
 1  

Supplemental information 

Shape of fractional volume curve 

Examples of the shapes of the curves defined by Equation 18 are shown as the solid lines in 

Figure S1.  The curves begin at values vi  = vi0 and have asymptotic or equilibrium values vi → ni 

for t → ∞ or τ → ∞ (shown as horizontal lines in Figure S1; these values correspond to the 

droplets reaching equal solute concentrations on each side of the bilayer).  The curves don’t cross 

if the larger droplet has the higher fraction of solute (Case I with ni  > nj when vi > vj, shown in 

Figure S1a) and cross if the larger droplet has the smaller fraction of solute (Case II with ni  < nj 

when vi > vj, shown in Figure S1b). Figure S1 shows v10 and v20 with their extremal values 0 and 

1. For either case, there is only one curve shape for any given value of ni; the curve for the 

second droplet is a vertical reflection of the first curve through the value 0.5 (i.e., vi =  1-vj), and 

curves starting at different vi0 simply start at different points on the curve.   

Although the curves in Figure S1 appear to be exponential, an exponential curve is in fact a 

poor approximation to the correct shape. The nonlinearity in Equation 18 introduces the 

quadratic correction that leads to an infinite slope for dvi/dt for the limiting cases of vi0 or vj0 → 

0, where the concentration gradient becomes infinite for non-zero ni. This distinction from an 

exponential is seen from the dashed curves marked Q and E in Figure S1, which show the 

quadratic portion described by the first two terms (a parabola) in Equation 18, and a true 

exponential described by the third term in Equation 18, respectively. The correct values of τ 

(solid lines) are the sum of these two curves. The maximum contribution of the quadratic term to 

Pτ occurs at [ni , -(vi0 – ni)(vi0 + ni - 2 nj)/2] for vi in Case I and at the vertex of the parabola at [nj 

, -(vi0 – ni)
2
/2] for vi in Case II. A comparison of Equation 18 with our experimental results is 

described in the Results section.  
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Figure S1. Shapes of curves for volume ratio as a function of the time-like variable Pτ for (a) 

Case I with ni  > nj for vi > vj, and (b) Case II with ni  < nj for vi > vj. 

Droplet Pair With Delayed Equilibrium Bilayer Conditions 

Figures S2 through S7 show data for a droplet pair that shows a delay in attainment of the 

equilibrium bilayer conditions. Although there are large changes in the center-to-center distance, 

bilayer contact angle, and bilayer radius between roughly 5 and 9 ks, no dramatic changes are 

seen in the droplet radii and droplet volumes (Figures S2 through S4). Similarly, the permeability 

appears to have the same value before and after this transition (i.e., from ~2-5 ks and after ~9 ks; 

see Figures S5 and S6). However, during the transition, the permeability appears to deviate from 

the final value (Figures S5 and S6). It is not clear whether this is a true deviation or an artifact of 

the permeability calculation. This change disturbs the fit using Equation 18 (see Figure S7). 
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Figure S2. Raw data (droplet radii and center-to-center distance) versus time for droplet pair 

with delayed equilibrium. 

 

Figure S3. Droplet volumes versus time for droplet pair with delayed equilibrium. 



 4  

 

Figure S4. Droplet bilayer radius and contact angle versus time for droplet pair with delayed 

equilibrium. 

 

Figure S5. Data and fits using Equation 16 for droplet pair with delayed equilibrium. 
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Figure S6. Plot of dv1/dt (a) and P (b) as a function of time for droplet pair with delayed 

equilibrium. 

 

Figure S7. Plot of dv1/dt (a) and P (b) as a function of time for droplet pair with delayed 

equilibrium. 


