DS5 Standard	COMPOUND TABLE	channel	RT	NG/ML(10-3) ul in 1L
			7.2	
ASC	Ascorbic Acid	3&4	11.6	15000
URIC	Uric acid	4		10000
CYS	Cysteine	14	11.7	400
		11 or	14.4	
XAN	Xanthine	12	17.0	200
НХ	Hypoxathine	16		400
VMA	Vanillylmandelic Acid	7	18.9	100
		1	22.4	
GSH	Glutathione(reduced)	13-16	25.9	500
Xanth	Xanthosine	14	25.9	200
	Methoxy-Hydroxyphenly	-	24.6	
MHPG	Glycol	7	26.7	30
HGA	Homogentisic Acid	1		30
7MXAN	7-Methylxanthine	15-16	27.1	150
		10-10	31.1	100
MET	Methionine	15	29.9	500
NE	Norepinephrine	3	29.9	30
0.5	O constant	10/11	28.8	
GR	Guanosine	13/14	30.4	200
LD	L-Dopa	3		50
GSSG	Glutathione(oxidized)	16	27.9	400
		10 or	31.8	
G	Guanine	11	35.0	250
ЗОНКҮ	3-Hydroxykynurenine	3	55.0	30
	Eninonhring	2	34.5	50
EPI	Epinephrine	3	35.6	50
TYR	Tyrosine	12		5000
DOPAC	Dihydroxyphenylacetic Acid	2 or 3	37.9	60
			38.9	
4HPLA	4-Hydroxyphenyllactic acid	10	41.1	400
30HAN	3-Hydroxyanthranilic Acid	3		30
paraxanthine	1,7-diMethylxanthine	14-16	39.8	100
		14-10	41.9	100
5HTP	5-Hydroxytrptophan	4		50

			41.7	
theophylline	1,3-diMethylxanthine	14-16	44.0	150
4HBAC	4-Hydroxybenzoic acid	13	44.9	200
30MD	3-o-Methyldopa	7	40.2	50
JOIMD			45.2	50
5HIAA	5-Hydroxyindoleacetic acid	4	45.9	60
KYN	Kynureinine	13		400
NMN	Normetanephrine	7	42.7	50
DA	Dopamine	3	46.3	50
			46.1	
MN	Metanephrin	7	47.1	50
NA5HT	Acetylserotonin (N)	3		50
HVA	Homovanillic Acid	7	52.7	60
	4-Hydroxyphenylacetic acid	10	48.5	200
4HPAC		10	52.3	200
TYRA	Tryamine	11	55.7	1000
2HPAC	2-Hydroxyphenylacetic Acicd	12	55.7	200
5HT	5-Serotonin	4	54.9	50
			55.1	
3MT	3-Methoxytyramine	7	55.7	30
NM5HT	Methyserotonin (N)	4		50
TRP	Tryptophan	12	56.2	5000
			65.8	
MEL	Melatonin	10	67.9	300
TPOL	Tryptophol	12		200
I3AA	Indole-3-acetic acid	9	68.2	300
I3PA	Indole-3-propionic acid	9	71.8	200
			101	
d toco	(+)-γ–Tocopherol		102.9	150
g toco	(+)-δ-Tocopherol			200
a toco	(<u>+</u>)-α−Tocopherol		104.5	250

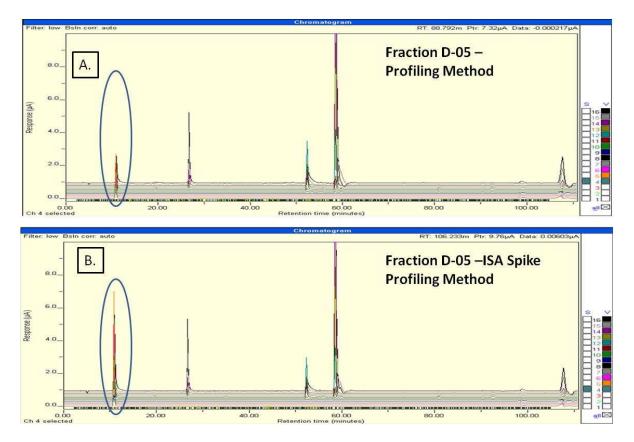
The oxidation potential of each metabolite relates to the observed channels, which are held between 0 and 900 mV at 60 mV increments.

