- 1 Surface sensing and lateral subcellular localization of WspA, the receptor in a
- 2 chemosensory-like system leading to c-di-GMP production.
- 3 Jennifer R. O'Connor, Nathan J. Kuwada, Varisa Huangyutitham, Paul A. Wiggins and Caroline
- 4 S. Harwood.

5 **Table S1: Bacterial strains used in this study.**

Pseudomonas aeruginosa strains	Genotype	Reference/source
PAO1	Wild-type	(Stover <i>et al.</i> , 2000)
PAO1 mCherry-mreB	PAO1attB::pSWmCherry-mreB	(Cowles & Gitai, 2010)
PAO1100	ΔwspF	(Hickman et al., 2005)
PAO1101	ΔwspA	(Hickman et al., 2005)
PA01251	wspR–yfp	(Guvener & Harwood, 2007)
PA01252	PAO1101, wspR–yfp	(Guvener & Harwood, 2007)
PAO1254	∆wspF wspR–yfp	(Guvener & Harwood, 2007)
PAO1260	ΔwspA, ΔwspF wspR–yfp	(Guvener & Harwood, 2007)
PAO1275	wspA–yfp	(Guvener & Harwood, 2007)
PAO1276	∆wspE wspA–yfp	(Guvener & Harwood, 2007)
CSH25	PAO1251 Δ <i>wspC</i>	This study
CSH27	PAO1254 Δ <i>wspC</i>	This study
CSH75	PAO1251 pctA-wspA	This study
CSH76	PAO1254 pctA-wspA	This study
CSH169	PAO1251 <i>wspC</i> ΔTPR	This study
CSH171	PAO1254 <i>wspC</i> ΔTPR	This study
CSH199	ΡΑΟ1251 <i>wspE</i> ΔREC	This study
CSH252	PAO1254 wspEΔREC	This study
CSH285	PAO1 wspA-CFP	This study
CSH292	CSH75 pctA-wspA-cfp	This study
CSH295	CSH76 pctA-wspA-cfp	This study
CSH366	PAO1251 pctC-wspA	This study
CSH368	PAO1254 pctC-wspA	This study
CSH373	PAO1251 PA2652-wspA	This study
CSH375	PAO1254 PA2652-wspA	This study
CSH377	PAO1251 pctB-wspA	This study
CSH379	PAO1254 pctB-wspA	This study
CSH382	CSH366 pctC-wspA-cfp	This study
CSH383	CSH368 pctC-wspA-cfp	This study
CSH385	CSH373 PA2652-wspA-cfp	This study
CSH386	CSH375 PA2652-wspA-cfp	This study
CSH387	CSH377 pctB-wspA-cfp	This study
CSH388	CSH379 pctB-wspA-cfp	This study
CSH448	PAO1 pctB-yfp	This study
CSH477	PAO1 pctA-yfp	This study
CSH504	PAO1 wspA-pctA-yfp	This study
CSH627	PAO1275 ΔwspD	This study
CSH628	PAO1254 ΔwspD	This study
CSH676	PAO1101attB::MINICTX2	This study
CSH687	PAO1101attB::MINICTX2-wspA-yfp	This study
CSH691	PAO1101attB::MINICTX2-wspA-5 -yfp	This study
CSH704	PAO1251 ΔwspB	This study
CSH705	PAO1254 Δ <i>wspB</i>	This study
CSH709	PAO1275 ΔwspB	This study
CSH712	PAO1251 ΔwspD	This study
CSH954	CSH687 Δ <i>wspE</i>	This study
CSH956	CSH691 ΔwspE	This study

Escherichia coli strains	Characteristics/Genotype	Reference/source
DH5a	Used for cloning purposes	Gibco BRL
S17-1	Donor strain for conjugal transfer of plasmids to	(Simon <i>et al.,</i> 1983)
	P. aeruginosa.	
NEB5α <i>F' lacl^q</i>	Used for cloning purposes	NEB
HCB437	Chemotaxis deficient strain:	(Wolfe <i>et al.</i> , 1987)
	Δ(<i>tsr</i>)7021 Δ(<i>trg</i>)100 zbd::TnS Δ(<i>cheA-cheZ</i>)2209	
	<i>metF</i> 159(Am)	
RP437	Chemotaxis proficient strain background	(Parkinson, 1978)
CSH658	HCB437 (MINICTX2)	This study
CSH659	HCB437 (MINICTX2-wspA-yfp)	This study
CSH661	HCB437 (MINICTX2-wspA-5 -yfp)	This study
CSH737	RP437 (MINICTX2)	This study
CSH741	RP437 (MINICTX2-wspA-yfp)	This study
CSH745	RP437 (MINICTX2-wspA-5 -yfp)	This study

