Supplemental Materials and Methods:

Mice and Infection

At least one male and four female *B.malayi* parasites were surgically implanted into the peritoneal cavity of recipient mice in a total volume of 0.5 mL RPMI supplemented with 0.25 U/mL Penicillin and 100 mg/mL Streptomycin (Gibco). Control mice underwent sham surgery with an equal volume of medium but no parasites. Three days prior to necropsy control mice were additionally injected i.p. with 800 μL 4% Brewer modified thioglycollate medium (BD Biosciences). Three to 21 days post surgery mice were killed and the peritoneal cavity flushed with 10mL cold medium. For *in vitro* experiments mice were injected with 800 μL 4% thioglycollate three days prior to necropsy without prior surgery.

RNA-isolation

Total RNA was isolated from M Φ lysed in Qiazol using the miRNEasy-kit (Qiagen) according to manufacturers instructions. Briefly the RNA from lysed cells was precipitated using Phenol-Chloroform-extraction and the aqueous supernatant purified over a spin-column. RNA-content was determined using a NanoDrop (Thermo Scientific).

Quantitative RT-PCR

For the analysis of miRNA expression by qRT-PCR the TaqMan® MicroRNA Reverse Transcription Kit with miRNA-specific TaqMan® MicroRNA Assays (Applied Biosystems) was used following the manufacturer's instructions. Briefly 5-10 ng of total

RNA were coincubated with 2-3 μL miRNA-specific Primers (Assay-ID miR-16: 000391; miR-125b: 000449; miR-146a: 000468; miR-199b: 001131; miR-378: 002243; snoRNA135: 001230; snoRNA234: 001234) and cDNA generated in the presence of RNase-inhibitors. Detection of successfully transcribed products was carried out using TaqMan®2x Universal PCR Mix (no AmpErase® UNG; Applied Biosystems) in combination with miRNA-specific primers and TaqMan®-probes and quantified on a Lightcycler® 480 (Roche Applied Sciences). Fold change over medium/naïve controls was calculated using the ΔΔct method utilizing expression of miR-16 as the house keeping gene.

For the measurement of mRNA-expression, total RNA was converted to cDNA utilizing BioScript[™] Reverse Transcriptase (Bioline) and p(dT)₁₅ Primers (Roche Applied Science). Expression levels were quantified using LightCycler® 480 SYBR Green I Master (Roche Applied Science). A list of sequences of mRNA-specific, intron-spanning primers used can be found in supplementary table S1. Measurements were performed on a Lightcycler® 480 (Roche Applied Science). Expression was normalized against *Gapdh* or *Anxa-6* expression and is depicted as fold change over medium/naïve controls.

Dual-Luciferase Reporter Assay

Transfected cells were lysed in 50 μ L passive lysis buffer and firefly luciferase activity assessed by mixing 10 μ L lysate with 50 μ L Luciferase Assay Reagent II and resulting luminescence measured on a LumiStar luminometer (BMG Labtechnologies). Subsequently 50 μ L per sample Stop&Glo® Reagent were added and *Renilla* luciferase activity assessed using the same luminometer.

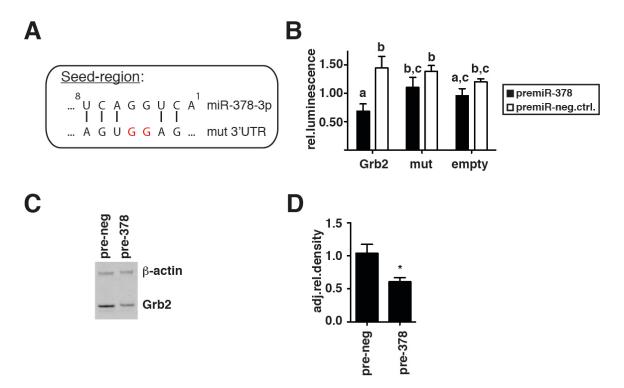
Flow cytometry

For the analysis of STAT-6 phosphorylation thioglycollate-elicited peritoneal MΦ were stimulated with rIL-4 or medium for 24 hours as described above. Subsequently remaining stimulus was washed off and the cells incubated without stimulus for 1 hour prior to re-stimulation with rIL-4 for 5 − 60 min. Afterwards cells were fixed with 2% paraformaldehyde (Sigma Aldrich) for 10 min at RT, subjected to surface staining for F4/80 and CD11b (Biolegend) and permeabilised with methanol (Sigma Aldrich) at 4 °C for 30 min prior to staining with anti-phosphoSTAT-6 antibodies (BD Phosflow™ STAT6 (pY641), BD Pharmingen). As negative control appropriate isotype staining was performed. Samples were acquired on a BD FACSCanto™ II (BD Pharmingen) and post-acquisition analysis performed using FlowJo v8.8.6 (Tree Star Inc.). Data are depicted as median fluorescence intensity.

Protein extraction and Western blotting

For the determination of Akt-1 and Grb2 protein levels RAW264.7 cells were transfected as described above and 12 hours post transfection cells were lysed using passive lysis buffer (Promega) supplemented with 1% protease inhibitor cocktail (Sigma Aldrich). Protein concentrations were determined using the Coomassie Plus Bradford reagent assay (Thermo Scientific) and equal amounts separated on NuPage® 4-12% Bis-Tris gels (Life Technologies). Proteins were transferred to Hybond ECL membranes (GE Healthcare) and specific protein bands detected using monoclonal antibodies against Grb2 or Akt-1 simultaneously with β-actin (all Abs from Cell Signaling Technology). Hybridisations

were done 1:1000 in 5% milk, 1x TBS, 0.1% Tween-20 overnight at 4°C. Anti-rabbit IgG (H+L) DyLight800™ Ab (Thermo Scientific) was added 1:1000 for 2 hours at room temperature. Signals were visualized utilizing the Odyssey® Imager (Li-Cor) and densitometric analysis carried out using ImageJ (http://rsb.info.nih.gov/ij/index.html) following the method described by Luke Miller (http://lukemiller.org/index.php/2010/11/analyzing-gels-and-western-blots-with-image-j/).


