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SI Two-Dimensional Colloidal Aggregation
Our system consists of particles with a gravitational height (mg/
kBT ∼ 2 μm), which can therefore be considered as effectively 2D.
We treat two cases, which are closed systems in which theremay be
triangles and open systems where there are no three particle rings
containing three bonds.

Closed Structures.Closed structures with triangles are found in one-
component systems where each particle can stick to every other
particle and in three-component or more systems, such as our A,
B, and C particles, in which each species can stick to the other two
species (ABC System). We consider the possible clusters shown in
Fig. S1A, in which i represents the number of particles in a cluster
and α represents the number of subclusters with three particle
triangles. For a group of clusters Oi,α’s, the partition function Zi,α

can be written as

Zi;α ¼ 1
Ni;α!
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S
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;

where Ni,α is the number of clusters Oi,α’s in the system, S is the
surface area of the system, and Λ is a unit length that will cancel
out in taking ratios. The equation Δεi,α = (i − 1)ΔFp + αΔFp

provides the energy of a cluster Oi,α, where ΔFp is the binding

free energy of a pair of particles: gi;α ¼
�
Aw
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�α

. Aw, the

“wiggling” area of a particle when bound, is determined by the
maximum and minimum geometrical extent of the bound DNA
links on the surface, roughly 2πlL. Ω1 is the wiggling angle of
particle 3 (Fig. S1B) if particle 3 is bound to particle 2 and does
not interact with particle 1, roughly 2π*(5/6). Ωw is the wiggling
angle of particle 3 (Fig. S1C) when particle 3 is bound to both
particle 1 and particle 2 simultaneously, roughly l/R. Hence, the
physical meaning of ln(gi,α) is the entropy loss of a cluster due to
the inner cluster structure. As soon as we know the partition
function of the clusters Oi,α, the free energy of the clusters Oi,α,
ΔFi,α, is straightforward and can be determined as ΔFi,α = −kBT
lnZi,α. After that, the chemical potential of the clusters Oi,α can
be written as follows:

μi;α ¼
Fi;α þ Ni;αkBT

Ni;α

¼ kBT ln
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where Ci,α is the concentration of clusters Oi,α. In thermal
equilibrium, 


O1;0 þOi;0 ⇌Oiþ1;0
Oi;α ⇌Oi;α′

;

or equivalently, 

μ1;0 þ μi;0 ¼ μiþ1;0

μi;α ¼ μi;α′
:

After some algebra, we find

8>>><
>>>:

Ciþ1;0

C1Ci;0
¼ Awe−βΔFp ≈ Awe−βΔFp ≡ K

Ci;α

Ci;α′
¼ γα−α′e−ðα−α′ÞβΔFp ≡ Γα−α′

;

where C1 ≡ C1,0, γ ≡ Ωw
Ω1
, K ≡ Awe−βΔFp , and Γ≡ γe−βΔFp . Then, Ci,α

can be written in terms of C1 as

Ci;α ¼ ΓαCi;0 ¼ ΓαKi−1C1: [S1]

Conserving the total number of particles Cp, we have that

Cp ¼
X∞
i¼1

Xi−2
α¼0

iCi;α ¼ C1 −
C2
1K ½C1KðΓþ 1Þ− 2�

ðC1K − 1Þ2ðC1KΓ− 1Þ2: [S2]

Note that the upper limit of α is (i − 2) because a cluster with i
particles can only have up to (i − 2) subclusters with three par-
ticles touching each other. Then, Eq. S2 can be written in terms
of the fraction of single particles or singlet fraction, f ≡ C1

Cp
, of the

system as

1
f
¼ 1− 1

CpfK
�
CpfKðΓþ 1Þ− 2

�
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CpfK − 1

�2�CpfKΓ− 1
�2: [S3]

Unfortunately, Eq. S3 does not have an analytical solution, but
we can solve Eq. S3 numerically to find the singlet fraction f.

