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SI Methods
Electrophysiological Recording. A head holder and a recording
chamber were fixed to the skull under general anesthesia and
aseptic conditions. Before neuronal recordings, we located the
amygdala from bone marks on coronal and sagittal radiographs
taken with a guide cannula and electrode inserted at a known
coordinate in reference to the stereotaxically implanted chamber.
The anteroposterior position of the amygdala was between the
sphenoid bone (rostral) and the posterior clinoid process at and
above the dorsoventral position of the posterior clinoid (1). We
recorded activity from single amygdala neurons from extracel-
lular positions during task performance using standard electro-
physiological techniques, including online visualization and
threshold discrimination of neuronal impulses on oscilloscopes.
We recorded from one neuron at a time; this record permitted
varied exploratory tests during early experimental phases. We
aimed to record representative neuronal samples from the dor-
sal, lateral, and basal amygdala.
We sampled activity from about 700 amygdala neurons in

exploratory tests with the save–spend task. We recorded and
saved the activity of neurons that seemed to respond to at least
one task event during online inspection of several trials. This
procedure resulted in a database of 329 neurons with task-re-
lated responses that we analyzed statistically.
After completion of data collection, recording sites were

marked with small electrolytic lesions (15–20 μA × 20–60 s). The
animals received an overdose of pentobarbital sodium (90 mg/kg
i.v.) and were perfused with 4% paraformaldehyde in 0.1 M
phosphate buffer through the left ventricle of the heart. Re-
cording positions were reconstructed from 50-μm-thick stereo-
taxically oriented coronal brain sections stained with cresyl violet.
The histological reconstructions also validated the previously
radiographically assessed anatomical position of the amygdala in
agreement with earlier reports (1–3). Fig. S7 shows the cresyl
violet-stained brain sections from monkey A for the left amyg-
dala. For Fig. 3G, we collapsed recording sites from bothmonkeys
spanning 3 mm in the anterior–posterior dimension onto the
same coronal section. Because our accuracy of recording site
reconstructions was likely to be lower than 1-mm resolution, re-
cording positions with respect to individual amygdala nuclei were
approximated based on a stereotaxic atlas (4) and typical ana-
tomical landmarks.

Free Choice Task. In each trial (Fig. 1A), the monkey chose be-
tween saving the reward that was available on that trial, thereby
increasing its magnitude by a variable interest rate, and spending
the previously accumulated reward for consumption on the
present trial. A natural upper limit to the length of save choice
sequences was given by the total amount of liquid that each
monkey was able to drink on one trial. Animals initiated trials by
placing their hands on an immobile, touch-sensitive key. The
trial then started with an ocular fixation spot of 1.3° of visual
angle at the center of the computer monitor. Animals were re-
quired to keep their gaze on the fixation spot at the stimulus
center within 2–4°. At 1,500 ms plus mean of 500 ms (truncated
exponential distribution) after fixation spot onset, the two save
and spend visual stimuli of 7.0° appeared on the left and right
sides of the computer monitor (pseudorandomized). In different
blocks of typically 40–100 consecutive trials, different stimuli
were used as save cues to indicate different interest rates. Ani-
mals indicated their choice with a saccade. The chosen stimulus
was then replaced by a peripheral fixation spot of 7.0° of visual

angle. The monkey could make its choice as soon as the visual
cues appeared. After a delay period of 1,500 ms, a color change
of the peripheral fixation spot served as a go signal for the
monkey to release the touch key. The release of the touch key
was followed by the delivery of the reinforcer (an auditory or
visual cue on save trials vs. a drop of juice reward on spend
trials). Failures of key touch or fixation breaks were considered
errors and resulted in trial cancellation. More than three se-
quential errors led to a pause in behavioral testing. Accumulated
saved rewards were retained across error trials.
To provide an example of how rewards were calculated, con-

sider a series of two successive save choices by the monkey with
a base rate of reward b = 0.11 and interest rate q = 1.5. On the
second trial of the choice sequence, after the first save choice,
reward R = 0.11 × (1 + 1.5) = 0.275 mL is given. On the third
trial, after two successive save choices, reward R = 0.11 × (1 +
1.5 + 1.52) = 0.523 mL is given.
Each neuron was typically tested with one to two different in-

