
 

Supporting Fig. S1. a. One year evolution of fitness and angiogenesis factor of glioma. b. The 

contribution of autocrine to fitness ( fitness

gliomaA ) and angiogenesis ( angio

gliomaA ). c. The contribution of 

paracrine to fitness ( fitness

gliomaP ) and angiogenesis ( angio

gliomaP ). d. The collective contribution of 

intercellular signaling to fitness ( fitness

gliomaT ) and angiogenesis ( angio

gliomaT ). 
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Supporting Fig. S2. Evolution of cell fitness and proliferation driving force. Red is positive, green is 

negative (see color bar). The color of cell node indicates the fitness of cell (Red means good, green 

means bad). The color of straight arrow indicates the paracrine strength, while the curved arrow 

indicates the autocrine strength. 

  

 

 

 

 

 

 

 

 



 

Supporting Fig. S3. Heat map of the correlation of cytokines in network level. The correlation 

factors are calculated at the end of each month. The cytokines highly correlated with others can be 

recognized as the important factors whose fluctuation can effectively rewire the network. The one 

year evolution shows a significant change of correlation during the sixth month. The ultimately 

high sensitivities also highlight the sixth month as the most active phase. 
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Supporting Fig. S4. Pattern map of the correlation of cytokines in network level. The positive 

correlations are in red, while the negative ones are in green. The correlations during first five 

months demonstrate similar pattern, whereas the last six months show a different pattern with 

more negative correlations than positive ones. The sixth month is recognized as the transition 

phase. 
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(a) 

 

(b) 

Supporting Fig. S5. Network level cytokine correlation pattern 

sketch map. a. The correlations of cytokines are generalized into 

cooperation, competition, and equilibrium, according to the positive 

or negative correlation. b. The correlation pattern at the sixth month 

has been illustrated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   



 

Supporting Fig. S6. One year evolution of grouped signaling protein correlation network. Fifteen 

signaling proteins are classified into five sub-sets, including growth factors (purple circle group), 

proinflammatory cytokines (yellow), anti-inflammatory cytokines (cyan), chemokines (magenta), 

and PGE2. Each blue circle (node) represents a cytokine. The diameter of the circle is 

proportional to the cytokine concentration, and the color indicates the impact factor of the 

cytokine according to the blue color bar. The arrow link between two nodes represents the 

directional regulation of two cytokines. The green-red color bar shows the strength of the up-

regulation (red) and down-regulation (green). 

 



 

Supporting Methods 

1. Deterministic description of the intercellular signaling network. 
 

Quiescent glioma stem cell (QSC) 

 

FGF (FGF7 and FGF10) signaling contributes to the telogen to anagen transition, adding new insights 

into the process of stem cell activation(1). 

_ _QSC QSC QSC ASC ASC QSC QSC QSCx c K K d x   
  
                                                                                         (1) 

where 

_ _QSC ASC QSC ASC ASCK k x                                                                                                                             

_

_ _ 1
QSC FGF FGF

ASC QSC ASC QSC QSC

FGF FGF

u y
K k x

s y

 
  

 
                                                                                        

 

Activated glioma stem cell (ASC) 

 

EGF and FGF2 enhanced GBM brain tumor stem cells survival, proliferation, and subsequent sphere size 

(2). 

 

Virtually all neural stem cells maintain an undifferentiated state and the capacity to self-renew in response 

to FGF2 (3). 

 

IL6 signaling contributes to glioma malignancy through the promotion of GSC growth and survival (4). 

 

Up-regulation of FGF5 during malignant progression might reflect dedifferentiation and acquisition of 

stem cell-like properties (5). 

 

VEGF, FGF, SCF, IL1, HGF, and MIF are recognized as major factors that induce angiogenesis within 

GBM (6-21). 
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RASC is the logistic proliferation term. Parameter xmax is the saturating concentration factor, whereas 

Aangiogenesis is the angiogenesis factor. So the product xmaxAangiogenesis represents the carrying capacity. The 

first term of the right-hand side of Eq. (2) is the activation term, and the second term is the deactivation 

term. The third term is the dedifferentiation from glioma cells to ASC, while the fourth term is the result 

of proliferation minus differentiation. The last term is the decay of ASC. 

 

Glioma 

 

The experimental glioma genesis models indicate that when sufficient numbers of critical pathways are 

disrupted, glioma can originate from cells at all differentiation stages during glial cell development. In 

addition, progenitor cells appear to be more susceptible to transformation compared to the mature glial 

cells (22, 23). 

 

The Fibroblast Growth Factor (FGF) signaling pathway is reported to stimulate glioblastoma (GBM) 

growth (24, 25). Autocrine FGF5 is predominantly a survival and migration factor for GBM cells (5). 