LC-EC Profiling Method¹²:

Separation was performed by gradient elution on two reversed-phase C_{18} META 250 x 4.6, 5µm columns (Thermo Scientific) connected in tandem with PEEK tubing. The column temperature was held at 32 °C and the conditions were as follows:

1. 1.00 min	0%B at 1.0 ml/min : start file
2. 30.00 min	12%B at 1.0 ml/min
3. 35.00 min	35%B at 1.0 ml/min
4. 55.00 min	48%B at 0.7 ml/min
5. 90.00 min	100%B at 0.99 ml/min
6. 95.00 min	100%B at 1.2 ml/min
7. 101.00 min	100%B at 1.2 ml/min
8. 101.10 min	0%B at 1.2 ml/min
9. 103.00 min	0%B at 1.2 ml/min
10. 105.00 min	0%B at 1.00 ml/min
11. 112.00 min	0%B at 1.00 ml/min : end file

The mobile phase A consisted of 100% water modified with 60 mM PSA, 0.1% methanol, and 1 mg/L citric acid adjusted to pH 3.1 with acetic acid. Mobile phase B consisted of 80:10:10 MeOH: ACN: IPA modified with 40 mM lithium acetate and 2.0% acetic acid in 10 mg/L citric acid. 50 µL of sample was injected per run and detection was performed on an ESA (ThermoFisher Scientific, Chelmsford, MA) LC-EC system with 16-channel coulometric array detector operated with potentials incremented in 60 mV steps (0–900 mV). All LC-EC system functions were controlled by CoulArray® software (CoulArray® for Windows® software version 3.10)


Fraction Analysis by LC-MS and LC-EC:

For the LC-MS and LC-EC analysis, the POOL fractions were reconstituted in either 100 or 50 μ L of LC-MS mobile phase A (25 mM ammonium acetate in deionized water using a Millipore

water filtration system (Billerica, MA), adjusted to pH 3.1 using acetic acid) and separation was performed using two Shiseido C-18 columns (4.6 x 150 mm) connected in tandem and maintained at room temperature (or approximately 23 0 C, without control). The gradient was as follows:

1.	1.00 min	0%B at 0.5 ml/min : start file
2.	08.00 min	20%B at 0.5 ml/min
3.	20.00 min	55%B at 0.5 ml/min
4.	35.00 min	48%B at 0.5 ml/min
5.	55.00 min	95%B at 0.5 ml/min
6.	65.00 min	95%B at 0.6 ml/min
7.	70.00 min	95%B at 0.6 ml/min
8.	80.00 min	0%B at 0.6 ml/min
9.	85.00 min	0%B at 0.5 ml/min
10	. 120.00 min	0%B at 0.5 ml/min: end file

Supplementary Figure 1.

Supplementary Figure S1 Fraction D05 compared to the Fraction spiked with the ISA standard using LC-EC profiling. Panel A represents the fraction, D05, run using LC-EC profiling method with Panel B being the same fraction, spiked with the ISA internal standard. The circled peak is the ISA peak, which increases in height after the spike.

It should be noted that the ISA peak of interest, which is circled and increases in the spiked panel B chromatogram, has shifted in relation to the LC-EC chromatogram run using the LC-MS conditions (Figure 7, panel A). When run using the LC-MS conditions, ISA eluted at ~ 50.77 minutes, where as now it is coming out at 10.90 minutes. This change in retention is an aspect of the ion-pairing reagent used during fraction collection, TEA, being a cationic reagent which pairs strongly with the anion ISA compound. In the LC-EC profiling method, the ion-pairing reagent PSA, an anionic compound, is present at a high concentration in the mobile phase, displacing the ion-pair interaction, and preventing retention enhancement.