8 Table S2: Plasmids used in this study

Plasmid name	Use/Characteristics	Reference/source
pEX18Gm	<i>P. aeruginosa</i> suicide vector for construction of in-frame insertion/deletion/replacement mutants	(Hoang <i>et al.,</i> 1998)
pEX19Gm	<i>P. aeruginosa</i> suicide vector for construction of in-frame insertion/deletion/replacement mutants.	(Hoang et al., 1998)
pEX18Gm <i>wspA-pctA</i>	For replacement of <i>wspA</i> with <i>wspA</i> - <i>pctA</i> fusion in native <i>wspA</i> location on chromosome. The 5' end of <i>wspA</i> (encoding WspA ₁₋₂₅₈) was fused to 3' end of <i>pctA</i> (encoding PctA ₃₄₆₋₆₂₉). 5' <i>wspA</i> amplified with primers CHP248/250, 3' <i>pctA</i> amplified with CHP251/252, <i>wspB</i> amplified with CHP253/249. The three PCR products were fused together and inserted <i>Hind</i> III/ <i>BamHI</i> into pEX18Gm using In Fusion cloning kit.	This study
pEX18Gm <i>wspA-pctA-yfp</i>	For construction of <i>wspA-pctA-yfp</i> fusion in <i>wspA</i> native location in <i>wsp</i> locus. <i>pctA</i> fragment PCR amplified with CHP246/244, 5- glycine linker- <i>yfp</i> fragment amplified from pEX19GmEYFP with CHP173/174, <i>wspB</i> fragment amplified withCHP270/249. Fragments fused together and inserted into <i>Hind</i> III/ <i>BamHI</i> sites of pEX18Gm using In Fusion cloning.	This study
pEX18Gm <i>wspE</i> ΔREC in Δ <i>wspF</i> background	Suicide vector to generate in-frame deletion of <i>wspE</i> REC domain. Upstream <i>wspE</i> REC PCR amplified with CHP87/90, downstream <i>wspE</i> REC amplified with CHP89/ <i>wspF</i> reverse. SOE PCR product amplified with CHP87/ <i>wspF</i> reverse and cloned <i>Hin</i> dIII/ <i>Bam</i> HI into the same sites of pEX18Gm.	This study
pEX19Gm <i>pctA-yfp</i>	For construction of chromosomal fusion of yfp to 3' end of pctA in native pctA location. pctA fragment amplified with CHP246/244, 5- glycine linker-yfp fragment amplified from pEX19GmEYFP with CHP173/174, DNA downstream of pctA amplified with CHP245/247. Fragments fused together and inserted into HindIII/BamHI sites of pEX19Gm using In Fusion cloning.	This study
pEX19Gm <i>pctA-wspA</i>	For replacement of <i>wspA</i> with <i>pctA-wspA</i> fusion in native <i>wspA</i> location on chromosome. The 5' end of <i>pctA</i> (encoding PctA _{1:345}) was fused to 3' end of <i>wspA</i> (encoding WspA _{259:542}). <i>wspA</i> upstream region amplified with primers CHP13/59, 5' <i>pctA</i> amplified with CHP58/61, 3' <i>wspA</i> amplified with CHP60/14. The three PCR were products fused together and inserted <i>Hind</i> III/ <i>BamHI</i> into pEX19Gm using In Fusion cloning kit.	This study
pEX19Gm <i>pctB-wspA</i>	For replacement of <i>wspA</i> with <i>pctB-wspA</i> fusion in native <i>wspA</i> location on chromosome. The 5' end of <i>pctB</i> (encoding PctB ₂₋₃₄₅) was fused to 3' end of <i>wspA</i> (encoding WspA ₂₅₉₋₅₄₂). <i>wspA</i> upstream region amplified with primers CHP13/211, 5' <i>pctB</i> amplified with CHP213/214, 3' <i>wspA</i> amplified with CHP212/14. The three PCR products were fused together and inserted	This study

