by the colorimetric detection using REMBRANDT® In Situ Hybridization and Detection kit (Panpath).

Western blots and co-immunoprecipitation (co-IP) analysis

For western blot, cells were lysed on ice in RIPA buffer with protease inhibitor tablet (Roche) for 20minutes. The cleared lysate was added with 2X protein sample buffer and used for western. For co-IP, freshly isolated mammary epithelial cell (10⁷ cells) was lysed in modified RIPA buffer (150 mM NaCl, 10 mM Tris, pH 7.2, 0.1% SDS, 0.5% Triton X-100, 0.5% Deoxycholate, 5 mM EDTA) with protease inhibitors. The human specific BRCA1 antibody or rabbit monoclonal HDAC2 antibody was used for IP. The co-immunoprecipitated BRCA1 and HDAC2 were detected by E1 (for BRCA1) or mouse monoclonal HDAC2 antibody.

LOH analysis of the tumors

To test the LOH of the tumors from the $Brca1^{ko/+}$; $Trp53^{ko/+}$; Tg^{R1699Q} mice, Southern hybridization was performed using freshly isolated tumor DNA digested with PstI. The probe for Brca1 detection was generated by PCR (See Supplementary Table5 for sequence) and labeled with Prime-It random primer labeling kit (Stratagene). To measure the copy number of BRCA1 in the R1699Q human tumor, two of 10mM sections of tumor and normal sample were dissolved in paraffin dissolver (Clontech) and the genomic DNA was isolated by FFPE genomic DNA isolation kit (Qiagen). The copy number of BRCA1 in the genomic DNA was quantified by real-time PCR using CCNB1as a control.

Teratoma analysis

The R1699Q and WT ES cells were harvested and washed in PBS. Cells were counted and diluted to a concentration of 5×10^7 cell/ml in PBS. 100 µl of the cell suspension was injected subcutaneously into athymic nude mouse (C3H/HeNCr-nu). The growth of teratoma was measured after one week, and then measured every other day. Tumor volume (in mm³) was calculated as a product of 2 x length x width. Mice were maintained under limited access conditions at the National Cancer Institute (Frederick) and animal care was provided according to the procedures outlined in the Guide for the Care and Use of Laboratory Animals, under an approved Animal Care and Use Committee (ACUC) protocol.

Inducible miR-155 expression in ES cells

For inducible expression of the miR-155, the pSUPERIOR-puro-miR-155 (see DNA constructs), along with pcDNA/TR6 and pmiRep-miR-155, were co-electroporated into wild-type ES cells and selected with puromycin (300 μ g/ml) for 5 days. The puromycin resistant colonies were picked and expanded in a 96-well plate. After splitting the cells into three 96 well plates, one plate was treated with tetracycline to test miR-155 induction. By measuring the ratio of miR-155 reporter luciferase activity from induced and uninduced, the ES clone with Tet induced miR-155 expression was identified and used for further analysis. The induction of miR-155 was confirmed by miRNA Northern hybridization as well as real time PCR (Fig 2d).

Tumor tissue array analysis

For human breast tumor analysis, Breast Tumor Tissue Array (BioChain Institute, Inc.) containing 70 breast tumor tissues was used. To access the BRCA1 level in these tumor samples, two tissue array slides were deparaffinized, hydrated and boiled in citrate buffer for antigen exposure. After blocking, the slides were probed with anti-BRCA1 antibody (Ab-1, Calbiochem) or normal mouse IgG (Oncogene), respectively. The BRCA1 signal was detected by Elite ABC HRP detection kit (Vectastain). For the detection of miR-155, DIG labeled LNA-miR-155 probe (Exiqon) was used, following the manufacturer's protocol. The miR-155 expression was visualized by anti-DIG-AP conjugate antibody and NBT/BCIP substrate (included in RAMBRANDT RISH kit used above). One set of tissue microarray was stained with H&E. The stained tissue array was analyzed under the Axioplan2 upright microscope (Zeiss).