terest rates. The duration required for testing neurons with sta-
tistically sufficient numbers of trials in both tasks usually precluded
using more than two interest rates.
The decision task resembled tasks used to study intertemporal

decision-making, because it required choosing between immedi-
ately available rewards and future rewards of differentmagnitudes.
However, in contrast to standard intertemporal choice tasks,
temporal delays in the present task were not imposed by the ex-
perimenter but chosenby themonkeys. Thus,monkeyswere free to
produce save choice sequences of different lengths, which were
associated with different reward magnitudes depending on the
interest rate. Furthermore, longer delays invariably involvedhigher
numbers of behavioral reactions (ocular saccades).
The collection of reproducible electrophysiological data from

many individual neurons required standardized testing during
stable and reproducible behavioral performance. We trained each
animal for 3–4 mo before neuronal recordings with the different
visual stimuli and the different interest rates (300–400 trial/d, 5 d/
wk). The animals were overtrained at the time of neuronal re-
cordings and showed no behavioral signs of additional learning.

Control Task with Fixed Reward. To test whether the monkeys kept
track of the amount of reward that they had accumulated through
consecutive save choices, we offered them, on randomly inter-
spersed trials, a choice between the accumulated reward and fixed
amounts indicated by pretrained visual cues.

Rewards. A computer-controlled solenoid valve delivered juice
reward from a spout in front of the animal’s mouth (valve opening
time of 100 ms, which corresponds to 0.38 mL). For monkey A,
the base rate of reward magnitude, b from Eq. 1, was set to
0.11 mL for all sessions; for monkey B, the base rate was set to 0.11
mL for one-half of the sessions and 0.13 mL for one-half of the
sessions. The animal’s tongue interrupted an infrared light beam
below the adequately positioned spout. An optosensor monitored
licking behavior with 0.5-ms resolution (STM Sensor Technology),
and the summed durations of beam interruptions during specific
trials and task periods provided a measure of licking.

Saving Index. To examine the relationship between saving be-
havior and interest rate, we constructed a save choice index
separately for each monkey and interest rate as follows. First, we
calculated the average relative probability of observing a save
choice sequence of a specific length, where sequence lengths

Grabenhorst et al. www.pnas.org/cgi/content/short/1212706109 1 of 8

www.pnas.org/cgi/content/short/1212706109


varied from zero consecutive save choices to the maximal se-
quence length observed for a monkey. (The maximal observed
sequence length was effectively the upper limit of liquid that the
animal could consume on one trial, as described in Methods.)
These probabilities were defined to sum to 1.0 across sequence
lengths within a given interest rate. Thus, these relative proba-
bilities reflect the monkey’s behavioral preference for a given
sequence of save choices relative to all other possible sequences
for a specific interest rate. Second, we weighted (multiplied)
these relative probabilities with their associated sequence lengths
(i.e., with the number of successive save choices for that se-
quence), thereby giving higher weight to probabilities that were
associated with higher sequence lengths. Third, we calculated the
mean over all weighted sequence lengths for a given interest
rate. This mean defined the saving index for a given interest rate,
and it is plotted in Fig. 1C for both monkeys and all interest
rates. Thus (Eq. S1),

SIq ¼ 1
n

Xn

i¼1

Pi;qLi; [S1]

where SIq is the saving index for a given interest rate q, n is the
maximal sequence length observed for the monkey, Pi;q is the
mean (relative) probability of observing a save choice sequence
of a specific save sequence length i, and Li is the number of
successive save choices required to obtain sequence length i.

Logistic Regression of Save–Spend Choices on Differential Values.
To analyze monkeys’ saving behavior on a trial-by-trial basis,
we used logistic regression analysis. First, we reasoned that, in
analogy to decision-making in other economic tasks, choices
would be guided by an internally computed decision variable that
is based on the subjective values that monkeys’ assigned to the
different choice options. To construct a measure of subjective
value in the save–spend task, we used the monkeys’ relative
probabilities of producing save sequences of specific lengths (as
described in the preceding paragraph) and weighted (i.e., mul-
tiplied) them by the corresponding objective reward magnitude
in milliliters that would be available from spending at that point
of a save sequence. For both monkeys and all interest rates, this
calculation produced a subjective weighting of the objective re-
ward magnitude according to monkeys’ behaviorally observed
preferences for different save sequence lengths. Thus, the sub-
jective value SV for spending at a given point i in a save sequence
for a given interest q was defined as (Eq. S2)

