Supporting information

Goulet et al. 10.1073/pnas.1216515109

S A No

Fig. S1. Mapping of the quantitative trait loci on chromosome 1 for acetate esters. Genotypes of several introgression lines derived from the green-fruited parent *Solanum habrochaites* (*A*) or *S. pennellii* (*B*). Regions from the tomato parent are in red and those from the green-fruited species are in green. All of the lines that have the genotype of a green-fruited species at the *CXE1* position accumulate a high amount of acetate esters in the fruit. In addition to the illustrated lines, LA3929 (16.9*-fold more acetate esters), LA3995 (9.3*-fold more), and LA3998 (11.1*-fold more) from the *S. habrochaites* population also have the green-fruited genotype in the *CXE1* region. **P* < 0.05.

Fig. 52. Expression of *SICXE1* in *Solanum lycopersicum* cv. M82. Transcript levels (±SE) were measured in leaves, flowers, and four stages of fruit development (immature green, breaker, turning, and ripe).

SlCXE1/1-339	MAEIVHDFFPLMRVYKDGRIERLAGEGFVPPESDPETGVQIKDVQIDPQINLSARLYLPK
SlCXE2/1-309	MAEIVHDFFPLMRVYKDGRIERLAGEGFVPPESDPETGLQIKDIEIDPQINLSARLYLPK
SlCXE3/1-312	MAEIEHDFFPLMRVHKDGRIERLAGEVFVPPESDPETGVQIKDVQIDPQINLSARLYLPK
SlCXE4/1-310	MAEIVYDFFPFMRVYKDGRIERLMGEGFVPPESDPETGVQIKDVQIDPQINLSARLYLPK
SlCXE5/1-312	MAEIEHDLSPLIRVYRDGRIERMMGEGFVPPESDPETGVQIKDIEIDPQINLSARLYLPK
SlCXE1/1-339	NVDPVQKIPLFVYFHGGGFVIESAFSPTYHKYLSLVAAEAKVAIVSVNYRLAPEYPLPIA
SlCXE2/1-309	NVQKIPLFVYFHGGGFVIESASSPSYHKHLSTVAAEAKVVIVSVNYRLAPEYPLPIA
SlCXE3/1-312	NVDPVQKIPLFVYFHGGGFVIESAFSPTYHKYLSLVAAKTKVAIISVNYRLAPEYPLPIA
SlCXE4/1-310	HVDTVEKIPLFVYFHGGGFLIESAYSPSYHKHISKVAAEAKVVIVSVNYRLAPEYLLPIA
SlCXE5/1-312	NVDPVQKIPLFVYFHGGAFVIESASSPTYHKHLSMVAAEAKVIIVSINYRLAPEYPLPIA
SlCXE1/1-339	YEDSWLALKWVTSHANG-DGREPWLKDYADFNRVFLGGDSAGGNIAHHIGIRLGLEKFEG
SlCXE2/1-309	YEDSWLALKWIASHANG-DGHEPWLKEHADFSRVYFGGDSAGGNIAHHIAIRVGLEKLDG
SlCXE3/1-312	YEDSWLALKWVTSHANG-DGREPWLKDNADFNRVYLGGDSAGGNIAHHIAIRVGLEKLDR
SlCXE4/1-310	YEDSWLALKWVASHANGDDGHEPWLKDHADFNRLFLGGDSAGGNIAHHIAIRVGLEKLDG
SlCXE5/1-312	YEDSWIALKWIASHANG-DGDEPWLKDHANFNRVYFGGDSAGGNIAHHMAIRVGLEKLEG
SlcxE1/1-339	VKIDGIFLACPYFWGKDRIEGEGENLLAKDFV EDLVLIGNPNSTGLDKDPIDLGSKDLF E
SlcxE2/1-309	VKLEGIFLACPFFWGKDPIDGEGENLGAKDFVE
SlcxE3/1-312	VKIDGIFLACPSFWGKDPIDGEGEIVGAKDFVE
SlcxE4/1-310	MKLKGIFLACPFFWGKDPIDGEGEKLVVIE
SlcxE5/1-312	VKLDGIFLACPYFWGKDLIDGEGENLFVKDFID
S1CXE1/1-339 S1CXE2/1-309 S1CXE3/1-312 S1CXE4/1-310 S1CXE5/1-312 S1CXE1/1-339 S1CXE2/1-309 S1CXE2/1-309 S1CXE3/1-312 S1CXE4/1-310 S1CXE5/1-312	VKIDGIFLACPYFWGKDRIEGEGENLLAKDFV EDLVLIGNPNSTGLDKDPIDLGSKDLF E VKLEGIFLACPFFWGKDPIDGEGENLGAKDFVE VKIDGIFLACPSFWGKDPIDGEGEIVGAKDFVE MKLKGIFLACPFFWGKDPIDGEGEKLVVIE VKLDGIFLACPYFWGKDLIDGEGENLFVKDFID KLWLFVNPTSSGLDDPLINPEKDPKLSGLGCDKLVVYVAGKDPLRFRGFYYKEVLEKSGW KLWLFANPNSSGLDDPLINPEKDPNLSSLGCDKVVVYVAGKDPLRFRGFYYKEALEKSGW KLWLFANPNSSGLDDPLINPEKDPNLSSLGCDKVVVYVAGKDLLRFRGLYYKEVLEKSGW KLWLFANPNSSGLDDPLINPEKDPNLSSLGCDKVVVYVAGKDLRFRGLYKEVLEKSGW KLWLFANPNSSGLDDPLINPEKDPNLSSLGCDKVVVYVAGKDLRFRGLYKEVLEKSGW