Open Structures. For open structures, with no triangles, α is zero.
Hence, Eqs. S1 and S2 become, respectively,

Ci ≡Ci;0 ¼ Ki−1Ci
1:

Cp ¼
X∞
i¼1

iCi ¼ C1

ðKC1 − 1Þ2:

Similarly, we have

f ¼ �
KCpf − 1

�2
;

with an analytical solution:

f ≡
C1

Cp
¼ 1þ 2KCp −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4KCp

p
2K2C2

p
: [S4]

SI Configurational Entropy Cost ΔSp
In solution, the hybridization of DNA is governed by hydrogen
bonds, the hydrophobic effect of bases, and the loss of configu-
rational entropy in two flexible DNA single strands joining to form
a rigid DNA double strand (1, 2) (Fig. S2A). The first two terms
result in the enthalpy change ΔH0, whereas the last term results
in the entropy change ΔS0. In addition, when the DNA strands
are attached to a particle surface, the entropic cost of DNA hy-
bridization involves a configurational entropy penalty as shown in
Fig. S2B. dsDNA strands freely linked to a surface explore
a hemisphere of area 2π(L + l/2)2. However, once the sticky ends
are hybridized, the configurational freedom is reduced to a ring,

which has a circumference of 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLþ l=2Þ2 − ðh=2Þ2

q
, as well as

a cross-section ∼(l/3)2, where l is the length of the sticky end
DNA, and a lead-lag along the circumference of ∼(l/3) in
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Fig. S2B. The extra entropy cost ΔSp in the DNA hybridization
free energy can be written as

ΔSp ¼ kBln
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where kB is Boltzmann’s constant. In our case, ΔSp ≈ −10 kB.

SI Rotational Entropy ΔSr
For a pair of spherical particles fully covered by active DNA
strands, the binding can happen in any orientation as shown in
Fig. S3A. However, for a pair of particles only partially covered
by active DNA strands, the binding is limited to certain ori-
entations between particles as shown in Fig. S3B (3). An active
patch on each particle has to face an active patch on another
particle to allow binding. The ratio of orientations that allow
binding compared with all orientations is the rotational en-
tropy cost ΔSr.
To calculate the rotational entropy cost, we consider a simple

example. Each particle only has one DNA strand and is held
together with a surface separation h as shown in Fig. S3C. Be-
fore bonding, each particle can have any orientation, a solid
angle of 4π, or, equivalently, a point can be anywhere on the
Asurface = 4π(R + h/2)2 area of the surface. Now, consider two
particles whose centers are arranged in a certain direction. In
order for the particles to bind, the single DNA on one particle
must be located near the other particle close to the line con-
necting the particles’ centers. The same is true for the DNA on
the second particle. The maximum distance that the DNA
strand can extend in any direction is ∼(L + l/2). Thus, a patch of
area ∼π(L + l/2)2 on one particle must touch or overlap a sim-
ilar patch on the second particle to allow binding. The “active”
area for a single DNA on a particle surface is ADNA ∼ π(L + l/
2)2. The ratio of allowed orientations bound vs. unbound is
ADNA/Asurface per particle. The entropy loss for binding the two

particles together is ΔSr ¼ 2kBln
�

ADNA
Asurface

�
.

For particles with many DNA strands, the rotational entropy
can be determined in a similar way. We calculate the fraction of
area covered by the active patches associated with DNA strands,
ϕ. The fraction of the area not covered by one DNA strand is
1 − ADNA/Asurface. The average fraction of area not covered
by Ntot DNA strands, where Ntot is the total number of active
DNA strands on particle surface, placed randomly on the sur-
face is ð1−ADNA=AsurfaceÞNtot . Therefore, the fraction of area
covered by Ntot DNA strands is

φ≈ 1−
�
1−

ADNA

Asurface

	Ntot

:

In our case, ADNA = π[(L + l/2)2 − (h/2)2], Asurface = 4π(Rp + h/
2)2, where L ≈ 15 nm is the length of the backbone dsDNA, l ≈
3.6 nm is the length of the sticky end DNA, and Rp is the particle
radius. Ntot = Ntχ, where Nt = 69,800 ± 4,800, is the total DNA
coverage and χ is the ratio of active DNA strands on a particle
surface. The entropy loss on binding is just the log of the frac-
tional coverage per particle. The rotational entropy loss is