	HindIII/BamHI into pEX19Gm using In Fusion	
	cloning kit.	
pEX19Gm pctC-wspA	For replacement of wspA with pctC-wspA	This study
	fusion in native wspA location on	
	chromosome. The 5' end of <i>pctC</i> (encoding	
	PctC ₂₋₃₄₈) was fused to 3' end of <i>wspA</i>	
	(encoding WspA ₂₅₉₋₅₄₂). <i>wspA</i> upstream	
	region amplified with primers CHP13/211,	
	5 pctC fragment amplified with CHP215/216,	
	3 wspA amplified with CHP212/14. The three	
	inserted Hindull/BamHLinto pEX19Gm using	
	In Fusion cloning kit	
nEX19Gm PA2652-wsnA	For replacement of wsnA with PA2652-wsnA	This study
	fusion in native wspA location on	This study
	chromosome. The 5' end of PA2652	
	(encoding PA2652,277) was fused to 3' end of	
	wspA (encoding WspA ₂₅₉₋₅₄₂). wspA upstream	
	region amplified with primers CHP13/211, 5'	
	PA2652 amplified with CHP217/218, 3'wspA	
	amplified with CHP212/14. The three PCR	
	products were fused together and inserted	
	HindIII/BamHI into pEX19Gm using In Fusion	
	cloning kit.	
pEX19Gm <i>pctB-yfp</i>	For construction of <i>pctB-yfp</i> fusion in native	This study
	pctB location on chromosome. pctB was PCR	
	amplified with primers pctB_F and pctB_R,	
	then cloned <i>Eco</i> RI/ <i>Kpn</i> I into the same sites of	
	pEX19Gm EYFP, resulting in pEX19Gm	
	<i>pctBUP-yfp</i> . Then the region downstream of	
	pctB was PCR amplified with primers	
	pctBdown_F/pctBdown_R and cloned	
	not PLIP wfn rosulting in pEX19Gm not PLIP	
pEX19Gm Awang (for wang deletion in a	Suicide vector to construct in frame deletion	This study
background with WT wsp3	of wsnB in WT wsnA background Unstream	
background with wr wspAj	wspB PCB amplified with CHP339/342	
	downstream wspB PCR amplified with	
	CHP341/340. SOE PCR product amplified with	
	CHP339/340 and cloned KpnI/HindIII into the	
	same sites of pEX19Gm.	
pEX19Gm Δ <i>wspB</i> (for <i>wspB</i> deletion in a	Suicide vector to construct in-frame deletion	This study
background with wspA-yfp)	of wspB in a wspA-yfp background. Upstream	
	wspB PCR amplified with CHP167/ WspB-YFP-	
	upR from PAO1275, downstream wspB PCR	
	amplified with WspBdownF/CHP340. SOE	
	PCR product amplified with CHP167/340 and	
	cloned Blunt/HindIII into the XmnI/HindIII	
	sites of pEX19Gm.	The stand
pEX19Gm <i>ΔwspC</i>	Suicide vector to generate in-frame deletion	This study
	of wspc. Upstream wspc PCR amplified with	
	CHP1/48, downstream wspc amplified with	
	CHP1/4 and cloned HindIII/BamHI into the	
	same sites of pEX19Gm.	
pEX19Gm <i>wspC</i> ATPR	Suicide vector to generate in-frame deletion	This study
	of wspC TPR domain. Upstream wspC TPR PCR	
	amplified with CHP102/104, downstream	
	wspCTPR amplified with CHP103/4. SOE PCR	
	product amplified with CHP102/4 and cloned	
	HindIII/BamHI into the same sites of	
	pEX19Gm.	
pEX19GmΔ <i>wspD</i>	Suicide vector to generate in-frame deletion	This study
	of wspD. Upstream wspD PCR amplified with	
	CHP303/323, downstream wspD amplified	