SVi ¼ PiMi; [S2]

where Pi is the mean (relative) probability of observing a save
choice sequence of a specific save sequence length i, and Mi is
the objective reward magnitude in milliliters of juice at that point
in the save sequence (the task description is discussed above). To
obtain unbiased estimates of these subjective values that could be
used as regressors for both behavioral choices and neural data, we
used one-half of the behavioral data in each monkey (i.e., one-half
of the experimental sessions for a given interest rate) to estimate
the subjective values, and we used the other half for subsequent
analysis. We then used these subjective values to construct a de-
cision variable to model the monkeys’ trial-by-trial choices.
The decision variable differential value plotted in Fig. 1D and

Fig. S2 was constructed in analogy to decision variables com-
monly used in studies of intertemporal decision-making. It was
defined as the difference between the subjective value for
choosing to spend on the present trial and the mean subjective
value for choosing to spend on any potential subsequent trial of
the same save sequence (where the upper limit of potential fu-
ture trials was given by the maximal observed sequence length

for the monkey). For example, if the monkey was in the fourth
trial of a save sequence (after having made three consecutive
save choices), the differential value for the present trial would be
calculated as the difference between the subjective value for
spending on the fourth trial of a save sequence and the mean of
the subjective values for spending on any of the potential next
five trials (with nine consecutive save choices being the observed
maximal number of consecutive save choices for the monkey).
Thus, the differential subjective value DV on a given trial n for
a given interest rate was calculated as (Eq. S3)

DVn ¼ SVn −
1
m

Xm

i¼nþ1

SVi; [S3]

where SVn is the subjective value of choosing to spend on trial n,
and the term in the subtrahend reflects the average subjective
value of choosing to spend on any of the potential subsequent
trials i of the same save sequence, with m defining the upper limit
of the save sequence (given by the maximal observed sequence
length for the monkey). We used logistic regression analysis to
model the monkeys’ choices based on this decision variable. The
dependent variable was a binary indicator function denoting
whether the monkey made a save or spend choice on a given trial.
The independent variable was the differential value for the corre-
sponding trial as defined above. The main purpose of this analysis
was to test whether the differential value provided an adequate
approximation of the decision variables that guided the monkeys’
choices to inform our analysis of the neuronal data. The results of
this analysis are summarized in Fig. 1D, Fig. S2, and Table S1. We
found that this differential value (i.e., a decision variable that in-
corporated the average subjective value of potential future trials in
a sequence) provided a better fit than a comparable decision vari-
able that incorporated only the subjective value of choosing to
spend on the next trial. Moreover, a differential value based on
subjective values provided a better fit compared with decision
variables based only on objective reward magnitudes or choice
probabilities.

Data Analysis. We counted neuronal impulses in each neuron on
correct trials relative to different task events with time windows
that were fixed across all neurons: 1,000 ms before fixation spot
(PreFP), 1,775 ms after fixation spot but before cues (FP; starting
25 ms after fixation spot onset), 300 ms after cues (Cue; starting
20 ms after cue onset), and 500 ms during the reward/outcome
period of the preceding trial (Out-1; starting 50 ms after reward
onset). We first identified task-related responses by comparing
activity in the FP, Cue, and Out-1 periods with a control period
(PreFP) using the Wilcoxon test (P < 0.05). Because the PreFP
period served as the control period, we did not select for task-
relatedness in this period and included all neurons with observed
impulses in the analysis. We then used the following multiple
regression model to assess relationships to trial-by-trial save–
spend choices, different measures of reward value, left–right
actions, left–right cue positions, and saccadic reaction times (P <
0.05) (Eq. S4):

Y ¼ β0 þ β1SSþ β2RM þ β3DV þ β4LRþ β5SLþ β6RT þ ε;