 

EGF receptor signalling promotes proliferation, tissue invasion, increases chemoresistance and inhibits 

apoptosis of glioma cells (26-28). 

 

IL-1, IL-6, IL-10, TGFβ and their receptors were strongly expressed in nearly all glioblastomas and cell 

lines tested, and have been postulated to promote glioma cell proliferation (29, 30 , 31-33). 

 

The overexpression of EGF receptors suggests the potential for autocrine/paracrine proliferation in 

response to EGF and Hb-EGF (34-40). 

 

TNF-α increases EGF receptor expression in glioma cells in vitro (41). 

 

A decrease in tumor-cell proliferation was observed in vivo by systemic treatment with a monoclonal 

antibody against VEGFR-2 (42). 

 

TNF-α increases VEGF expression in glioma cells in vitro (43). 

 

HGF and its receptor, Met, have been found in gliomas (44), where they are thought to be involved in cell 

motility, chemoattraction, and tumor invasion (45, 46). 

 

G-CSF/G-CSFR is expressed constitutively in some glioma cell lines (47, 48) and in human gliomas, 

where it has been postulated to promote in an autocrine fashion glioma cell proliferation (49). 

 



SCF and its receptor c-kit, are highly expressed in glioma cell lines (50, 51), and SCF can mediate the 

proliferation of glioma cells in vitro (52). 

 

MIF plays a particularly critical part in cell cycle regulation and therefore in tumorigenesis as well. (10, 

20, 53, 54). Recent studies have suggested a potentially broader role for MIF in growth regulation 

because of its ability to antagonize p53-mediated gene activation and apoptosis (55). 

 

PGE2 has been shown to transiently prevent glioma cell proliferation in vitro (56). 
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Rglioma is the logistic proliferation term. The product xmaxAangiogenesis indicates the carrying capacity. The 

first term of the right-hand side of Eq. (3) represents the differentiation from ASC to glioma cells. The 

second term describes the mutation from astrocytes to glioma cells. The third term is the result of 

proliferation minus dedifferentiation. The last term is the death of glioma cells due to life span. 

 

Activated Microglia  

 

It is generally accepted that monocytes are the most likely source of all brain macrophages. These cells, 

which begin their migration into normal brain during embryogenesis, can differentiate into microglia (57). 

 

Glioma cells express the microglia chemoattractant, MCP-1, at the mRNA and protein levels (58-60), and 

microglia possess the specific MCP-1 receptor, CCR2 (61). Thus, recruitment of microglia to the site of 

gliomas may in part result from the local production of MCP-1 (58, 62). 

 

Microglia express receptors for EGF that enable them to proliferate in response to local release of this 

growth factor (63). 

 



In vitro, VEGF can also induce the proliferation and migration of microglia (64). 

 

HGF and its receptor, c-Met, have been found in microglia (65), where they are thought to be microglial 

chemoattractant and inducer of proliferation in vitro (66). 

 

GM-CSF is potent mitogen for microglia (67). 

 

TGF-β inhibits the proliferation of microglia as well as their production of cytokines in vitro (68). 

 

In vitro, SCF inhibits microglial proliferation and their expression of the inflammatory cytokines TNFa 

and IL-1b (69). 
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(4) 

The first term of the right-hand side of Eq. (4) is the replenishment of microglia from monocytes. The 

second term is logistic proliferation. 

 

Astrocyte 

 

Astrocytes have been shown to originate from progenitors, and can migrate radially (70).  

 

IL-1 has been shown to stimulate the growth of astrocytes in vitro (71-73). The duration of survival of 

GBM patients is enhanced when levels of intratumoral IL-1β, not necessarily produced by microglia, are 

elevated (74). 

 

PGE2 released from activated microglia enhances astrocyte proliferation in vitro (75). 
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where 
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The first term of the right-hand side of Eq. (5) represents supply of astrocytes from progenitors. The 

second term is the result of proliferation minus mutation. 

 

IL-1         

 



Ameboid microglia, when activated, release significant quantities of IL-1 (76-78). Astrocyte is observed 

to release IL-1 in culture (76, 79). Malignant glioma cells also secrete or express IL-1 (80-82). 

 

In vitro, SCF inhibits microglial proliferation and their expression of the inflammatory cytokine IL-1β 

(69). 
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                                          (6) 

 

IL-6     

 

Glioma secretes IL-6 (29, 83-86). 

 

When cultured in the presence of IL-1β, the human glioma cell lines U251 and HP591 demonstrated a 

marked increase in IL-6 production (83). 

 

IL-1β has been shown to exert a strong inducing signal for IL-6 in primary human/rat astrocytes (78, 87). 

 

IL-6 also released by microglia (78, 88, 89) 
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           (7) 

 

IL-10   

   

Microglia are the major source of IL-10 in gliomas (33, 90). 