	with CHP322/304. SOE PCR product amplified	
	with CHP303/304 and cloned <i>Bam</i> HI/ <i>Hin</i> dIII	
	into the same sites of pEX19Gm.	(11:1
	Suicide vector for in-frame deletion of <i>wspE</i>	(HICKMan et al., 2005)
pex19Gmwspedrec	of work REC domain Unstroam work REC	This study
	DCB amplified with CHD87/00, downstream	
	were REC amplified with CHP89/88 SOF PCR	
	product amplified with CHP87/88 and cloped	
	HindIII/ BamHI into the same sites of	
	pEX19Gm.	
pEX19GmEYFP	Cloning vector for construction of <i>eyfp</i> fusion	(Guvener et al., 2006)
	suicide vectors.	
pEYFP	Cloning/expression vector encoding EYFP	Clontech
pEX19Gm wspA-yfp	For construction of wspA-yfp fusions in native	(Guvener & Harwood, 2007)
	wspA location on the chromosome.	
pEX19Gm <i>wspA-cfp</i>	For construction of <i>wspA-cfp</i> fusions in native	(Guvener & Harwood, 2007)
	wspA location on the chromosome.	
pUC57-3' wspA-4 mutations	Synthetic wspA 3' fragment, encoding 4	Genewiz Inc.
	amino acid mutations, cloned <i>Eco</i> RI/ <i>Hin</i> dIII	
	into pUC57. See fig. S3 for description of	
MINUCTV2	mutations.	(Users et al. 2000)
WINICTX2	<i>E. coll-P. deruginosa</i> snuttle vector that	(Hoang et al., 2000)
	hy site-specific recombination	
MINICTX2-wsp4-vfp	PCB amplified wsn4 including native	This study
winner Az-wspA-yjp	promoter using primers CHP336/292 PCR	
	amplified 5-glycine linker-vfp from pEYFP	
	using primers CHP173/335, fragments fused	
	together and inserted into MINICTX2	
	BamHI/KpnI using In Fusion cloning.	
MINICTX2-wspA	PCR amplified wspA including native	This study
	promoter using primers CHP336/334 and	
	cloned BamHI/KpnI into the same sites of	
	MINICTX2.	
MINICTX2- <i>wspA</i> -5- <i>yfp</i>	PCR amplified <i>wspA</i> 5' and native promoter	This study
	using primers CHP336/338, PCR amplified 3'	
	wspA-4 mutations from pUC57-3'wspA-4	
	mutations using CHP337/334. wspA-5	
	mutations SOE PCR product then generated	
	with CHP336/292, which excluded the stop	
	codon. PCR amplified 5-glycine linker-yfp	
	from pEYFP using primers CHP173/335. SOE	
	PCR and 5-glycine linker- <i>vfn</i> fragment fused	
	together and inserted into MINICTX2	
	BamHI/Kanlusing In Eusion cloning, Soo Fig	
	S2 for detailed description of the location of	
	the E-mutations	
	the 5 mutations.	
MINICTY2 wcp4 5	PCP amplified word 5 including native	This study
	promoter from MINICTX2-wsp4-5-vfn using	inis study
	CHP336/334. Product cloned Knnl/BamHI	
	into the same sites of MINICTX2. See Fig. S3	
	for detailed description of the location of the	
	5 mutations.	