[S4]

with SS as the save vs. spend choice, RM as the sum of objective
reward magnitudes available for save and spend choices, DV as
the subjective differential value used for behavioral modeling,
LR as left vs. right action, SL as spatial cue position (save cue
left vs. right), and RT as saccadic reaction time; β1–6 are corre-
sponding regression coefficients, β0 is the intercept, and ε is
error. On average, intercorrelations between these regressors
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were low (Table S2). Because reward magnitudes for both save
and spend choices increased monotonically over save trials, dif-
ferent potential reward magnitude regressors (e.g., sum of re-
ward magnitudes and chosen/not chosen reward magnitude)
were highly correlated and produced similar results. The same
model was used to analyze responses in the imperative task.
Standardized regression coefficients (β values) in Figs. 1D and

3E were defined as xi (si/sy); xi is the raw slope regression co-
efficient for regressor i, and si and sy are the SDs of independent
variable i and the dependent variable, respectively (5).

Decoding of Choices from Neuronal Data. Here, we provide more
details about the decoding analysis. We used a biologically
plausible classifier to decode choices from neuronal data on a
trial-by-trial basis (6). The decoding procedure used by the
classifier was based on a nearest neighbor algorithm. The neu-
ronal activity measured in impulses per second on a single trial in
an individual neuron was used as input to the classifier. For each
individual neuron, every trial was represented in the space
spanned by the distribution of its impulse rates on save and
spend choice trials and decoded by assigning it to the class of its
nearest neighbor using the Euclidean distance (6). This type of
classification is biologically plausible in that a real downstream
neuron could perform the classification in a similar way by
comparing the input on a given trial with a stored vector of
synaptic weights (7). We used a leave-one-out cross-validation
procedure, in which every trial was decoded based on the dis-
tribution of impulse rates from all other trials. To investigate
population coding of choices, we considered neurons as simul-
taneously recorded in the sense that the trial-specific responses
of all neurons were grouped together and that decoding pro-
ceeded using the cross-validation procedure just described (6).
Classification performance was measured as the percentage of
correctly decoded individual trials, which we averaged across
responses. We repeated the analysis using linear discriminant
analysis, which also used leave-one out cross-validation proce-
dures. To produce the graphs in Fig. 3F and Fig. S5, we ran-
domly selected a given number of responses at each step and
then determined the percentage correct. For each step, this
procedure was repeated 10 times. We used a permutation test
with 1,000 iterations to define statistical significance of the
classification. Statistical significance was defined as the proba-
bility that the observed percentage correct was below a given
percentile of the probability distribution of classification results
based on randomly shuffled data.

Sliding Window Regression Analysis. We used sliding window mul-
tiple regression analysis (using the regression model described
above) with a 200-ms window, and then, we moved the window in
steps of 25 ms across each trial. Coefficients of partial determi-
nation (CPDs) (5) were defined as (Eq. S5),

CPDðXiÞ ¼ ½SSEðX‐iÞ � SSEðX‐i;XiÞ�=SSEðX‐iÞ; [S5]

with SSE(X) indicating the sum of squared errors in a regression
model that includes a set of regressors X, and X−i indicating the
set of regressors that includes all regressors except Xi. Using
methods from previous studies (5), latencies of choice and value
coding were defined as the first window in which a CPD was
3 SDs above the mean CPD obtained from a permutation test
(1,000 iterations) for three consecutive steps.

SI Results
Licking Durations. We measured anticipatory licking durations on
save and spend trials before the cues were presented (Fig. S3). In
the free choice task, significant differences in licking durations
between save and spend trials would likely indicate a difference in
reward expectation between these trials, because immediate

rewards were only delivered if the monkeys chose to spend. In-
deed, for both monkeys, licking times were significantly different
between save and spend trials in the free choice task, despite
individual differences between animals (both P < 0.001, Mann–
Whitney test). We also examined licking durations in the im-
perative control task before cue appearance on every trial. If
licking durations in the imperative task also differed between
save and spend trials, even before cue appearance, this result
might indicate that the monkeys anticipated these trial types,
similar to the free choice task. Indeed, for both monkeys, licking
times in the imperative task were significantly different between
save and spend trials (both P < 0.001, Mann–Whitney test). No
significant differences in licking patterns were found between the
free choice and imperative tasks. Fig. S3 shows this pattern of
licking durations for monkey A.