 

10 10_ 10 10IL IL micro microglia IL ILy k x d y                                                                                                               (8) 

 

TNF-α                 

 

TNF-α is one of the products of activated microglia (30, 78, 91-93). 

 

In vitro, SCF down-regulates microglial expression of TNF-α (69). 

 

Astrocyte produces TNF-α in response to IL-1β (78, 94-96). 

1
_ _

1 1

SCF IL
TNF TNF micro microglia TNF astro astrocyte TNF TNF

SCF SCF IL IL

s y
y k x k x d y

s y s y
    

 
   

  
                               (9) 

 

TGF-β 

        

The glioma cancer stem cells produce TGF-β1 (97). 

 



Human GBM cell lines have been shown to produce TGF-β2 (31). IL-1β also modulates the secretion of 

TGF-β from glioma cells in vitro, although the modulation has been shown to be both stimulatory and 

inhibitory, depending upon the cell line used (98, 99). 

 

Microglia has been shown to derive TGF-beta (100-102). 

_ 1 1

_ _ _

1 1

1
TGF IL IL

TGF TGF ASC ASC TGF glio glioma TGF micro microglia TGF TGF

IL IL

u y
y k x k x k x d y

s y



     

 
     

 
              (10) 

 

EGF       

 

EGF can be produced by activated microglia in vitro (103). 

 

Heparin binding-EGF (Hb-EGF), a member of the EGF family, is produced by gliomas (104). 

 

_EGF EGF glio glioma EGF microglia EGF EGFy k x k x d y                                                                                         (11) 

 

VEGF      

 

Glioblastoma stem cells consistently secreted markedly elevated levels of VEGF (14, 105). 

 

Both microglia and gliomas secrete VEGF (12, 13). 

 

TNF-α increases VEGF expression in glioma cells in vitro (43). 

 

MIF has been observed to induce a significant dose-dependent increase of VEGF (54, 106). 

 

_ _

_ _

_

1 1
VEGF TNF TNF VEGF MIF MIF

VEGF VEGF ASC ASC VEGF glio glioma

TNF TNF MIF MIF

VEGF micro microglia VEGF VEGF

u y u y
y k x k x

s y s y

k x d y

 

 

  
     

   

 

                              (12) 

 

FGF   

 

FGF5 is frequently expressed in embryonic tissues and has been recently described as a stem cell marker 

(107). Consequently, up-regulation during malignant progression might reflect dedifferentiation and 

acquisition of stem cell-like properties (5). FGF has also been recognized as an autocrine signaling 

pathway in human embryonic stem cells (108). 

 

Secreted FGF5 protein has been reported to generally present in the GBM cells in vivo and in vitro (5).       

 

 _ _FGF FGF ASC ASC FGF glio glioma FGF FGFy k x k x d y                                                                                      (13) 

 

HGF                    



 

HGF and its receptor, c-Met, have been found in microglia (65) and gliomas (44, 109). 

 

The expression of HGF in microglia is up-regulated by PGE2 in vitro and in vivo after ischemic injury 

(65). 

_ 2 2

_ _

2 2

1
HGF PGE PGE

HGF HGF glio glioma HGF micro microglia HGF HGF

PGE PGE

u y
y k x k x d y

s y

 
    

 
                                         (14) 

 

MCP-1      

 

Glioma cells express the microglia chemoattractant, MCP-1, at the mRNA and protein levels (58-60). 

 

1 1_ 1 1MCP MCP glio glioma MCP MCPy k x d y                                                                                                          (15) 

 

MIF  

      

MIF has been shown to be produced by glioma cell (110), and its expression was up-regulated under 

hypoxic and hypoglycemic stress conditions in vitro (10). 

 

MIF was also secreted by activated microglia (20), and its secretion from macrophage can be induced by 

TNF-α (111). 

 

_ _

_ _1 1
MIF TNF TNF MIF glio glioma

MIF MIF micro microglia MIF glio glioma MIF MIF

TNF TNF glioma glioma

u y u x
y k x k x d y

s y s x

 

 

  
              

           (16) 

 

PGE2      

             

Glioma-infiltrating microglia are a major source of PGE2 production through the COX-2 pathway (112). 

2 2_ 2 2PGE PGE micro microglia PGE PGEy k x d y                                                                                                     (17) 

 

GM-CSF    

   

Glioma cell lines express GM-CSF (47, 113). TGF-β2 and PGE2 has been shown to suppress GM-CSF 

production by gliomas in vitro (114). IL-10 inhibits GM-CSF(115-117). 