Fig. S3. Protein alignment of the five tandem esterases in S. lycopersicum. The unique sequence within SICXE1 is underlined.

SANG SANG

MAEIVHDFFPLMRVYKDGRIERLAGEVFVPPESDPETGVOIKDVEIDPOINLSARLYLPK S. tuberosum MAEILHDFFPLMRVNKDGRIERLAGEGFVPSESDPETGVQIKDVQIDPQINLSARLYLPK S. pennellii S. habrochaites MAEIIHDFFPLLRVYKDGRIERLAGEGFVPPESDPETGVQIKDVQIDPQINLSARLYLPK MAEIVHDFFPLMRVYKDGRIERLAGEGFVPPESDPETGVQIKDVQIDPQINLSARLYLPK S. pimpinellifolium S. lycopersicum MAEIVHDFFPLMRVYKDGRIERLAGEGFVPPESDPETGVQIKDVQIDPQINLSARLYLPK S. cheesmaniae MAEIVHDFFPLMRVYKDGRIERLAGEGFVPPESDPETGVQIKDVQIDPQINLSARLYLPK S. galapagense MAEIVHDFFPLMRVYKDGRIERLAGEGFVPPESDPETGVQIKDVQIDPQINLSARLYLPK S. chmielewskii MAEIIHDFFPLMRVYKDGRIERLAGEGFVPTESDPETGVOIKDVOIDPOINLSARLYLPK S. neorickii MAEIIHDFFPLMRVYKDGRIERLAGEGFVPPESDPETGVOIKDVOIDPOINLSARLYLPK NVDPVQKIPLFVYFHGGGFVIESAFSPTYHKYLSLVAAEAKVAIVSVNYRLAPEYPLPIA S. tuberosum S. pennellii NVDPVQKIPLFVYFHGGGFVIESAFSPTYHKYLSLVAAEAKVAIVSANYRLAPEYPLPIA s. habrochaites NVDPVQKIPLFVYFHGGGFVIESAFSPTYHKYLSLVAAEAKVAIVSVNYRLAPEYPLPIA S. pimpinellifolium NVDPVQKIPLFVYFHGGGFVIESAFSPTYHKYLGLVAAEAKVAIVSVNYRLAPEYPLPIA NVDPVQKIPLFVYFHGGGFVIESAFSPTYHKYLSLVAAEAKVAIVSVNYRLAPEYPLPIA s. lycopersicum S. cheesmaniae NVDPVQKIPLFVYFHGGGFVIESAFSPTYHKYLSLVAAEAKVAIVSVNYRLAPEYPLPIA S. galapagense NVDPVQKIPLFVYFHGGGFVIESAFSPTYHKYLSLVAAEAKVAIVSVNYRLAPEYPLPIA NVDPVQKIPLFVYFHGGGFVIESAFSPTYHKYLSLVAAEAKVAIVSVNYRLAPEYPLPIA S. chmielewskii NVDPVOKIPLFVYFHGGGFVIESAFSPTYHKYLSLVAAEAKVAIVSVTTG-S. neorickii S. tuberosum HEDSWLALKWVTSHANGDGREPWLKDNADFNLVYLGGDSAGGNIAHHIAIRFGLEKLEGV YEDSWLALKWVTSHANGDGREPWLKDYADFNRVFLGGDSAGGNIAHHIGIRLGLEKFEGV S. pennellii YEDSWLALKWVTSHANGDGREPWLKDYADFNRVFLGGDSAGGNIAHHIGIRLGLEKFEGV S. habrochaites s. pimpinellifolium YEDSWLALKWVTSHANGDGREPWLKDYADFNRVFLGGDSAGGNIAHHIGIRLGLEKFEGV s. lycopersicum YEDSWLALKWVTSHANGDGREPWLKDYADFNRVFLGGDSAGGNIAHHIGIRLGLEKFEGV S cheesmaniae YEDSWLALKWVTSHANGDGREPWLKDYADENRVFLGGDSAGGNTAHHTGTRLGLEKFEGV YEDSWLALKWVTSHANGDGREPWLKDYADFNRVFLGGDSAGGNIAHHIGIRLGLEKFEGV