Generation and analysis of the R1699Q BAC transgenic mice

BAC DNA with R1699Q mutation was prepared by Qiagen Maxiprep kit. The purified DNA was diluted in TE buffer to 10ng/ml concentration and used for the microinjection. Mice were genotyped by Southern analysis as described previously¹. The BAC transgenic founder mice were mated with mice carrying a null allele of *Brca1 (Brca1^{ka/+})* to obtain BAC transgenic mice on *Brca1* heterozygous background (*Brca1^{ka/+}*;*Tg^{R1699Q}*). The expression of R1699Q *BRCA1* was examined in several tissues by RT-PCR. To test the embryo development of *Brca1^{ka/k}*;*Tg^{R1699Q}* transgenic mice, a pair of R1699Q transgenic mouse with Brca1 heterozygous background (*Brca1^{ka/+}*;*Tg^{R1699Q}*) were intercrossed. Embryos at days 7.5 of gestation were dissected under the microscope (LEICA MZ8) and photographed. Embryos were genotyped by PCR using primers as listed in Supplementary Table 6. To generate the *cis-Brca1^{ka/+}*;*Trp53^{ka/+}*;*Tg^{R1699Q}* mouse, *Brca1^{ka/+}*;*Trp53^{ka/+}* mice were crossed with *BRCA1*;*Tg^{R1699Q}* mouse and the cosegregation of *Brca1* and *Trp53* was screened by genotyping PCR. *cis-Brca1^{ka/+}*;*Trp53^{ka/+}*;*Tg^{M16521}* mouse was generated by the same method.

Mouse Mammary Epithelial Cell (MEC) isolation and culture

To isolate mammary epithelial cells, the protocol from Stem Cell Technology was used (http://www.stemcell.com/en/Products/All-Products/EpiCultB-Mouse-Medium-Kit.aspx). Briefly, freshly dissected mammary gland was digested in digestion media (Epicult-B medium supplemented with 5% FBS and Collagenase/Hyaluronidase) for 8 hrs at 37°C. The dissociated tissue was centrifuged and red blood cells were removed by treating with 0.8% NH₄Cl with 0.1 mM EDTA. The collected organelles were further digested in trypsin-EDTA, followed by DNase I and dispase treatment to make a single cell suspension. The resulting cells were plated in 150mm gelatinized culture dish with Epicult-B medium with 5% FBS. One the next day the media was changed to serum free Epicult-B medium supplemented with EGF and FGF and cultured up to near confluency.

REFERENCES

- Chang, S., Biswas, K., Martin, B.K., Stauffer, S. & Sharan, S.K. Expression of human BRCA1 variants in mouse ES cells allows functional analysis of BRCA1 mutations. *J Clin Invest* 119, 3160-3171 (2009).
- Yang, Y. & Sharan, S.K. A simple two-step, 'hit and fix' method to generate subtle mutations in BACs using short denatured PCR fragments. *Nucleic Acids Res* 31, e80 (2003).

SUPPLEMENTARY DISCUSSION

Breast cancer risk of R1699Q variant of BRCA1

In the past 10 years, many different studies have been undertaken to characterize the R1699Q variant of BRCA1 but its precise effect remains unclear. It was shown to be defective in phospho-specific binding to BACH1¹. However, structural and biophysical studies suggest that R1699Q is not significantly different from the wild-type BRCA1². This was also supported by the trypsin sensitivity assay, which showed R1699Q behaves similarly to wild type³. Yet, another study suggests the R1699Q variant destabilizes BRCA1 based on a similar assay⁴, making the interpretation difficult. The transcriptional activation assays have also given inconsistent results, depending on the cell line used³⁻⁶. A study using functional and multifactorial likelihood approaches concluded that R1699Q is associated with low to moderate risk of developing the disease compared to other clearly deleterious variant⁴, while another study classified the same variant as deleterious based on cancer family history⁷. The latter study also reported one family in which R1699Q did not segregate with the disease. In summary, the breast cancer risk in R1699Q mutation carriers is likely to be higher compared to the general population, but its precise risk is not known. Future large-scale epidemiological studies may provide a better assessment of the precise risk of this variant.

In this study, we have characterized the R1699Q variant using our mouse ES cellbased assay to examine its effect on BRCA1 function. We found the R1699Q variant to result in a 10-fold reduction in ES cell survival compared to cells expressing the wildtype BRCA1. This suggested that R1699Q is deleterious. This conclusion was further supported by our *in vivo* studies showing that R1699Q fails to rescue the embryonic lethality of *Brca1-null* mice. Our previous work has demonstrated that most BRCA1 variants that result in ES cell lethality or show reduced cell survival are high-risk variants⁸. These variants also show defect in DNA repair function or cell cycle regulation. Surprisingly, the R1699Q variant had no effect on any of these functions. Instead, we uncovered a defect in ES cell differentiation, which in part was caused by the up-regulation of a miRNA, miR-155.