 

2
_ _

2 2

_ 10 10

10 10

1

TGFPGE
GMCSF GMCSF glio glioma GMCSF micro microglia

PGE PGE TGF TGF

GMCSF IL IL

GMCSF GMCSF

IL IL

ss
y k x k x

s y s y

u y
d y

s y



 

 
 

 
  

 

                                        (18) 

 

G-CSF        

         



G-CSF is expressed constitutively in some glioma cell lines and in human gliomas (47, 49).  IL-10 

inhibits G-CSF(115, 116). 

_ 10 10

_

10 10

1
GCSF IL IL

GCSF GCSF glio glioma GCSF GCSF

IL IL

u y
y k x d y

s y

 
   

 
                                                                       (19) 

 

SCF         

          

SCF and its receptor c-kit, are highly expressed in glioma cell lines (50, 51) and microglia (118, 119). 

_ _SCF SCF glio glioma SCF micro microglia SCF SCFy k x k x d y                                                                                   (20) 

 

 

 

 

2. Stochastic description of rate parameters 
 

2.1 Bounded noise 

 

We use bounded noise to describe the stochastic proliferation / mutation / differentiation 

/dedifferentiation rate (rASC, rglioma, rastrocyte, rmicroglia, pglio_astro, pglio_ASC, pASC_glio). 

 

rstochastic(t)=rdeterministic(1+εsin(Ωt+σW(t)+Δ))                                                                                               (21) 

 

where W(t) is a standard Wiener process. ζ(t) = εsin(Ωt+σW(t)+Δ) is the so called bounded noise with the 

mathematical expectation at a fixed time t 

2 /2 0
[ ( )] sin( )

sin( ) 0

tE t e t
t

 




 
     

   
                                                                           (22) 

and the auto correlation function 

2 ,0
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1 2
( ) exp cos
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cos 0
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                                                                        (23) 

where δτ,0 is Kronecker delta. Thus, the bounded noise ζ(t) tends to a finite power white noise as σ → ∞, 

and becomes a harmonic noise as σ → 0. 

 

The stochastic rate term rstochastic(t) describes a stochastic fluctuation around the average rate rdeterministic, 

which should be estimated according to the experimental data. There are three critical parameters: the 

strength factor 0 ≤ ε < 1, the bandwidth factor σ ≥ 0, and the center frequency Ω > 0.  

 

The flexible and adjustable characteristics of bounded noise make it an appropriate description of the 

intrinsically random rates and a good approximation to cell cycles according to heterogeneous scenarios. 

 

Cell cycle is obviously periodic; however, the endogenous and exogenous signals that influence the 

cellular activity may be aperiodic. Thus, it is reasonable to assume that the rate is a stochastic perturbation 



to periodic fluctuations. In case the cellular activity observed in experiment shows regular periodic 

fluctuations around a mean value, a small σ should be adopted. Then, the center frequency Ω is 

determined by the period of cell cycle Tcell cycle 

cell cycle

2 2 (basal proliferation rate)

ln 2T

  
                                                                                               (24) 

Alternatively, when there do not exist regular fluctuations or a characteristic frequency band, a large σ 

will be chosen to capture the stochastic nature. 

 

 

2.2 Poisson white noise 

 

We introduce Poisson white noise ξ(t) to describe the stochastic immigration, emigration and supply from 

normal neural stem cell / monocytes / progenitors (cQSC, cmicroglia, castrocyte). 

 
( )

1

( ) ( )
N t

k k

k

t Y t  


                                                                                                                                    (25) 

 

ξ(t) is the stochastic representation of discrete event type fluctuation. Yk is the magnitude of kth discrete 

event, i.e., the number of cell increasing (decreasing) at time point t = τk, Ni(t) denotes a non-

homogeneous Poisson counting process with arrival rate function λi(t) > 0 (i.e., the number of events per 

unit time) and gives the number of events that arrive in the time interval [0,t].  

( )QSC QSCt c                                                                                                                                               (26) 

( )astrocyte astrocytet c                                                                                                                                      (27) 

_ 1 1

1 1

( ) 1
micro MCP MCP

microglia microglia

MCP MCP

u y
t c

s y


 
  

 
                                                                                               (28) 

 

 

2.3 Gaussian white noise 

 

We use Gaussian white noise to describe the stochastic fluctuation of cytokine secretion rates and up-

regulation ratio via receptor kinase signaling (ki and ui). 

 stochastic deterministic( ) max 0,1 ( )gk t k t                                                                                                    (29) 

 stochastic deterministic( ) max 0,1 ( )gu t u t                                                                                                    (30) 

where η(t) is a Gaussian white noise with mean zero and standard deviation 1. 

