Supplementary Information

ROS-Mediated Vascular Homeostatic Control of Root-to-Shoot Soil Na Delivery in *Arabidopsis*

Caifu Jiang, Eric Belfield, Aziz Mithani, Anne Visscher, Jiannis Ragoussis, Richard Mott, J. Andrew C. Smith, Nicholas P. Harberd

Supplementary Figure 1–3 and Legends

Supplementary Figure 1 Initial characterization of *sss1-1*. (A–B) Appearance (A) and chlorophyll contents (B) of *A. thaliana* Landsberg *erecta* (Ler; WT), global (progenitor control) and *sss1-1* mutant plants 10 days after salinity treatment (NaCl concentrations as indicated). Plant growth and salinity treatments as described in Figure 1A. Data in (B) are means \pm SE of three replicates. (C) Appearance of global and *sss1-1* plants 10 days after transfer to agar-based media containing

different concentrations of NaCl in petri dishes (concentrations as indicated). The global progenitor and the *sss1-1* mutant display similar *in vitro* sensitivity to NaCl. (D) List of mutations detected in *sss1-1* (versus global progenitor) via whole genome sequence analysis (see Materials and Methods). (F) Appearance of soil-grown Col-0, *atrbohF-F3*, global, *sss1-1* and Ler plants before and 7 days following salinity treatment (120 mM NaCl). Bars in A, C and E = 1 cm.

Supplementary Figure 2 Ion concentrations, transpiration rates and visible phenotypes of salt-treated plants (genotypes and treatments as indicated). (A) K content of shoot samples (genotypes and treatments as indicated; global is WT control for *sss1-1*; Col-0 for *atrbohF-F3*; DM: dry mass). Salt treatment was as described in Figure 1A. Shoot tissue was collected 0-7d following salt treatment to measure K content (see Materials and Methods). (B) Appearance of Col-0 and a variety of different *atrboh* mutants 7 days after salinity treatment (Bar = 1 cm). (C) Shoot Na content of Col-0, *atrbohC*, *atrbohD*, *atrbohH*, *atrbohI*, *atrbohJ*, *atrbohE*, *atrbohF-F3 and atrbohF-F3/atrbohD* plants grown on control versus saline soil (Salt). Plant

growth and salinity treatment as described in Figure 1A. (D) Comparison of transpiration rates of salt-treated and control WT (Col-0) and *atrbohF-F3* plants over a 48h experimental period (see Materials and Methods). Values are means \pm SE of at least 8 plants. (E) *atrbohF-F3* displayed a salt hypersensitive phenotype under hydroponic conditions. Photos showed WT (Col-0) and *atrbohF-F3* plants grown in normal hydroponic conditions (Control) or 5 days after salinity treatment (four-week-old plants were treated with 100 mM NaCl). Bar = 1 cm. Data shown in A and C are means \pm SE of three replicates, and the error bars are standard error of the mean.

Mutation	Location	Gene affected
Chr3:16028794	C to T	Intergenic
Chr5:5740885	-CA	At5G17420
Chr5:21742795	G to A	Intergenic
Chr4:5709034	-TA	Intergenic

Supplementary Figure 3. Characterization of *rss1-1*. (A) Novel mutations detected in *rss1-1* via whole genome sequence analysis (see Materials and Methods). (B) Comparison of the xylem shape of Col-0, *atrbohF-F3*, *atrbohF-F3/AtCesA7* ^{*rss1-1*} and *AtCesA7* ^{*irx3-4*}. *atrbohF-F3/AtCesA7* ^{*rss1-1*} and *AtCesA7* ^{*irx3-4*} both show marked reduction in the number of functional conducting root vasculature xylem elements (Bar = 500 µm).