11 Table S3: Primers used in this study.

Primer number	Sequence	Use	Source/ Reference
CHP1	5'- TTTAAAGCTTAAGTCTGAGGCTGTGACCGT GT-3'	Construction of pEX19Gm∆ <i>wspC</i>	This study
CHP4	5'- AATTGGATCCCGGAAATGATCAGCATGCG CGGAACC-3'	Construction of pEX19GmΔ <i>wspC</i> and pEX19Gm <i>wspC</i> ΔTPR	This study
CHP13	5'-TATGACCATGATTACGCCAAGCTT CTGGCGGCGCTGATGGTCGAACTGTT-3'	Construction of pEX19Gm pctA-wspA, pEX19Gm pctB-wspA, pEX19Gm pctC-wspA, pEX19Gm PA2652-wspA	This study
CHP14	5'- TTCGAGCTCGGTACCCGGGGATCCTCAGA CTTTGAAGCGGGATACG-3'	Construction of pEX19Gm <i>pctA-wspA</i> , pEX19Gm <i>pctB-wspA</i> , pEX19Gm <i>pctC-wspA</i> , pEX19Gm PA2652- <i>wspA</i> , pPSV35- <i>wspA</i>	This study
CHP47	5'- GGGACGGCATGAACGATCGCTTCCAGCAA CGTGCGGCCCGTGGAG-3'	Construction of pEX19GmΔ <i>wspC</i>	This study
CHP48	5'- CTCCACGGGCCGCACGTTGCTGGAAGCGA TCGTTCATGCCGTCCC-3'	Construction of pEX19Gm∆ <i>wspC</i>	This study
CHP58	5'- CGGACTCGAGTCTTGGGGAAAAATATGAT CAAAAGTCTGAAGTTCAGC-3'	Construction of pEX19Gm pctA-wspA	This study
CHP59	5'- GCTGAACTTCAGACTTTTGATCATATTTTTC CCCAAGACTCGAGTCCG-3'	Construction of pEX19Gm <i>pctA-wspA</i>	This study
CHP60	5'- GATGCCTTCAACCAGTTCGTCGAGGAGCT CAAGGGCCTGGTGTCGCAG-3'	Construction of pEX19Gm pctA-wspA	This study
CHP61	5'- CTGCGACACCAGGCCCTTGAGCTCCTCGA CGAACTGGTTGAAGGCATC-3'	Construction of pEX19Gm pctA-wspA	This study
CHP87	5'- AATTTAAGCTTTGTTTCACGTCGAGGTGCC GCTGAC-3'	pEX19Gm <i>wspE</i> ΔREC	This study
CHP88	5'- TTTAAGGATCCTTGCTTGAGCAACACCGCG AGCGAC	pEX19Gm <i>wspE</i> ΔREC	This study
CHP89	5'- GCGGGGCGCAACGCAAGCGCGTCGTCGT CCTGATCGGAGA-3'	pEX19Gm <i>wspE</i> ΔREC	This study
CHP90	5'- TCTCCGATCAGGACGACGACGCGCTTGCG TTGCGCCCCGC-3'	pEX19Gm <i>wspE</i> ΔREC	This study
CHP102	5'- AATTAAAGCTTCCAGTTGGCCGAGCAGGT TC-3'	pEX19Gm <i>wspC</i> ΔTPR	This study
CHP103	5'- GCGGCCAGCCCTCGCCAGTCAGCAACGT GCGGCCCGTGG-3'	pEX19Gm <i>wspC</i> ΔTPR	This study
CHP104	5'- CCACGGGCCGCACGTTGCTGACTGGCGAG GGGCTGGCCGC-3'	pEX19Gm <i>wspC</i> ΔTPR	This study
CHP167	5'-GTGAGCAAGGGCGAGGAGCTGTTC-3'	Construction of pEX19Gm $\Delta wspB$ (for $wspB$ deletion in a background with $wspA-yfp$)	This study
CHP173	5'- GGCGGTGGCGGTGGCGTGAGCAAGGGCG AGGAG-3'	Construction of MINICTX2-wspA-yfp and MINICTX2-wspA-5-yfp	This study
CHP174	5'-CTTGTACAGCTCGTCCATGCCGAGA-3'	Construction of pEX19Gm <i>pctA-yfp</i> and pEX18Gm <i>wspA-pctA-yfp</i>	This study
CHP211	5'- CACATTTTTCCCCAAGACTCGAGTCCGGAT TCGTTCCTG-3'	Construction of pEX19Gm <i>pctB-wspA</i> , pEX19Gm <i>pctC-wspA</i> and pEX19Gm PA2652- <i>wspA</i>	This study