 

 

 

 



Supporting Tables 
Supporting Table S1. Deterministic Parameters 

Variable Description Value Dimension Reference Comment 

xQSC Concentration of quiescent glioma 

stem like cell 

1E4 ml
-1

 (120, 121) Initial density 

xASC Concentration of activated glioma 

stem like cell 

0 ml
-1

  Initial density is 

zero 

xglioma Concentration of glioma cell 0 ml
-1

  Initial density 

xmicroglia Concentration of microglia 2E6 ml
-1

 (122-125) Initial density 

xastrocyte Concentration of astrocyte 2.8E7 ml
-1

 (123, 126-

130) 

Initial density 

yIL1 Concentration of IL1 150 pM Estimated Initial 

Concentration 

yIL6 Concentration of IL6 250 pM Estimated Initial 

yIL10 Concentration of IL10 150 pM Estimated Initial 

yTNFα Concentration of TNFα 80 pM Estimated Initial 

yTGFβ Concentration of TGFβ 150 pM Estimated Initial 

yEGF Concentration of EGF 150 pM Estimated Initial 

yVEGF Concentration of VEGF 150 pM Estimated Initial 

yFGF Concentration of FGF 0 pM Estimated Initial 

yHGF Concentration of HGF 150 pM Estimated Initial 

yMCP1 Concentration of MCP1 0 pM Estimated Initial 

yCOX2 Concentration of COX2 40 pM Estimated Initial 

yPGE2 Concentration of PGE2 150 pM Estimated Initial 

yGMCSF Concentration of GMCSF 150 pM Estimated Initial 

yGCSF Concentration of GCSF 0 pM Estimated Initial 

ySCF Concentration of SCF 150 pM Estimated Initial 

cQSC Rate of supply of quiescent glioma 

stem cell from normal neural stem 

cell 

1 ml
-1

 h
-1

 Estimated  

cmicroglia Rate of replenishment of microglia 

from monocytes 

800 ml
-1

 h
-1

 (57)  

castrocyte Rate of supply of astrocyte from 

progenitors 

2000 ml
-1

 h
-1

 Estimated  

rASC Average basal proliferation 

(including self-renewal and 

differentiation) rate of activated 

glioma stem cell obtained in the 

absence of population limitation 

and cytokine stimulus 

5E-4 h
-1

 (131) ln 2

cell cycle period
 

Cell cycle ~58 

days 

rglioma Average basal proliferation rate of 

glioma cell obtained in the absence 

of population limitation and 

cytokine stimulus 

0.0174 h
-1

 (132) Cell cycle ~40 

hours 



rmicroglia Average basal proliferation rate of 

microglia obtained in the absence 

of population limitation and 

cytokine stimulus 

0.0174 h
-1

 (133-135) Cell cycle ~40 

hours 

rastrocyte Average basal proliferation rate of 

astrocyte obtained in the absence of 

population limitation and cytokine 

stimulus 

0.0174 h
-1

 (130) Cell cycle ~40 

hours 

xmax Maximum cell population 

(including QSC, ASC, glioma, 

microglia, astrocyte) level due to 

limited nutrition and space 

3E7 ml
-1

 (122, 124, 

135-137) 

Density-

dependent 

inhibition of cell 

growth 

ucell_IL1 Maximum up-regulation ratio of 

maximum cell concentration due to 

angiogenic effect of IL1 

0.1  (7, 8, 11)  

ucell_VEGF Maximum up-regulation ratio of 

maximum cell concentration due to 

angiogenic effect of VEGF 

0.2  (6, 12-14)  

ucell_FGF Maximum up-regulation ratio of 

maximum cell concentration due to 

angiogenic effect of FGF 

0.2  (6, 15-18)  

ucell_HGF Maximum up-regulation ratio of 

maximum cell concentration due to 

angiogenic effect of HGF 

0.1  (6, 9, 138)  

ucell_MIF Maximum up-regulation ratio of 

maximum cell concentration due to 

angiogenic effect of MIF 

0.1  (10, 19, 

20) 

 

ucell_SCF Maximum up-regulation ratio of 

maximum cell concentration due to 

angiogenic effect of SCF 

0.15  (21)  

uQSC_FGF Maximum up-regulation ratio of 

QSC activation rate by FGF 

2  (1)  

uASC_EGF Maximum up-regulation ratio of 

ASC proliferation rate by EGF 

2  (2)  

uglio_ASC_IL6 Maximum up-regulation ratio of 

differentiation rate from ASC to 

glioma by IL6 

2  (4)  

uglio_IL1 Maximum up-regulation ratio of 

glioma proliferation rate by IL1  

2  (113, 139, 

140) 

 

uglio_IL6 Maximum up-regulation ratio of 

glioma proliferation rate by IL6 

2  (29)  

uglio_IL10 Maximum up-regulation ratio of 

glioma proliferation rate by IL10 

2  (33)  

uglio_TGFβ Maximum up-regulation ratio of 

glioma proliferation rate by TGFβ 

2  (113, 141-

143) 