S. galapagense YEDSWLALKWVTSHANGDGREPWLKDYADFNRVFLGGDSAGGNVAHHIGIRLGLEKFEGV S. chmielewskii S. neorickii KIDGIFLACPFFWGKDPIDGEGENLLAKDFVEDLVLSGNPNSTGLDKDPIDGEGENLGAK S. tuberosum S. pennellii KIDGIFLACPYFWGKDRIEGEGENLLAKDFVEDLVLVGNPNSTGLDKDPID--LGSK S. habrochaites KIDGIFLACPYFWGKDRIEGEGENLLAKDFV EDLVLIGNPNSTGLDKDPIDLGSK S. pimpinellifolium KIDGIFLACPYFWGKDRIEGEGENLLAKDFG**EDHVLIGNPNSTGLDKDPID** LGSK S. lycopersicum KIDGIFLACPYFWGKDRIEGEGENLLAKDFVEDLVLIGNPNSTGLDKDPID LGSK KIDGIFLACPYFWGKDRIEGEGENLLAKDFVEDLVLIGNPNSTGLDKDPID-S. cheesmaniae LGSK KIDGIFLACPYFWGKDRIEGEGENLLAKDFVEDLVLIGNPNSTGLDKDPID S. galapagense LGSK S. chmielewskii KIDGIFLACPYFWGKDRIEGEGENLLAKDLVEDLVLVGNPNSTGLDKDPID--LGSK S. neorickii S. tuberosum **DLF**EKLWLFVNPNSSGLDDPLINPEKDPKLSGLGCEKVLMYVAGKDPLRFRGLYYKEALE S. pennellii NLFEKLWLFVNPTSSGFDDPLINPEKDPKLSGLGCDKVVVYVAGKDPLRFRGFYYKEVLE **DLF**EKLWLFVNPTSSGLDDPLINPEKDPKLPGLGCDKLVVYVAGKDPLRFRGFYYKELLE S. habrochaites DLFEKLWLFVNPTSSGLDDPLINPEKDPKLYGLGCDKLVVYVAGKDPLRFRGFYYKEVLE S. pimpinellifolium DLFEKLWLFVNPTSSGLDDPLINPEKDPKLSGLGCDKLVVYVAGKDPLRFRGFYYKEVLE lycopersicum S. DLFEKLWLFVNPTSSGLDDPLINPEKDPKLSGLGCDKLVVYVAGKDPLRFRGFYYKEVLE S. cheesmaniae **DLF**EKLWLFVNPTSSGLDDPLINPEKDPKLSGLGCDKLVVYVAGKDPLRFRGFYYKEVLE S. galapagense DLFEKLWLFVNPTSSGLDDPLINPEKDPELSGLGCAKLVVYVAGKDPLRFRGFYYKELFE S. chmielewskii neorickii s. S. tuberosum KSGWLGTVEVVEVKDKAHVFHLFVPEAEEAMAMLKKLASFLNQS-----S. pennellii KSGWPGTVEVVEVKGKGHVEHLEVPEAEEATAMLKKLASELNOS------------S. habrochaites KSGWPGTVEVVEVKGKGHVFHLFVPEAEEAIAMLKKLASFLNQS-----pimpinellifolium S. S. lycopersicum KSGWPGTVEVVEVKGKGHVFHLFVPEAEEAIAMLKKLASFLNQS------S. cheesmaniae KSGWPGTVEVVEVKGKGHVFHLFVPEAEEAIAMLKKLASFLNQS-------S. galapagense s. chmielewskii KSGWPGTVEVVEVKGKGHVFHLFVPEAEEAIAMLKKLASFLNOSODPLIFNLVCHGNSTN S. neorickii S. tuberosum -----S. pennellii _____ s. habrochaites _____ S. pimpinellifolium S. lycopersicum S. cheesmaniae _____ S. galapagense S. chmielewskii KAACAKANESSTIF S. neorickii