CHP212	5'-GAGCTCAAGGGCCTGGTGTCGCAGG-3'	Construction of pEX19Gm <i>pctB-wspA</i> , pEX19Gm <i>pctC-wspA</i> and	This study
CUD212		pEX19Gm PA2652-WSPA	This study
CHP213	TTGGGGAAAAATGTGATCAAAAGTCTCAA GTTCAGCCA-3'	Construction of pexiagin pctb-wspA	This study
CHP214	5'-	Construction of pEX19Gm pctB-wspA	This study
	CAGGCCCTTGAGCTCCTCGACGAAGCGGT TGAAGGAAATG-3'		
CHP215	5'-	Construction of pEX19Gm pctC-wspA	This study
	TTGGGGAAAAATGTGCTTCGCTCGCTGTC GTTTGCCAAG-3'		
CHP216	5'-	Construction of pEX19Gm pctC-wspA	This study
	CAGGCCCTTGAGCTCCTCGACGAAGCGGT TGAAGGCATT-3'		
CHP244	5'-	Construction of pEX19Gm <i>pctA-yfp</i> and pEX18Gm <i>wspA-pctA-</i>	This study
	GCCACCGCCACCGCCGATCTTGAAGCTGT CCACCA-3'	yfp	
CHP245	5'-	Construction of pEX19Gm pctA-yfp	This study
	GACGAGCTGTACAAGTGAGACCGGCCGG TCTCGTCGCC-3'		
CHP246	5'-	Construction of pEX19Gm <i>pctA-yfp</i> and pEX18Gm <i>wspA-pctA-</i>	This study
	GGCCAGTGCCAAGCTTTCGAAGTGATCAA GGGCATCTCCG-3'	yfp	
CHP247	5'-	Construction of pEX19Gm pctA-yfp	This study
	CGGTACCCGGGGATCCTCCAGCAGGGCCT GGGTGGTCTCC-3'		
CHP248	5'-	Construction of pEX18Gm wspA-pctA	This study
	GGCCAGTGCCAAGCTTAGCGCCTGGACCA GCAGATCGCCT-3'		
CHP249	5'-	Construction of pEX18Gm wspA-pctA and pEX18Gm wspA-pctA-	This study
	CGGTACCCGGGGATCCCACTCCGGCGGGA ACAGCAGGGCG-3'	уfp	
CHP250	5'-TTCGGCCATGCCGTTGAAACCGGTC-3'	Construction of pEX18Gm wspA-pctA	This study
CHP251	5'- AACGGCATGGCCGAACGTATCCATCGCTC GATCCGGGAA-3'	Construction of pEX18Gm <i>wspA-pctA</i>	This study
CHP252	5'-	Construction of pEX18Gm wspA-pctA	This study
	GACACGGTCACAGCCTCAGATCTTGAAGC TGTCCACCA-3'		
CHP253	5'-GGCTGTGACCGTGTCCCGCTCCACCG-3'	Construction of pEX18Gm wspA-pctA	This study
CHP270	5'-	Construction of pEX18Gm wspA-pctA-yfp	This study
	GACGAGCTGTACAAGTGAGGCTGTGACCG TGTCCCGCTCCA-3'		
CHP292	5'-	Construction of MINICTX2-wspA-yfp and MINICTX2-wspA-5-yfp	This study
	GCCACCGCCACCGCCGACTTTGAAGCGGG ATACGCCGTT-3'		
CHP303	5'-	Construction of pEX19Gm∆wspD	This study
	AATTTGGATCCCGTGTTCCGCCGGACCAG CGAG-3'		
CHP304	5'-	Construction of pEX19GmΔwspD	This study
	TTAAAAGCTTCGCTTCCGGCAGACCGGGA GTCG-3'		
CHP322	5'-	Construction of pEX19GmΔwspD	This study
	AGTGAACAAAGATGGTTGAGGCGAGCGA AGGCCCTCTCCTGCAAGCCGTA-3'		
CHP323	5'-	Construction of pEX19GmΔwspD	This study
	TACGGCTTGCAGGAGAGGGGCCTTCGCTCG CCTCAACCATCTTTGTTCACT-3'		
CHP334	5'-	Construction of MINICTX2-wspA, MINICTX2-wspA-5-yfp and	This study
	AATTGGTACCTCAGACTTTGAAGCGGGAT ACGCCGT-3'	MINICTX2- <i>wspA</i> -5	
CHP335	5'-	Construction of MINICTX2-wspA-yfp and MINICTX2-wspA-5-yfp	This study
	TATAGGGCGAATTGGGTACCTTACTTGTAC AGCTCGTCCATGCC-3'		
CHP336	5'-	Construction of MINICTX2-wspA-yfp, MINICTX2-wspA,	This study