Reaction Times. We analyzed the reaction times of the saccades
with which monkeys indicated their choices on save and spend
trials. This analysis helped to test whether choice-differential
neuronal activity could be explained by task difficulty as measured
with reaction times (Fig. S3). For both monkeys, saccadic reaction
times were longer on save compared with spend trials in both the
free choice task (P < 0.001, Mann–Whitney test) and the im-
perative control task (P < 0.001, Mann–Whitney test). If choice-
differential neuronal activity reflected differences in task diffi-
culty between save and spend trials [or any secondary variable
resulting from differences in task difficulty (for example, differ-
ential attention or arousal levels) on save vs. spend trials], then
neuronal activity should differ between save and spend trials on
both the free choice task and the imperative task. By contrast, as
reported in the text, neuronal responses showed differences
between these trial types only in the free choice task and not in
the imperative task. These observations would argue against an
explanation of our effects in terms of task difficulty.

Comparison of Behavioral Models. We evaluated whether monkeys’
choices were better explained by the differential subjective value
model compared with a simpler model that only incorporated
the monkeys’ average choice probabilities for different save se-
quences. If choices were explained by a model based solely on the
monkeys’ save sequence distributions, this finding might suggest
that the animals developed a simple counting strategy and did not
incorporate trial-by-trial changes in differential subjective value.
To test this directly, we compared a logistic regression model that
incorporated only the monkey’s choice probabilities with one that
also incorporated differential value as a covariate. The models
were fit separately for different interest rates and the two animals.
Across animals and interest rates, the differential value regressor
remained significant (P < 0.002 in all cases), even if choice prob-
abilities were included as an additional regressor. The same result
was obtained if differential value was orthogonalized with respect
to choice probabilities (i.e., the shared variance between regressors
was assigned to choice probabilities) using Gram–Schmidt or-
thogonalization (8). This result suggested that the differential
value regressor explained a significant proportion of variance not
accounted for by simple choice probabilities. Indeed, a direct
comparison of standardized regression coefficients showed signif-
icantly higher coefficients for differential value compared with
choice probability across monkeys and interest rates (P = 0.001,
paired t test). To test whether the differential value model pro-
vided a better fit, even if the number of model parameters was
taken into account, we used the Akaike information criterion
(AIC) and Bayesian information criterion (BIC), which penalize
models with higher numbers of free parameters (9). AIC is defined
as −2 ln L + 2 k, in which L is the likelihood of the model, and k
is the number of model parameters. BIC is defined as−2 ln L+ k
ln N, in which N is the number of observations. Across animals
and interest rates, AIC and BIC comparisons consistently fa-
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vored the differential value model over the simpler choice
probability model. Together, these results indicate that mon-
keys’ choices were better explained by the differential value
model, and thus, they were influenced by trial-by-trial variations
in differential subjective value.

Anatomical Location of Recorded Neurons.Of all 94 choice-selective
neurons, 45 neurons were recorded in the dorsal amygdala (Fig.
3G) (including central and medial nuclei; of 168 neurons in total
recorded in this area), 3 neurons were recorded in the lateral
amygdala (of 23 recorded neurons in this area), 20 neurons were
recorded in the basomedial amygdala (of 67 recorded neurons in
this area), 16 neurons were recorded in the dorsal basolateral
amygdala (of 47 recorded neurons in this area), and 10 neurons
were recorded in the basoventral amygdala (of 24 recorded
neurons in this area). No systematic differences were found be-
tween recording sites (nonsignificant χ2 test).

Reward Expectation. To test whether choice-predictive activity
could be explained by differences in reward expectation between
save and spend trials, we tested specifically for changes in neu-
ronal activity across successive save trials. Previous studies have
shown that reward expectancy-coding neurons show activity
changes across trials to reward receipt (10). By contrast, many of
our choice-predictive responses showed no significant value co-
efficients, which modeled systematic changes over successive
save trials [85 of 127 choice-predictive responses (67%); 37 of 57
with choice-predictive activity in the free choice but not imper-
ative task (65%)]. Moreover, all of our choice-predictive re-
sponses showed a significant choice regressor, although several
measures of value were included as covariates in the multiple
regression model. This finding suggested that choice coding in
these responses cannot be explained in terms of reward value
coding or related expectancy. Furthermore, the imperative con-
trol task served to explicitly control for simple reward expectation
effects. In both tasks, reward expectation between save and spend
trials was similar, which was indicated by patterns of differences
in licking durations and saccadic reaction times (Fig. S3). By
contrast, 80% of choice-predictive responses tested in both tasks
failed to show significant choice coefficients in the imperative
task, suggesting that choice coding in these neurons is unlikely
caused by simple reward expectation.