 

uglio_EGF Maximum up-regulation ratio of 

glioma proliferation rate by EGF 

3  (24, 36, 

39, 40) 

 

uglio_VEGF Maximum up-regulation ratio of 

glioma proliferation rate by VEGF 

3  (42)  

uglio_HGF Maximum up-regulation ratio of 3  (46)  



glioma proliferation rate by HGF 

uglio_GCSF Maximum up-regulation ratio of 

glioma proliferation rate by GCSF 

2  (49)  

uglio_SCF Maximum up-regulation ratio of 

glioma proliferation rate by SCF 

2  (50, 52)  

uglio_MIF Maximum up-regulation ratio of 

glioma proliferation rate by MIF 

2  (10, 20, 

53, 54) 

 

uMIF_glio Maximum up-regulation ratio of 

secretion rate of MIF from glioma 

due to hypoxia and hypoglycemia 

6  (10)  

umicro_MCP1 Maximum up-regulation ratio of 

replenishment rate of microglia due 

to chemotaxis 

5  (58, 62)  

umicro_EGF Maximum up-regulation ratio of 

microglia proliferation rate by EGF 

2  (63)  

umicro_VEGF Maximum up-regulation ratio of 

microglia proliferation rate by 

VEGF 

2  (64)  

umicro_HGF Maximum up-regulation ratio of 

microglia proliferation rate by HGF 

2  (65, 66)  

umicro_GMCS

F 

Maximum up-regulation ratio of 

microglia proliferation rate by 

GMCSF 

2  (67, 135)  

uastro_IL1 Maximum up-regulation ratio of 

astrocyte proliferation rate by IL-1 

2.5694  (71, 72)  

uastro_PGE2 Maximum up-regulation ratio of 

astrocyte proliferation rate by 

PGE2 

2  (75)  

uIL6_IL1 Maximum up-regulation ratio of 

IL-6 production by glioma in the 

presence of IL-1β 

2  (83)  

uTGFβ_IL1 Maximum up-regulation ratio of 

TGF-β production by glioma in the 

presence of IL-1β 

2  (98, 99)  

uGMCSF_IL10 Maximum up-regulation ratio of 

decay rate of GM-CSF in the 

presence of IL-10 

1  (115-117)  

uGCSF_IL10 Maximum up-regulation ratio of 

decay rate of G-CSF in the 

presence of IL-10 

1  (115, 116)  

uVEGF_TNFα Maximum up-regulation ratio of 

VEGF production by glioma in the 

presence of TNFα 

2  (43)  

uMIF_TNFα Maximum up-regulation ratio of 

MIF production by microglia in the 

presence of TNFα 

2  (20, 111)  

uVEGF_MIF Maximum up-regulation ratio of 

VEGF production by glioma in the 

presence of MIF 

2  (54, 106)  

uHGF_PGE2 Maximum up-regulation ratio of 2  (65)  



HGF production by microglia in the 

presence of PGE2 

sglioma Half max concentration of glioma 

cell in hypoxia dependent MIF 

production 

1.5e7 ml
-1

 (10)  

