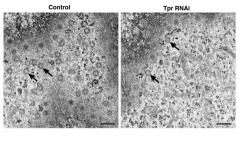
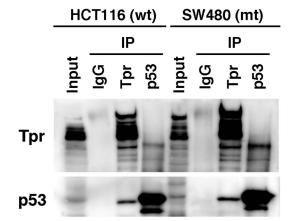
Regulation of autophagy by nucleoporin Tpr

Tatsuyoshi Funasaka¹, Eriko Tsuka¹ and Richard W. Wong^{1,2}

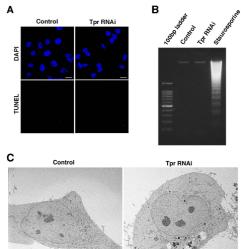
Supplemental information


Supplemental Figure legends

Supplemental Figure 1. Electron microscopic images of nuclear pores (arrows) in control or Tpr siRNA-transfected HeLa cells. Tangential section is showing the pores in a frontal view. Scale bars, 0.25 µm.


Supplemental Figure 2. Tpr interacts with both wild-type and mutant p53. HCT116 (wild-type p53) and SW480 (mutant p53) cell lysates were immunoprecipitated with anti-Tpr, -p53, or nonspecific rabbit antibodies (IgG) followed by immunoblot analysis for Tpr and p53 expression. Cell lysates were also immunoblotted as a control (Input). IP, immunoprecipitation.

Supplemental Figure 3. Tpr depletion induces autophagy, but not apoptosis. (A) HeLa cells were transfected with control or Tpr siRNA for 72 h and apoptotic cells were detected by TUNEL assay. Scale bars, 20 μ m. (B) HeLa cells were transfected with control or Tpr siRNA for 72 h and apoptotic cells were detected by DNA ladder analysis. Cells treated with 3 μ M staurosporine for 5 h served as positive control. Extracted DNA was separated on 2% agarose gels to visualize apoptotic DNA ladders. (C) Electron microscopy shows the ultrastructure of HeLa cells transfected with control or Tpr siRNA for 72 h. Scale bars, 10 μ m.


Supplemental Table 1. Sequences of PCR primers used in this study.

Funasaka et al._Supplemental Figure 1

Funasaka et al._Supplemental Figure 2

Funasaka et al._Supplemental Figure 3

Supplemental Table 1. PCR primers		
target	5' primer	3' primer
DRAM	CATCCCCATGATTGTCTGTG	AAAGGCCACTGTCCATTCAC
PUMA	GACGACCTCAACGCACAGTA	CTGGGTAAGGGCAGGAGTC
p21	GACACCACTGGAGGGTGACT	CTGCCTCCCAACTCAT
LC3	CTGTTGGTGAACGGACACAG	CTGGGAGGCATAGACCATGT
Beclin-1	CGGCTCCTATTCCATCAAAA	AATTGTGAGGACACCCAAGC
Atg3	TTTGGCTATGATGAGCAACG	GTGGCAGATGAGGGTGATTT
Atg5	TGATCCTGAAGATGGGGAAA	TCCGGGTAGCTCAGATGTTC
Atg7	GAACATGGTGCTGGTTTCCT	CATCCAGGGTACTGGGCTAA
Atg12	CTTACGGATGTCTCCCCAGA	TGTCTCCCACAGCCTTTAGC
HSF1	GCCATGAAGCATGAGAATGA	CTGCACCAGTGAGATCAGGA
HSP70	GAAAATGAGGAGCCAATGGA	TGTCTGCTGCTGTTGCTCTT
Tpr	AGTTGGGACCACCAGTTCAG	TGCCACCTATTCCTGGAGTC
GAPDH	CAGCCTCAAGATCATCAGCA	TGTGGTCATGAGTCCTTCCA

Funasaka et al._Supplemental Table 1