Fig. S4. Protein alignment of CXE1 orthologs in the Solanum genus. The unique sequence within CXE1 is underlined. S. neorickii has a deletion that creates an early stop codon. S. chmielewskii has a mutation in the stop codon that results in a longer protein. That same mutation is also present in the DNA sequence of S. neorickii.

Table S1. Correlation of acetate esters with consumer appreciation of tomato

	Liking				
Volatile	Spearman's correlation coefficient*	P value			
Total acetate esters	-0.511	1.52 <i>E-</i> 06			
Propyl acetate	-0.459	1.88 <i>E</i> -05			
lsobutyl acetate	-0.450	2.84 <i>E</i> -05			
Butyl acetate	-0.435	5.54 <i>E</i> -05			
2-Methylbutyl acetate	-0.399	2.47 <i>E</i> -04			
sec-butyl acetate	-0.393	3.14 <i>E-</i> 04			
Hexyl acetate	-0.348	1.54 <i>E</i> -03			
cis-3-hexenyl acetate	-0.299	0.007			
3-Methylbutyl acetate	-0.228	0.042			

*Consumer preference and composition data were originally published in Tieman et al. (1). The correlation between consumer liking and volatile concentrations in 68 tomato varieties was performed on the 50 most abundant volatiles. Volatiles were expressed as a percentage of total volatile content.

1. Tieman D, et al. (2012) The chemical interactions underlying tomato flavor preferences. Curr Biol 22(11):1035–1039.

SAND SAL

Table S2. Content of several acetate esters relative to the total amount of volatiles in wild accessions of the tomato clade