ΔSr ¼ 2kBln
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In our case,

ΔSr ¼ 2kBln
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SI Binding Free Energy of a Pair of cDNA-Coated Particles, ΔFp
We consider theDNAbinding between particles surfaces as shown
in Fig. S4. Because the DNA sticky ends are attached to the
particle surface via dsDNA backbones, the binding free energy of
hybridization ΔF0 can be determined as ΔF0 = ΔH0 − T(ΔS0 +
ΔSp), where ΔH0 is the enthalpy due to the hydrogen bonds of
DNA bases and their hydrophobic interactions. ΔS0 is the en-
tropy loss in going from flexible ssDNA to rigid dsDNA, and ΔSp
is the configurational entropy loss shown in Fig. S2B.
We treat the partition function in a mean field approxima-

tion. First, we consider the partition function of just one DNA
strand ZS,1:

ZS;1 ¼ 1þ gbe−βΔF8:

The first term indicates the unbound state, whereas the second
term indicates the bound states. The term gb accounts for the fact
that a DNA strand on one particle surface has a multiplicity of
partners, gb of them, on the complementary particle surface,
each of which has the binding free energy ΔF0. From the single-
strand partition function, within the mean field approximation
(uncorrelated bonds), the total partition function for a pair of
complementary particles is

Zs ≈
�
1þ gbe−βΔF8

�Nb
; [S8]

whereNb is the number of DNA strands that have the potential to
form interparticle DNA bonds (1, 2). From the partition function,
we calculate the binding free energy for a pair of complementary
particles (1, 2):

ΔFp;DNA ¼ − kBTln½Zs − 1�

≈− kBTln
h�
1þ gbe− βΔF8�Nb − 1

i
:

The rotational entropy cost, Eq. S6, contributes −TΔSr to the
binding free energy of a pair of complementary particles (3).
Hence, the total binding free energy of a pair of cDNA-coated
particles can be written as

ΔFp≈− kBTln
h�
1þ gbe− βΔF8�Nb − 1

i
−TΔSr: [S9]

SI Computations of gb and Nb

To determine the values of gb and Nb for each χ, we perform
a simple computation. Fig. S5A is the schematic diagram of our
computation.We randomly place χNt points on the surface of each
of sphere, P1 and P2 (4).Nt is the total number of DNA strands on
our particles, in our case,Nt= 69,800. The radius of each sphere is
Rp= 980 nm.We hold these two spheres together with the surface
separation h = 16.8 nm. Then, we determine gb and Nb of this
configuration by counting all of the possible binding pairs between
P1 and P2.We average over 1,000 configurations to determine 〈gb〉
and 〈Nb〉. The algorithm of our computation is as follows:

i) Randomly place χNt points on the surface of each of P1
and P2 (4).

ii) Place P1 and P2 with a surface separation h.
iii) Pick a point i on P1, and calculate the distances, rij’s, between

the point i on P1 and all the points j on P2.
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iv) If rij’s ≤ (2L + l), add 1 to gb,i, the binding degeneracy for the
point i on P1.

v) Repeat step iii and step iv for all the points i on P1.
vi) Assign the average of nonzero gb,i’s to gb, the binding de-

generacy for this configuration.
vii) Assign the number of nonzero gb,i’s to Nb, the number of

DNA bonds for this configuration.

The computation results are shown in Fig. S5B. For high DNA
coverage, χ ≥ 0.2, there are many overlapping DNA strands be-
tween a pair of particles. Hence, gb and Nb are proportional to χ.
This was the approximation used in our previous calculations (1,
2). However, when χ < 0.2, gb and Nb are proportional to χ2

rather than to χ. For the present paper, we numerically compute
gb and Nb as described above.

SI ABC System
For a three-component system as in Fig. S6A, the binding con-
figurations are more fruitful than for a two-component system
and result in higher melting temperatures as shown in Fig. S6B.
The extra binding configurations can be attributed to two effects:
(i) the 2/3 effect and (ii) the triangle effect.

Two-Thirds Effect. In the two-component system (A + B, B + C, or
A + C system), each particle can interact with 1/2 of the other
particles in the system (e.g., A cannot bind to A). However, in the
three-component system (A + B + C system), each particle can
interact with 2/3 of the other particles (e.g., A can bind either to B
or to C). If all concentrations and reaction rates are the same, the
effect is to replace the equilibrium constant K by (3/2)2K. We have
the same concentration of each of A, B, and C in our A + B + C
system as in our binary systems; thus, the total concentration is
increased by 3/2. Including these effects accounts for a change of
0.2 °C in our melting curves comparing the two-component sys-
tem with the three-component system.
Toactually calculate the 2/3 effect of theABC system,weuseEq.