 Table S1: List of Primers used for quantitative RT-PCR

Gene-Symbol	direction	Primer-sequence		
Akt1	fwd	5'-CATGAACGACGTAGCCATTG-3'		
	rev	5'-CCATCGTTCTTGAGGAGGAA-3'		
Argl	fwd	5'-CAGAAGAATGGAAGAGTCAG-3'		
	rev	5'-CAGATATGCAGGGAGTCACC-3'		
Bactin	fwd	5'-TGGAATCCTGTGGCATCCATGAAAC-3'		
	rev	5'-TAAAACGCAGCTCAGTAACAGTCCG		
Ccna2	fwd	5'-CTTGGCTGCACCAACAGTAA-3'		
	rev	5'-CAAACTCAGTTCTCCCAAAAACA-3'		
Cd36	fwd	5'-TGGCCTTACTTGGGATTGG-3'		
	rev	5'-CCAGTGTATATGTAGGCTCATCCA-3'		
Chi3l3	fwd	5'-TCACAGGTCTGGCAATTCTTCTG-3'		
	rev	5'-TTGTCCTTAGGAGGGCTTCCTC-3'		
Gapdh	fwd	5'-ATGACATCAAGAAGGTGGTG-3'		
	rev	5'-CATACCAGGAAATGAGCTTG-3'		
Grb2	fwd	5'-TGACCCCCAGGAGGATGGCG-3'		
	rev	5'-AACATGCCGGTCTGCCCGTG-3'		
Nos2	fwd	5'-CCCGGAAGGTTTGTACAGC-3'		
	rev	5'-AAGGGGACGAACTCAGTGG-3'		
Ppargc1b	fwd	5'-GACGTGGACGAGCTTTCACT-3'		
	rev	5'-GAGCGTCAGAGCTTGCTGTT-3'		
pan-Pparg	fwd	5'-TTATAGCTGTCATTATTCTCAGTGGAG-3'		
	rev	5'-GACTCTGGGTGATTCAGCTTG-3'		
Retnla	fwd	5'-TATGAACAGATGGGCCTCCT-3'		
	rev	5'-GGCAGTTGCAAGTATCTCCAC-3'		

Table S2: microRNA-array results. Log2 ratio of microRNAs found to be significantly differentially expressed in BALB/c NeM Φ as compared to Thio-M Φ (left column) or IL-4R $\alpha^{-/-}$ NeM Φ (right column). y: microRNA selected for qRT-PCR verification. – no significant change or not chosen for validation.

microRNA-ID (Array) miRBase 13	microRNA-ID (current) miRBase 18	Log2 NeMΦ/ThioMΦ	Log2 BALB/c / IL- 4R $lpha^{-/-}$	Selected for qRT-validation
miR-18a	miR-18a-5p	-1.31	-	у
miR-20a	miR-20a-5p	-	-0.60	-
miR-125a-5p	miR-125a-5p	-	-1.09	-
miR-125b-5p	miR-125b-5p	-	1.91	у
miR-141	miR-141-3p	-1.14	-	-
miR-146a	miR-146a-5p	-1.46	-	y
miR-150	miR-150-5p	-	-1.97	y
miR-199b*	miR-199b-5p	-	2.04	y
miR-221	miR-221-3p	-1.53	-	y
miR-222	miR-222-3p	-1.27	-	y
miR-223	miR-223-3p	-	1.22	-
miR-291a-5p	miR-291a-5p	-	-0.75	-
miR-342-3p	miR-342-3p	-1.51	-	у
miR-378	miR-378-3p	2.10	2.28	у
miR-467b	miR-476b-5p	-1.10	-	-
miR-689	-	-	-2.56	у
miR-710	miR-710	-	-1.06	-
miR-720	miR-720	-	1.03	-
miR-744	miR-744-5p	-	-0.85	-

Suppl. Fig.1

Suppl.Figure 1: miR-378-3p targets the IL-4R/PI3K/Akt-signaling pathway. (A) Schematic depiction of the mutated miR-378-3p binding site in 3'UTR-sequences used in this study.

- (B) Luciferase-assay using the 3'UTR of wildtype Grb2 (Grb2) or constructs with mutated seed-region binding sites for both predicted miR-378-3p binding sites (mut) or without insert (empty). Data indicates cotransfection with a miR-378-3p mimic (black bars) or a scrambled control (open bars). Data is pooled from 4 separate experiments and depicted as relative luminescence compared to no-RNA transfected controls. Bars not connected by the same letters are statistically significantly different.
- (C) Representative WesternBlot analysis of RAW264.7 cells 12h post transfection with a mimic (pre-378) of miR-378-3p or appropriate negative controls (pre-neg). Samples were separated on a 4-12% Gradient gel and stained for Grb2 and b-actin at the same time.
- (D) Densitometric analysis of the samples analysed in (C). Data representative of four separate experiments. *P< .05