			3-Methylbutyl	2-Methylbutyl	cis-3-Hexenyl
Species/	Propyl acetate	Isobutyl acetate	acetate content	acetate content	acetate content
accession no.	content (%) (±SE)	content (%) (±SE)	(%) (±SE)	(%) (±SE)	(%) (±SE)
S. lycopersicum					
LA1207	0.011 ± 0.003	0.094 ± 0.026	0.004 ± 0.002	0.037 ± 0.008	0.119 ± 0.021
LA1287	0.034 ± 0.007	0.097 ± 0.012	0.024 ± 0.010	0.093 ± 0.027	0.298 ± 0.0480
LA1456	0.027 ± 0.006	0.103 ± 0.009	0.015 ± 0.006	0.088 ± 0.0270	0.248 ± 0.036
LA1621	0.036 ± 0.012	0.132 ± 0.020	0.009 ± 0.004	0.144 ± 0.040	0.202 ± 0.043
LA1703	0.007 ± 0.001	0.156 ± 0.017	0.004 ± 0.002	0.047 ± 0.006	0.055 ± 0.005
LA1705	0.026 ± 0.011	0.086 ± 0.019	0.027 ± 0.006	0.049 ± 0.016	0.257 ± 0.0384
S. pimpinellifolium					
LA0373	0.010 ± 0.001	0.135 ± 0.011	0.001 ± 0.001	0.013 ± 0.001	0.162 ± 0.0248
LA3158	0.003 ± 0.001	0.067 ± 0.013	0.004 ± 0.004	0.009 ± 0.001	0.098 ± 0.012
LA3159	0.004 ± 0.000	0.049 ± 0.015	0.000 ± 0.000	0.018 ± 0.002	0.173 ± 0.0279
LA3160	0.004 ± 0.001	0.072 ± 0.012	0.000 ± 0.000	0.013 ± 0.004	0.111 ± 0.017
LA3161	0.003 ± 0.000	0.066 ± 0.008	0.000 ± 0.000	0.009 ± 0.002	0.107 ± 0.013
S. cheesmaniae					
LA0422	0.936 ± 0.092	0.243 ± 0.026	0.019 ± 0.002	0.202 ± 0.030	0.481 ± 0.039
LA0428	0.006 ± 0.001	0.059 ± 0.005	0.002 ± 0.001	0.061 ± 0.023	0.370 ± 0.086
LA1412	0.689 ± 0.192	0.368 ± 0.037	0.480 ± 0.165	0.274 ± 0.076	0.456 ± 0.121
S. galapagense					
LA0483	1.416 ± 0.080	0.807 ± 0.107	0.399 ± 0.090	0.612 ± 0.062	0.769 ± 0.215
S. neorickii					
LA0247	1.872 ± 0.714	0.948 ± 0.280	0.144 ± 0.057	0.781 ± 0.241	0.434 ± 0.081
LA2200	0.333 ± 0.061	0.190 ± 0.019	0.032 ± 0.009	0.154 ± 0.020	0.285 ± 0.072
S. chmielewskii					
LA1028	2.197 ± 0.658	1.620 ± 0.360	0.050 ± 0.008	0.783 ± 0.199	0.401 ± 0.067
LA1306	1.306 ± 0.614	1.930 ± 0.351	0.034 ± 0.034	0.448 ± 0.197	2.386 ± 1.304
S. pennellii					
LA0716	0.996 ± 0.069	2.750 ± 0.351	7.525 ± 1.568*		0.912 ± 0.046
LA2560	0.242 ± 0.050	0.848 ± 0.066	52.119 ± 5.992*		0.924 ± 0.147

*High abundance and close retention time prevent an efficient separation of 3-Methylbutyl acetate and 2-Methylbutyl acetate.

Table S3. Transcript abundance of the different carboxylesterases in S. lycopersicum, S. pennellii, and IL 1-4

	CXE1 (copy no./µg of RNA) (±SE)	CXE2 (copy no./µg of RNA) (±SE)	CXE3 (copy no./µg of RNA) (±SE)	CXE4 (copy no./µg of RNA) (±SE)	CXE5 (copy no./µg of RNA) (±SE)	
S. lycopersicum (M82)	6,547,392 ± 660,852	993 ± 22	16 ± 6	64 ± 9	18,788 ± 760	
IL 1–4	732,017 ± 112,662	2,904 ± 21	5,741 ± 654	882 ± 80	11,384 ± 999	
S. pennellii (LA0716)	15,602 ± 6,242	1,518 ± 536	2,697 ± 947	2,909 ± 1095	4,140 ± 1,374	