Epigenetic regulation of miR-155 by BRCA1

In this study, we have focused on understanding mechanistically how BRCA1 controls miRNA-155. The up-regulation of miRNA-155 in many cancers has been reported⁹⁻¹². Several transcription factors that can activate the miR-155 promoter have been identified including AP-1, NF-kB, SMAD4, FOXP3 and HOXA9¹³⁻¹⁵. However, to date there has been no insight into how miRNA-155 may be regulated epigenetically. Our study not only demonstrates that miR-155 is epigenetically regulated, but also uncovers the role of BRCA1 in this control. We found marked increase in acetylation of histones H2A and H3 on the miR-155 promoter in R1699Q mutant cells. The histone acetylation and deacetylation is regulated by the various HAT/HDAC complexes and is important for chromatin organization. The association of BRCA1 with HDAC complex has been described previously¹⁶. It is also reported that BRCA1-mediated repression of ER-a promoter can be reversed by HDAC inhibitor, trichostatin A¹⁷. As we have detected an increase in acetylation of histones H2A and H3 on the miR-155 promoter in R1699Q ES cells as well as BRCA1-deficient tumor cell lines, we predicted that the interaction of

mutant BRCA1 with the HDAC complex is reduced or disrupted. Indeed, the ChIP experiment revealed an increase in binding of HDAC2 to the miR-155 promoter in the presence of wild type BRCA1 (Figure 4E). Based on the ChIP and coimmunoprecipitate results, we conclude that R1699Q BRCA1 is defective in the interaction with HDAC complex.

The mutational analysis of miR-155 promoter indicated that the putative BRCA1 binding site is critical for the epigenetic repression. Our observation that there is no or marginal association between BRCA1 and the three promoters with putative BRCA1 binding sites (*ESSRG, CCNB1* and *STAT5A*) suggests the association of BRCA1 with the miR-155 promoter is specific. Also, it suggests that the putative BRCA1 binding sites¹⁸ may not necessarily be a good indicator of actual association with BRCA1. A genome-wide ChIP analysis for BRCA1 may provide a better understanding of the predictive value of these putative binding sites and the role of BRCA1 in epigenetic regulation of other promoters.

Does R1699Q have any dominant negative effect?

Because R1699Q BRCA1 fails to bind to HDAC2 but can associate with the miR-155 promoter, we tested the possibility that it may have a dominant negative effect. Although we did not find any *in vitro* evidence to support this, we cannot completely rule out this possibility. Lack of dominant negative effect was also supported by the *in vivo* observation that $Brca1^{ko/+}$; Tg^{R1699Q} mice did not show any overt phenotype and $Brca1^{cko/ko}$; Tg^{R1699Q} EB cells did not show miR-155 up-regulation (data not shown).

Also, tumors from $Brca1^{ko/+}$; $Trp53^{ko/+}$; Tg^{R1699Q} mice that showed high miR-155 had lost the WT allele of *Brca1* (Fig. 3a,b and Supplementary Figure 4).

Different levels of miR-155 expression in BRCA1-deficient cells

Interestingly, we found a 3-4 fold increase in miR-155 level in MECs from *Brca1^{cko/cko}; K14 Cre* mice and HEK 293 cells with BRCA1 knockdown, whereas the miR-155 levels in the tumors or tumor cell lines were much higher (50-150 fold) than the controls. This difference suggests the effect of additional regulatory signals or factors that may be involved in the transcriptional regulation of miR-155 promoter in addition to the BRCA1mediated epigenetic control. And, these signals may depend upon the physiological or topological state of the cell. Such differences are also visible in the cells of the R1699Q ES cell derived embryoid bodies that are genotypically identical (Figure 2b). Human tumors samples also exhibit a similar variation in their pattern of miR-155 expression (Figure 5d). We also observed substantial differences in the increase of miR-155 expression between human and mouse tumors (3-6 fold compared to 50-180 fold). We attribute this to the difference in the quality of samples used for RNA extraction. For mouse tumors we used freshly-frozen samples whereas for human tumors we extracted RNA from 5-15 years old archived FFPE sections.