sIL1 Saturation concentration of IL-1 

producing half max regulation 

effect to cellular activity 

2200 pM Estimated  

sIL6 Saturation concentration of IL-6 

producing half max regulation 

effect to cellular activity 

2200 pM Estimated  

sIL10 Saturation concentration of IL-10 

producing half max regulation 

effect to cellular activity 

2200 pM Estimated  

sTGFβ Saturation concentration of TGFβ 

producing half max regulation 

effect to cellular activity 

2200 pM Estimated  

sTNFα Saturation concentration of TNFα 

producing half max regulation 

effect to cellular activity 

2200 pM Estimated  

sEGF Saturation concentration of EGF 

producing half max regulation 

effect to cellular activity 

2200 pM Estimated  

sVEGF Saturation concentration of VEGF 

producing half max regulation 

effect to cellular activity 

2200 pM Estimated  

sFGF Saturation concentration of FGF 

producing half max regulation 

effect to cellular activity 

2200 pM Estimated  

sHGF Saturation concentration of HGF 

producing half max regulation 

effect to cellular activity 

2200 pM Estimated  

sGCSF Saturation concentration of G-CSF 

producing half max regulation 

effect to cellular activity 

2200 pM Estimated  

sSCF Saturation concentration of SCF 

producing half max regulation 

effect to cellular activity 

2200 pM Estimated  

sPGE2 Saturation concentration of PGE2 

producing half max regulation 

effect to cellular activity 

2200 pM Estimated  

sMCP1 Saturation concentration of MCP1 

producing half max regulation 

effect to cellular activity 

1100 pM Estimated  

sGMCSF Saturation concentration of GM-

CSF producing half max regulation 

effect to cellular activity 

2200 pM Estimated  

sMIF Saturation concentration of MIF 

producing half max regulation 

effect to cellular activity 

2200 pM Estimated  



dQSC Death rate of quiescent glioma stem 

cell based on lifespan 

0.0000

1 

h
-1 

(144-146) ln 2

cell half-life
 

Stem cell half-

life ~8 years 

dASC Death rate of activated glioma stem 

cell based on lifespan 

0.0001 h
-1

 (144-146) Half-life ~9.6 

months 

dglioma Death rate of glioma cell based on 

lifespan 

0.001 h
-1

 (147) Half-life ~29 

days 

dmicroglia Death rate of microglia based on 

lifespan 

0.001 h
-1

 (147) Half-life ~29 

days 

dastrocyte Death rate of astrocyte based on 

lifespan 

0.001 h
-1

 (147) Half-life ~29 

days 

dIL1 Decay rate of IL-1 based on half-

life 

0.6931 h
-1

 (148-153) Half-life ~1 hour 

dIL6 Decay rate of IL-6 based on half-

life 

0.6931 h
-1

 (148-153) Half-life ~1 hour 

dIL10 Decay rate of IL-10 based on half-

life 

0.6931 h
-1

 (148-153) Half-life ~1 hour 

dTNFα Decay rate of TNFα based on half-

life 

0.6931 h
-1

 (148-153) Half-life ~1 hour 

dTGFβ Decay rate of TGFβ based on half-

life 

0.6931 h
-1

 (148-153) Half-life ~1 hour 

dEGF Decay rate of EGF based on half-

life 

0.6931 h
-1

 (148-153) Half-life ~1 hour 

dVEGF Decay rate of VEGF based on half-

life 

0.6931 h
-1

 (148-153) Half-life ~1 hour 

dFGF Decay rate of FGF based on half-

life 

0.6931 h
-1

 (148-153) Half-life ~1 hour 

dHGF Decay rate of HGF based on half-

life 

0.6931 h
-1

 (148-153) Half-life ~1 hour 

dMCP1 Decay rate of MCP1 based on half-

life 

0.6931 h
-1

 (148-153) Half-life ~1 hour 

dMIF Decay rate of MIF based on half-

life 

0.6931 h
-1

 (148-153) Half-life ~1 hour 

dPGE2 Decay rate of PGE2 based on half-

life 

0.6931 h
-1

 (148-153) Half-life ~1 hour 

dGMCSF Decay rate of GM-CSF based on 

half-life 

0.6931 h
-1

 (148-153) Half-life ~1 hour 

dGCSF Decay rate of G-CSF based on half-

life 

0.6931 h
-1

 (148-153) Half-life ~1 hour 

dSCF Decay rate of SCF based on half-

life 

0.6931 h
-1

 (148-153) Half-life ~1 hour 

kQSC_ASC Deactivation rate 1e-3 h
-1

 Estimated(

1, 131, 

154-156) 

 

kASC_QSC Activation rate 5e-3 h
-1

 Estimated(

1, 131, 

154-156) 

 

pASC_glio Probability of dividing glioma 1e-4  Estimated(  



dedifferentiate to ASC during each 

cell cycle 

5, 157-

160) 

pglio_ASC Probability of dividing ASC 

differentiate to glioma during each 

cell cycle 

0.5  (161)  

pglio_astro Probability of dividing astrocyte 

mutate to glioma during each cell 

cycle 

1E-6  (162-164)  

kIL1_glio Secretion rate of IL1 by glioma 60 10
-21

mol h
-1

 (80-82)  

kIL1_micro Secretion rate of IL1 by microglia 22.1 10
-21

mol h
-1 

(76, 78)  

kIL1_astro Secretion rate of IL1 by astrocyte 3 10
-21

mol h
-1

 (76)  

kIL6_glio Secretion rate of IL6 by glioma 40 10
-21

mol h
-1

 (29, 83-

86) 

 

kIL6_micro Secretion rate of IL6 by microglia 96.2 10
-21

mol h
-1

 (78, 88, 

89) 

 

kIL6_astro Secretion rate of IL6 by astrocyte 6 10
-21

mol h
-1

 (78, 87)  

kIL10_micro Secretion rate of IL10 by microglia 60 10
-21

mol h
-1

 (33, 90)  

kTNFα_micro Secretion rate of TNFα by 

microglia 

29.4 10
-21

mol h
-1

 (30, 78, 

91-93) 

 

kTNFα_astro Secretion rate of TNFα by astrocyte 2.94 10
-21

mol h
-1

 (78, 94-

96, 165) 