	TAGAACTAGTGGATCCAATCGCGCCCCGT TCCCGGCAT-3'	MINICTX2-wspA-5-yfp and MINICTX2-wspA-5	
СНР337	5'- GACCAACCTGCTCGCCCTGAACGCCGCCA TCGA-3'	Construction of MINICTX2-wspA-5 -yfp	This study
CHP338	5'- TCGATGGCGGCGTTCAGGGCGAGCAGGTT GGTC-3'	Construction of MINICTX2- <i>wspA</i> -5 - <i>yfp</i>	This study
СНР339	5'- AATTTGGTACCGGTCACCACCATCGTCAAG GTCGCC-3'	Construction of pEX19Gm $\Delta wspB$ (for $wspB$ deletion in a background with WT $wspA$)	This study
CHP340	5'- AATTAAGCTTCCCCAGTTCGTCGCCGCGGA AGGAAT-3'	Construction of pEX19Gm $\Delta wspB$ (for $wspB$ deletion in a background with WT $wspA$) and pEX19Gm $\Delta wspB$ (for $wspB$ deletion in a background with $wspA$ - yfp)	This study
CHP341	5'- GCTTCAAAGTCTGAGGCTGTGACCCCGGA GTGCGGCGAGGGGACGGCA-3'	Construction of pEX19Gm $\Delta wspB$ (for $wspB$ deletion in a background with WT $wspA$)	This study
CHP342	5'- TGCCGTCCCCTCGCCGCACTCCGGGGTCAC AGCCTCAGACTTTGAAGC-3'	Construction of pEX19Gm $\Delta wspB$ (for $wspB$ deletion in a background with WT $wspA$)	This study
pctB_F	5'- GCCATGGAATTCATGATCAAAAGTCTCAA GTTCAGCCACAAG-3'	Construction of pEX19Gm- <i>pctB-yfp</i>	This study
pctB_R	5'- GCTATCGGTACCGGGATCTTGAAGCTGTC CACCAGCTG-3'	Construction of pEX19Gm- <i>pctB-yfp</i>	This study
pctBdown_F	5'- CGATAGTCTAGAGCACTGCCCGAGCCGTA GCCGAACCGGCGGATAATC-3'	Construction of pEX19Gm- <i>pctB-yfp</i>	This study
pctBdown_R	5'- GCCACAAAGCTTTCAGCCATAGCGCGGGA ACCTCGCCTCG	Construction of pEX19Gm- <i>pctB-yfp</i>	This study
WspB-YFP-upR	5'- GCAGGCGTTCGAAGCGATCGTTCATGCGG TCACAGCCTCTAGAGTCGCG-3'	Construction of pEX19Gm $\Delta wspB$ (for $wspB$ deletion in a background with $wspA$ - yfp)	(Guvener & Harwood, 2007)
WspBdownF	5'- CGCGACTCTAGAGGCTGTGACCGCATGAA CGATCGCTTCGAACGCCTGC-3'	pEX19Gm $\Delta wspB$ (for $wspB$ deletion in a background with $wspA-yfp$)	(Guvener & Harwood, 2007)
wspF reverse	5'- NNGGATCCCAGTGAGCGACGCACAGCCTC TCC-3'	Construction of pEX18Gm <i>wspE</i> ΔREC in Δ <i>wspF</i> background	This study/(Hickm an et al., 2005)

Figure S1: Effect of A22 on MreB and WspA. Cells were exposed to A22 prior to imaging. A22 disrupts MreB localization but has no effect on WspA localization.

Figure S2: Subcellular localization of chemoreceptor-WspA chimeras. (A) wild-type WspA, (B)PctA-WspA, (C) PctB-WspA, (D) PctC-WspA, (E) PA2652-WspA. (i) Phase contrast, (ii) CFP (iii) Composite data showing the subcellular localization of clusters in a population of cells. The cell length and width represents the average cell size, the cluster intensity is represented by the locus intensity heat map, the brightest cluster in each cell was plotted. The proportion (%) of clusters found in the old (left) or new (right) cell pole or laterally localized is shown.

.