miR-155 as a biomarker

This study also shows a correlation between BRCA1 deficiency and miR-155 upregulation in BRCA1-deficient tumors. However, because multiple transcription factors regulate the miR-155 promoter, it can be activated by other signals, unrelated to BRCA1. Indeed, we observed high levels of miR-155 in one of the four tumors from Her2/Neu transgenic mice as well as in 10 cases of human breast tumors that were BRCA1 positive. Therefore, miR-155 alone may not be sufficient to determine the functional status of BRCA1. However, miR-155 may be part of a metagene signature that may be useful to determine the functional status of BRCA1. Future studies will be focused on evaluating the use of miR-155 expression to determine the BRCA1 status.

REFERENCES

- Clapperton, J. A., *et al.* Structure and mechanism of BRCA1 BRCT domain recognition of phosphorylated BACH1 with implications for cancer. *Nat Struct Mol Biol* 11, 512-518 (2004).
- Rowling, P. J., Cook, R., and Itzhaki, L. S. Toward classification of BRCA1 missense variants using a biophysical approach. *J Biol Chem* 285, 20080-20087 (2010).
- Williams, R. S., Lee, M. S., Hau, D. D., and Glover, J. N. Structural basis of phosphopeptide recognition by the BRCT domain of BRCA1. *Nat Struct Mol Biol* 11, 519-525 (2004).
- Lovelock, P. K., *et al.* Identification of BRCA1 missense substitutions that confer partial functional activity: potential moderate risk variants? *Breast Cancer Res* 9, R82 (2007).
- Lee, M. S., *et al.* Comprehensive analysis of missense variations in the BRCT domain of BRCA1 by structural and functional assays. *Cancer Res* 70, 4880-4890 (2010).

- Vallon-Christersson, J., *et al.* Functional analysis of BRCA1 C-terminal missense mutations identified in breast and ovarian cancer families. *Hum Mol Genet* 10, 353-360 (2001).
- Gomez Garcia, E.B., *et al.* A method to assess the clinical significance of unclassified variants in the BRCA1 and BRCA2 genes based on cancer family history. *Breast Cancer Res* 11, R8 (2009).
- Chang, S., Biswas, K., Martin, B.K., Stauffer, S. & Sharan, S.K. Expression of human BRCA1 variants in mouse ES cells allows functional analysis of BRCA1 mutations. *J Clin Invest* 119, 3160-3171 (2009).
- 9. Hui, A. B., *et al.* Robust global micro-RNA profiling with formalin-fixed paraffin-embedded breast cancer tissues. Lab Invest **89**, 597-606 (2009).
- Iorio, M. V., *et al.* MicroRNA gene expression deregulation in human breast cancer. *Cancer Res* 65, 7065-7070 (2005).
- 11. Roa, W., *et al.* Identification of a new microRNA expression profile as a potential cancer screening tool. *Clin Invest Med* **33**, E124 (2010).
- 12. Volinia, S., *et al.* A microRNA expression signature of human solid tumors defines cancer gene targets. *Proc Natl Acad Sci U S A* **103**, 2257-2261 (2006).
- Hu, Y.L., Fong, S., Largman, C. & Shen, W.F. HOXA9 regulates miR-155 in hematopoietic cells. *Nucleic Acids Res.* 38, 5472-5478 (2010)
- Kohlhaas, S., *et al.* Cutting edge: the Foxp3 target miR-155 contributes to the development of regulatory T cells. *J Immunol* 182, 2578-2582 (2009).

- Kong, W., *et al.* MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. *Mol Cell Biol* 28, 6773-6784 (2008).
- Yarden, R. I., and Brody, L. C. BRCA1 interacts with components of the histone deacetylase complex. *Proc Natl Acad Sci U S A* 96, 4983-4988 (1999).
- Zheng, L., Annab, L. A., Afshari, C. A., Lee, W. H., and Boyer, T. G. BRCA1 mediates ligand-independent transcriptional repression of the estrogen receptor. *Proc Natl Acad Sci U S A* 98, 9587-9592 (2001).
- Cable, P.L., *et al.* Novel consensus DNA-binding sequence for BRCA1 protein complexes. *Mol Carcinog* 38, 85-96 (2003).