S4 of our model for the Watson–Crick system to plot the melting
curves of A+ B, B+C, and A+C systems. As shown in Fig. S6A,
the A + B, B + C, and A + C systems have the DNA coverages
χAB= 0.18, χBC= 0.20, and χAC= 0.23, respectively. The enthalpy
and entropy of the hybridization of sticky ends S1 and S1′
are ΔH∘

S1;S1′
¼ − 328; 000J=mol and ΔS∘S1;S1′ ¼ − 967J=molK, re-

spectively (5). The enthalpy and entropy of the hybridization
of sticky ends S2 and S2′ are ΔH∘

S2;S2′
¼ − 326; 000J=mol and

ΔS∘S2;S2′ ¼ − 957J=molK, respectively (5). The enthalpy and
entropy of the hybridization of sticky ends S3 and S3′ are
ΔH∘

S3;S3′
¼ − 332; 000J=mol and ΔS∘S3 ;S3′ ¼ − 975J=molK, respec-

tively (5). The particle concentration of each species in either
theA+B, B+C,A+C, orA+B+C system are allCp/2= 0.005
μm−2; thus, the total particle concentration for the A + B, B + C,
or A +C system is Cp = 0.01 μm−2 and the total particle con-
centration for the A + B + C system is 3

2Cp ¼ 0:015μm−2. After
determining the relevant parameters, we are able to use Eq. S4 to
plot the melting curves for each of the A + B, B + C, and A + C
systems as shown in Fig. S6B, and therefore to determine each
melting temperature.
To change the above calculation from a two-component system

(A+B,B+C,orA+Csystem) toa three-component system(A+
B+C system), we simply replace the equilibrium constantK by (3/
2)2 K and the total particle concentration Cp by (3/2)Cp in Eq. S4.
Then, we can easily find the melting temperature of the ABC
system and that the shift of the melting temperature due to the 2/3
effect is ∼0.2 °C.

Triangle Effect. From the discussion of systems with triangle
structures (Eq. S3), we can determine themelting curve of theA+
B + C system due to the triangle effect as

fABC ¼ 1
3
ðfAB þ fBC þ fACÞ; [S10]

where fAB, fBC, and fAC are determined fromEq. S3 using the same
sets of parameters used in plotting themelting curves of theA+B,
B + C, and A + C systems, except the total particle concentration
is increased from Cp to 3(Cp/2) because the A + B+ C system has
particles A, B, and C, each of which has particle concentration Cp/
2= 0.005 μm−2. The extra structure-related parameter γ is taken to
be γ ¼ Ωw

2π , where the wiggling angle of particle 3 in Fig. S1C is

estimated to beΩw≈arccos
�
ð2RpÞ2þð2Rpþ2LþlÞ2 −R2

p

2ð2RpÞð2Rpþ2LþlÞ

�
andRp≈ 980 nm

is the particle radius, L ≈ 15 nm is the length of our dsDNA
backbone, and l ≈ 3.6 nm is the length of our hybridized DNA
sticky end. Compared with the melting curve of the two-compo-
nent system (A+B, B+C, or A+C system), we find that the shift
of the melting temperature of the A + B + C system due to the
triangle effect is ∼0.6 °C.

Summary.To determine themelting curve of theA+B+C system,
including both the “2/3” effect and the “triangle” effect, we take
Eq. S10 and replace the equilibrium constant K by (3/2)2K. The
melting curve for the A + B + C system is plotted in Fig. S6B.
From Fig. S6B, we see that the melting temperature shift due to
the extra binding configurations is ∼0.8 °C, which is ∼0.2 °C from
the 2/3 effect and ∼0.6 °C from the triangle effect.