Table S4. Transcript abundance of the different carboxylesterases in the transgenics lines

	CXE1 (copy no./µg of RNA) (±SE)	CXE2 (copy no./µg of RNA) (±SE)	CXE3 (copy no./µg of RNA) (±SE)	CXE4 (copy no./µg of RNA) (±SE)	CXE5 (copy no./μg of RNA) (±SE)
Flora-Dade (control)	5,984,902 ± 660,094	1,620 ± 337	55 ± 20	365 ± 72	43,013 ± 7071
Line #3	92,300 ± 22,835	230 ± 20	18 ± 4	53 ± 10	4,655 ± 546
Line #6	360,762 ± 52,380	649 ± 109	52 ± 17	246 ± 33	9,803 ± 843
Line #180	9,302 ± 1,305	118 ± 8	6 ± 1	13 ± 5	1,713 ± 285

Table S5. Enzymatic activity of SICXE1, SICXE5, and SICXE1del

PNAS PNAS

	<i>K</i> _m (mM) (±SE)			$k_{\rm cat}$ (s ⁻¹) (±SE)			k _{cat} /K _m		
Volatile	SICXE1	SICXE1del	SICXE5	SICXE1	SICXE1del	SICXE5	SICXE1	SICXE1del	SICXE5
2-Methylbutyl acetate	0.65 ± 0.05	2.12 ± 0.20	1.82 ± 0.65	84.89 ± 1.77	1.19 ± 0.01	1.34 ± 0.11	131.45	0.56	0.74
3-Methylbutyl acetate	0.62 ± 0.03	3.22 ± 0.36	3.89 ± 0.29	88.71 ± 0.68	1.17 ± 0.07	1.82 ± 0.20	144.24	0.36	0.47
cis-3-hexenyl acetate	0.47 ± 0.03	1.57 ± 0.15	3.38 ± 0.46	68.97 ± 0.56	3.05 ± 0.18	3.35 ± 0.22	145.60	1.95	0.99
Hexyl acetate	0.26 ± 0.04	1.45 ± 0.23	1.54 ± 0.63	65.05 ± 1.84	1.94 ± 0.12	2.94 ± 0.14	250.87	1.34	1.91
Isobutyl acetate	0.95 ± 0.08	2.14 ± 0.18	6.69 ± 0.95	34.48 ± 0.40	0.40 ± 0.01	0.32 ± 0.03	36.19	0.19	0.05
Butyl acetate	1.29 ± 0.10	1.18 ± 0.39	4.79 ± 0.43	58.60 ± 0.48	0.73 ± 0.03	0.97 ± 0.07	45.57	0.62	0.20
Pentyl acetate	0.40 ± 0.05	1.79 ± 0.16	3.02 ± 0.49	104.10 ± 0.55	1.92 ± 0.33	2.69 ± 0.09	261.75	1.08	0.89
Propyl acetate	4.04 ± 0.27	6.75 ± 1.43	10.50 ± 4.34	17.59 ± 0.06	0.42 ± 0.04	0.66 ± 0.05	4.36	0.06	0.06
sec-butyl acetate	3.87 ± 0.64	12.75 ± 5.52	8.80 ± 3.47	10.54 ± 0.49	0.52 ± 0.07	0.17 ± 0.01	2.72	0.04	0.02
Phenyl ethyl acetate	0.22 ± 0.01	1.33 ± 0.07	3.48 ± 0.74	99.79 ± 1.86	10.67 ± 0.27	4.57 ± 0.12	453.58	8.05	1.31
Benzyl acetate	0.42 ± 0.02	1.73 ± 0.09	3.04 ± 0.30	173.28 ± 3.36	19.70 ± 0.36	5.95 ± 0.13	413.76	11.40	1.96