 

kTGFβ_ASC Secretion rate of TGFβ by ASC 0.15 10
-21

mol h
-1

 (97)  

kTGFβ_glio Secretion rate of TGFβ by glioma 40 10
-21

mol h
-1

 (31)  

kTGFβ_micro Secretion rate of TGFβ by 

microglia 

60 10
-21

mol h
-1

 (100-102)  

kEGF_glio Secretion rate of EGF by glioma 60 10
-21

mol h
-1

 (104)  

kEGF_micro Secretion rate of EGF by microglia 60 10
-21

mol h
-1

 (103)  

kVEGF_ASC Secretion rate of VEGF by ASC 30 10
-21

mol h
-1

 (14, 105)  

kVEGF_glio Secretion rate of VEGF by glioma 60 10
-21

mol h
-1

 (12, 13, 

166) 

 

kVEGF_micro Secretion rate of VEGF by 

microglia 

60 10
-21

mol h
-1

 (13)  

kFGF_ASC Secretion rate of FGF by ASC 60 10
-21

mol h
-1

 (107, 108)  

kFGF_glio Secretion rate of FGF by glioma 60 10
-21

mol h
-1

 (5)  

kHGF_glio Secretion rate of HGF by glioma 60 10
-21

mol h
-1

 (44, 109)  

kHGF_micro Secretion rate of HGF by microglia 60 10
-21

mol h
-1

 (65)  

kMCP1_glio Secretion rate of MCP1 by glioma 90 10
-21

mol h
-1

 (58-60)  

kMIF_glio Secretion rate of MIF by glioma 20 10
-21

mol h
-1

 (110)  

kMIF_micro Secretion rate of MIF by microglia 15 10
-21

mol h
-1

 (20)  

kPGE2_micro Secretion rate of PGE2 by 

microglia 

60 10
-21

mol h
-1

   

kGMCSF_glio Secretion rate of GM-CSF by 

glioma 

60 10
-21

mol h
-1

 (47, 49)  

kGMCSF_micro Secretion rate of GM-CSF by 

microglia 

60 10
-21

mol h
-1

   

kGCSF_glio Secretion rate of G-CSF by glioma 60 10
-21

mol h
-1

 (47, 49)  

kSCF_glio Secretion rate of SCF by glioma 60 10
-21

mol h
-1

 (50, 51)  



kSCF_micro Secretion rate of SCF by microglia 60 10
-21

mol h
-1

 (118, 119)  

 

 

Supporting Table S2. Stochastic Parameters 

Determini

stic 

variable 

Stochastic description Parameters Dimension Comment 

rASC r(1+εsin(Ωt+σW(t)+Δ)) 

 

rASC=0.0005 

εASC=0.99 

ΩASC=0.0045 

σASC=10 

 

rASC is the basal 

proliferation rate of 

ASC. ε is the amplitude 

of stochastic 

fluctuation; σ is the 

bandwidth factor ; Δ is 

a random phase 

uniformly distributed in 

[0, 2π]. 

Ω (h
-1

), 

Others are 

dimensionl

ess 

r > 0, 

0 ≤ ε< 1, 

ASC2

ln 2

r
     

rglioma r(1+εsin(Ωt+σW(t)+Δ)) 

 

rglioma=0.0174 

εglioma=0.99 

Ωglioma=0.1577 

σglioma=10 

rglioma is the basal 

proliferation rate of 

glioma. 

Ω (h
-1

), 

Others are 

dimensionl

ess 

r > 0, 

0 ≤ ε< 1, 

glioma2

ln 2

r
     

rastrocyte r(1+εsin(Ωt+σW(t)+Δ)) 

 

rastrocyte=0.0174 

εastrocyte=0.99 

Ωastrocyte=0.1577 

σastrocyte=10 

rastrocyte is the basal 

proliferation rate of 

astrocyte. 

Ω (h
-1

), 

Others are 

dimensionl

ess 

r>0, 

0 ≤ ε< 1, 

astrocyte2

ln 2

r
     

rmicroglia r(1+εsin(Ωt+σW(t)+Δ)) 

 

rmicroglia=0.0174 

εmicroglia=0.99 

Ωmicroglia=0.1577 

σmicroglia=10 

rmicroglia is the basal 

proliferation rate of 

microglia. 

Ω (h
-1

), 

Others are 

dimensionl

ess 

r>0, 

0 ≤ ε< 1, 

microglia2

ln 2

r
     

pglio_astro p(1+εsin(Ωt+σW(t)+Δ)); 

 

pglio_astro=1×10
-6

 

εglio_astro=1 

Ωglio_astro=0.1577 

σglio_astro=10 

 

pglio_astro is the average 

proportion of dividing 

astrocyte mutate to 

glioma during each cell 

cycle;  

Ω (h
-1

), 

Others are 

dimensionl

ess 

0 1p  ,  

1
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