MKNWTVRQRILASFAVIIAIMLLMAATAYVKMLTVEKGAYRVQDDAMPGMYFITLVRSSWTDNYLQTQELFGITDDHELSKAEADSILASEERLDQQIASYQKTMNPDEARDHELLAGFQAVRKDYLEQHDKVLELYREKRFEEAGKLVA GPLTEHWREGRKYLNEMIELNKDIADRASDNIVNAVDDAELSMLVTLLLAVVVAGICGFLLLRAITQPIQKIVRSLDLMAGGDLTARLNLGRRDEFGAIETGFNGMAEELKGLVSQAQRSSVQVTTSVTEIAATSKQQQATATETAATTTEI GATSREIAATSRDLVRTMSEVSGAAEQTSTLAGSGQLGLARMEETMHHVMGAADLVNAKLAILNEKAGNINQVVTTIVKVADQTNLLALNAAIEAAKAGEYGRGFAVVADEVRILAGVTUTDIEQMVREIQSAVSAGVMGMDKF SEEVRRGIAEVGQVGEQLSQIIQQVQALAPRVQMVNEGMQAQATGAEQINQALVQLGEATGQTVESLRQASFAIDELNLVANGLRNGVSRFKV

Figure S3: WspA-5 construction. (A) Nucleotide sequence. Entire fragment cloned into MINICTX2 is shown, ORF in blue. The synthetic DNA region cloned into pUC57-3' *wspA*-4 mutations is shown in italics. The arrow denotes the 5th mutation, which was introduced later by SOE PCR (B) Amino acid sequence of WspA-5. Red, underlined codons/amino acids show the locations of the mutations, the WT codon/amino acid is shown in bold, black text above.

Supplemental References:

- Cowles, K. N. & Z. Gitai, (2010) Surface association and the MreB cytoskeleton regulate pilus production, localization and function in *Pseudomonas aeruginosa*. *Mol Microbiol* **76**: 1411-1426.
- Guvener, Z. T. & C. S. Harwood, (2007) Subcellular location characteristics of the *Pseudomonas aeruginosa* GGDEF protein, WspR, indicate that it produces cyclic-di-GMP in response to growth on surfaces. *Mol Microbiol* **66**: 1459-1473.
- Guvener, Z. T., D. F. Tifrea & C. S. Harwood, (2006) Two different *Pseudomonas aeruginosa* chemosensory signal transduction complexes localize to cell poles and form and remould in stationary phase. *Mol Microbiol* **61**: 106-118.
- Hickman, J. W., D. F. Tifrea & C. S. Harwood, (2005) A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. *Proc Natl Acad Sci U S A* **102**: 14422-14427.
- Hoang, T. T., R. R. Karkhoff-Schweizer, A. J. Kutchma & H. P. Schweizer, (1998) A broad-host-range FIp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked *Pseudomonas aeruginosa* mutants. *Gene* 212: 77-86.
- Hoang, T. T., A. J. Kutchma, A. Becher & H. P. Schweizer, (2000) Integration-proficient plasmids for *Pseudomonas aeruginosa*: site-specific integration and use for engineering of reporter and expression strains. *Plasmid* **43**: 59-72.
- Parkinson, J. S., (1978) Complementation analysis and deletion mapping of *Escherichia coli* mutants defective in chemotaxis. *J Bacteriol* **135**: 45-53.
- Simon, R., U. Priefer & A. Puhler, (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. *Bio/Technology* 1: 784-789.

Stover, C. K., X. Q. Pham, A. L. Erwin, S. D. Mizoguchi, P. Warrener, M. J. Hickey, F. S. Brinkman, W. O. Hufnagle, D. J. Kowalik, M. Lagrou, R. L. Garber, L. Goltry, E. Tolentino, S. Westbrock-Wadman, Y. Yuan, L. L. Brody, S. N. Coulter, K. R. Folger, A. Kas, K. Larbig, R. Lim, K. Smith, D. Spencer, G. K. Wong, Z. Wu, I. T. Paulsen, J. Reizer, M. H. Saier, R. E. Hancock, S. Lory & M. V. Olson, (2000) Complete genome sequence of *Pseudomonas aeruginosa* PAO1, an opportunistic pathogen. *Nature* 406: 959-964.

Wolfe, A. J., M. P. Conley, T. J. Kramer & H. C. Berg, (1987) Reconstitution of signaling in bacterial chemotaxis. *J Bacteriol* 169: 1878-1885.