Neuronal Coding of Value, Action, Visual Cue Features, and Reaction
Times. In addition to choice coding, we confirmed the known value
(reward magnitude and differential value) coding in the amygdala
(3, 11–14) in 225 of 846 task-related responses (27%). Further-
more, 32 of 169 task-related responses in the Cue period (19%)
were modulated by the spatial arrangement of the cues, consis-
tent with known visual feature responses in the amygdala (11).
Few neurons in the cue period showed a significant regression
coefficient for left/right eye movements (15 neurons; 9%) or
saccadic reaction times (10 neurons; 6%). In all other task pe-
riods, less than 5% of responses (our significance threshold)
were modulated by eye movement direction, spatial cue position,
or reaction time.

Control Analyses Testing for Different Forms of Value Coding. The
main analysis reported in the paper identified 127 neuronal
responses with significant choice coefficients. A subgroup of these
responses coded choice without also coding value, which was
indicated by nonsignificant coefficients for reward magnitude and
differential value (Table 1). To further examine whether signif-
icant choice coefficients might be explained by other forms of
value coding, we performed supplementary analyses. Previous
studies found that neurons in the orbitofrontal cortex and
striatum code different types of value signals (15–19), including
the value of specific choice options, irrespective of whether the

option is chosen (offer value or action value signals), the value of
the chosen option, irrespective of its identity (chosen value sig-
nals), and the value of a specific choice option if that option is
chosen (subtype of chosen value signals). We tested whether the
choice-predictive responses described in the present study can be
explained in terms of such value signals. We used the following
three supplementary regression models. In (Eq. S6)

Model S1: Y ¼ β0 þ β1SSþ β2RM þ β3SVspendþ β4SVsave

þ β5LRþ β6SLþ β7RT þ ε;

[S6]

SVspend is the subjective value of the spend choice option (irre-
spective of whether it is chosen), and SVsave is the subjective
value of the save choice option (irrespective of whether it is
chosen); all other regressors are defined as in our main regres-
sion model. This model, thus, tests for coding of offer value. In
(Eq. S7)

Model S2 : Y ¼ β0 þ β1SSþ β2RM þ β3CV þ β4UCV

þ β5LRþ β6SLþ β7RT þ ε;
[S7]

CV is the subjective value of the chosen option (regardless of
whether it is a save or spend choice), and UCV is the subjective
value of the not chosen option. This model, thus, tests for coding
of chosen value. In (Eq. S8)

Model S3 : Y ¼ β0 þ β1SSþ β2RM þ β3CVspendþ β4CVsave

þ β5LRþ β6SLþ β7RT þ ε;

[S8]

CVspend is the subjective value of the spend choice option only if
it is chosen (taking a value of zero if it is not chosen), and CVsave
is the subjective value of the save choice option only if it is
chosen (taking a value of zero if it is not chosen). This model,
thus, tests for coding of a subtype of chosen value, which com-
bines information about the chosen value with information about
the identity of the chosen option.
Model S3 is of particular interest, because coding of the chosen

value for a specificoption could appear very similar to codingof the
categorical choice. Thus, if neuronal responses showed a signifi-
cant choice regressor in this model, despite the inclusion of the
chosen value covariates, this result would support our conclusion
of choice coding beyond value. Using these additional regression
models to estimate coefficients for choice signals simultaneously
with different value signals, we found that the majority of our
choice-predictive responseswas not accounted for by value coding:
Model S1 resulted in 110 responses (84 neurons) with significant
choice coefficients (compared with 127 such responses in 94
neuronswith ourmain regressionmodel),model S2 resulted in 101
responses (77 neurons) with significant choice coefficients, and
model 3 resulted in 106 responses (88 neurons) with significant
choice coefficients. The percentages of neurons with significant
choice coefficients but nonsignificant value coefficients were
56%, 68%, and 52% for models S1–S3, respectively (compared
with 63% with our main regression model).
Thus, the majority of choice-predictive responses found in