SI Thermodynamic Model of Dual-Phase Materials
To demonstrate further that our model provides a guide for
designing systems with polygamous particles, we use our model to
predict the melting curve of our dual-phase system, the design of
which is shown in Fig. S7A. In the dual-phase system, we have two
complementary pairs of DNA. We use the same set of param-
eters as previously, except that the particle radius Rp is changed
to Rp ≈ 500 nm and the total DNA coverage Nt is changed to
Nt = 22,000 ± 2,200 (1, 2), because the particle used in the dual-
phase material experiment is a 1-μm magnetic particle instead of
a 2-μm polystyrene particle. The rotational entropy is modified
from Eq. S6 to

ΔSrðχ1; χ2Þ ¼ kBln
�
1−

�
1−

ADNA

Asurface

	�Ntχ1

þ kBln
�
1−

�
1−

ADNA

Asurface

	�Ntχ2

for a pair of complementary particles with active DNA coverages
of χ1 and χ2, respectively. We also recompute gb’s and Nb’s for
the new particles, gb,XY≈ 7,Nb,XY≈ 163, gb,YZ≈ 6, andNb,YZ≈ 22.
The enthalpy and entropy of the hybridization of sticky ends S1 and
S1′ are ΔH∘

S1 ;S1′
¼ − 328; 000J=mol and ΔS∘S1;S1′ ¼ − 967J=molK,

respectively (5). The enthalpy and entropy of the hybridization
of sticky ends S3 and S3′ are ΔH∘

S3 ;S3′
¼ − 332; 000J=mol

and ΔS∘S3 ;S3′ ¼ − 975J=molK, respectively (5). Particle concentra-
tions of X, Y, and Z are nX = 0.006 μm−2, nY = 0.03 μm−2, and
nZ = 0.06 μm−2, respectively. After collecting all the parameters,
the melting curves of X-Y, fXY, and Y-Z, fYZ, can be determined
from Eq. S4. Then, the total melting curve fXYZ can be written as

fXYZ ¼ nX þ nY
nX þ nY þ nZ

fXY þ nZ
nX þ nY þ nZ

fYZ:

The melting curve fXYZ is shown Fig. S7B, along with the ex-
perimental results. The good agreement shows that our simple
mean field model is sufficient to predict in a semiquantitative
manner the temperature-dependent hybridization of somewhat
complex systems.
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Fig. S1. (A) Cluster identification in terms of size or number of particles, i and α, and the number of subclusters with triangles (three particles bound to each
other). (B) Wiggling angle, used to calculate entropy, of a particle bound to only one particle. (C) Wiggling angle of a particle bound to two particles
simultaneously.
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Fig. S2. DNA entropy losses from hybridization. (A) Entropy loss in going from two flexible single strands to one rigid double strand. (B) dsDNAwith one end freely
jointed on a surface entropy can have a hemisphere of configurations. When bound to dsDNA from another surface, the configurations are restricted to a ring.
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A DNA patch
A B

C

Fig. S3. Rotational entropy of spherical particles. (A) Particle fully covered by DNA. (B) Particle partially covered by DNA. Gray areas are “active” patches of
area ∼ π(L + l/2)2. (C) Particles each with a single DNA strand. The allowed configurations for binding require the overlap of two active patches, greatly re-
ducing the configurations allowed without binding.

h

Fig. S4. Blow-up of binding region between two DNA-coated colloidal particles. We can change coverage with active and neutral DNA strands. Here, blue and
cyan sticky ends are complementary to each other and are active, whereas the gray strands are neutral DNA and inactive.
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Fig. S5. (A) Computation of gb, the number of DNA strands on one colloid accessible for binding to a single DNA on a complementary colloid, and Nb, the total
number of possible bonds between complementary colloids. Black dots are randomly distributed DNA strands, and surface-surface separation, h, is comparable to
strand length when particles bind. (B) 〈gb〉 (blue) and 〈gb〉 (red) as a function of χ, the fraction of total possible DNA coverage. At high DNA coverage, both 〈gb〉
and 〈Nb〉 are proportional to χ, whereas at low DNA coverage, both 〈gb〉 and 〈Nb〉 are proportional to χ2. The dashed lines indicate gb ∼ χ and Nb ∼ χ.
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Fig. S6. A + B + C system. (A) Interaction diagram of A, B, and C. (B) Melting curves of A + B (pink), B + C (yellow-green), A + C (cyan), and A + B + C (black)
systems. The dots are the experimental data. The solid curves are the model plots.
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Fig. S7. Dual-phase materials. (A) Interaction diagram of X, Y, and Z. (B) Equilibrium melting curves for our dual-phase materials. The dots are the data. The solid
curve is the model. Slow cooling from 50 °C to 35 °C gives isolated clusters of X surrounded by Y surrounded by Z. A rapid quench gives an extended elastic gel.
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