amygdala neurons could not be explained in terms of different
types of value coding and rather, seemed to reflect the monkeys’
categorical choices. We acknowledge that some choice-predictive
responses could be interpreted as special types of value coding;
indeed, this result may be expected from our main analysis, be-
cause some of the choice-predictive responses identified with our
main regression model had both significant choice and value co-
efficients (Table 1).
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Fig. S1. Increase of reward magnitude for consecutive save choices as a function of interest rate q. (In this example, reward magnitude was calculated for a
base volume of 0.09 mL.)
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Fig. S2. Spend choice probability as a function of differential subjective value for save and spend choice options shown for different interest rates q (curves
represent logistic fits to choice data; all logistic regressions were significant at P < 0.001).
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Fig. S3. Licking durations and saccadic reaction times. (A) Medians of anticipatory licking durations in the free choice and imperative control tasks measured
before cue appearance. Significant differences were found between save and spend trials for both tasks (P < 0.001, Mann–Whitney test). (B) Medians of
saccadic reaction times in the free choice and imperative control tasks. Significant differences were found between save and spend trials for both tasks (P <
0.001, Mann–Whitney test). Similar results were found for both monkeys.
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Fig. S5. (Left) Classification accuracy (percent correct classification ± SEM) of a biologically plausible classifier (1) decoding save–spend choices from neuronal
impulse rates using all 127 choice-predictive responses. Blue bars, average accuracy for classification based on individual responses; gray bars, accuracy when
data were combined across responses. Task periods: Out-1 (n = 19), PreFP (n = 27), FP (n = 38), Cue (n = 43), all periods (All; n = 127). Chance performance is 50%.
(Right) Increase in classification accuracy (mean ± SEM) as a function of the number of responses from which data were combined (n = 127). Gray trace,
classification based on randomly permuted data.
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Fig. S6. Classification accuracy (percent correct classification ± SEM) of a classifier based on linear discriminant analysis using 57 choice-predictive responses.
Task periods: Out-1 (n = 8), PreFP (n = 16), FP (n = 20), Cue (n = 13), All (n = 57). Chance performance is 50%.
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Fig. S7. Histological reconstruction of recording sites. (A) Photomicrograph of a cresyl violet-stained coronal section showing the amygdala and surrounding
structures in monkey A. The dashed box indicates the location of the region magnified in B, Upper Left. (B) Arrows mark electrolytic lesions made after recordings.
Lesions were placed to indicate typical recording sites in the amygdala (Upper) and the estimated boundaries of the amygdala (Lower). Location of individual nuclei
were approximated based on a stereotaxic atlas (1) and typical anatomical landmarks. Ab, accessory basal nucleus; ac, anterior commissure, B, basal nucleus; C, central
nucleus; Co, cortical nucleus; E, entorhinal cortex; lf, lateral fissure; La, lateral nucleus; opt, optic tract; Pu, putamen; sts: superior temporal sulcus.

Table S1. Logistic regression of save–spend choices on differential value

Regressor Monkey A (differential value) Monkey B (differential value)

β (SE) 1.65 (0.09)* 1.12 (0.14)*
N (trials) 3,859 2,939
χ2 850.42† 476.84†

−2 log likelihood 3,266.33 3,086.82
Cox and Snell R2 0.20 0.19
Nagelkerke R2 0.30 0.21
Percent correct 83.4 76.0

χ2 denotes result of omnibus test for significance of model coefficients.
*Significant at P < 1 × 10−8.
†Significant at P < 0.001.

Table S2. Correlations between regressors for the main multiple
regression model averaged across all sessions

SS RM DV LR SL RT

SS 1
RM 0.24 1
DV 0.28 0.09 1
LR −0.02 −0.02 −0.03 1
SL 0.02 −0.03 −0.03 −0.44 1
RT −0.24 −0.06 −0.1 0.11 0.02 1

DV, differential subjective value; LR, left–right action choice; SL, save cue
left–right position; RM, reward magnitude; RT, saccadic reaction time; SS,
save–spend choice.

1. Paxinos G, Huang X-F, Toga AW (2000) The Rhesus Monkey Brain in Stereotaxic Coordinates (Academic, San Diego).
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