Supporting Information

Sadik et al. 10.1073/pnas.1213797109

Fig. S1. Induction of leukotriene B₄ (LTB₄) release from resting PMNs in vitro. (*A*) Kinetic analysis of the release of LTB₄ from polymorphonuclear leukocytes (PMNs) after stimulation with recombinant murine C5a (100 ng/mL) or when left unstimulated as a control. (*B*) Release of LTB₄ from PMNs after stimulation with Ab, Ag, or Ab plus Ag [immune complex (IC)] for 1 h. (C) Release of LTB₄ from PMNs after stimulation with IL-1β (10 ng/mL), CCL3 (100 ng/mL), CXCL2 (100 ng/mL), 7-thio-PAF (1 nM), GM-CSF (100 ng/mL), fMLF (100 nM), or C5a (100 ng/mL) for 1 h. (*D*) Release of LTB₄ from WT, *C5a^{-/-}*, and *Fcer1g^{-/-}* PMNs after stimulation with C5a (100 ng/mL) for 1 h. (*E*) Release of LTB₄ from WT and *Tlr4^{-/-}* PMNs after stimulation with C5a (100 ng/mL) for 1 h. All data represent concentrations in the supernatant determined by ELISA, shown as mean \pm SD (*n* = 3 independent experiments). **P* < 0.05, ***P* < 0.01, ****P* < 0.001 compared with unstimulated control. n.d., not detectable.

Fig. S2. C5a receptor (C5aR) on mast cells and osteoblasts does not contribute to autoantibody-induced arthritis. (*A* and *B*) Arthritis in WT \rightarrow *C5ar^{-/-}*, *Kit^{W/}Kit^{W-V}* \rightarrow *C5ar^{-/-}*, *Tnfrdf11b^{-/-}* \rightarrow *C5ar^{-/-}*, and *C5ar^{-/-}* \rightarrow *C5ar^{-/-}* \rightarrow *C5ar^{-/-}* bone marrow chimera (BMC) (*n* = 3–4 mice per group). Each group vs. *C5ar^{-/-}* \rightarrow *C5ar^{-/-}* \rightarrow

Fig. S3. 5-Lipoxygenase (5-LO) in radioresistant cells does not contribute to autoantibody-induced arthritis. (*A* and *B*) WT $\rightarrow Alox5^{-/-}$, $C5ar^{-/-} \rightarrow Alox5^{-/-}$, $Alox5^{-/-} \rightarrow Alox5^{-/-}$, $Alox5^{-/-} \rightarrow Alox5^{-/-}$, $Alox5^{-/-} \rightarrow Alox5^{-/-}$, $Alox5^{-/-}$,

Fig. 54. Fc_YRIII on radiosensitive cells is necessary and sufficient for arthritis. (A and B) Arthritis in all "criss-cross" BMCs of WT and $Fcgr3^{-/-}$ mice (n = 4-5 mice per group). One representative of two independent experiments is presented. P < 0.001 for WT \rightarrow WT or WT \rightarrow $Fcgr3^{-/-}$ vs. $Fcgr3^{-/-} \rightarrow$ WT or $Fcgr3^{-/-} \rightarrow$ $Fcgr3^{-/-} \rightarrow$ Fcg

Fig. S5. IL-1 β is downstream of Fc_YRIII activation. (*A*) Histological score of ankles from WT \rightarrow WT, *Fcgr3^{-/-}* \rightarrow WT, and *ll1a^{-/-}ll1b^{-/-}* \rightarrow WT chimera on day 9 d after i.p. injection of K/BxN serum (This histology corresponds to the experiment shown in Fig. 6 C and D) (n = 6-10 mice per group; data compiled from two independent experiments). *P < 0.05, **P < 0.01 for indicated group vs. WT \rightarrow WT; #P < 0.05 for indicated group vs. *Fcgr3^{-/-}* \rightarrow WT; +*P < 0.01 for indicated group vs. *ll1a^{-/-}ll1b^{-/-}* \rightarrow WT. (*B*) Respective representative sections. All data are presented as mean \pm SEM. (Scale bars, 100 µm.)

Fig. S6. C5a and ICs induce the release of LTB₄ and IL-1 β , respectively, from human peripheral PMNs. Human PMNs were freshly isolated using dextrane and FicoII from heparinized peripheral blood of healthy donors and resuspended to a cell concentration of 5 × 10⁶/mL in RPMI, 1% human serum, 10 mM Hepes. (*A*) PMNs were seeded into round-bottom polypropylene tubes. Cells were left as unstimulated controls or stimulated with 20 or 100 ng/mL human recombinant C5a, as indicated, for 1 h. Afterward, cell-free supernatants were harvested and LTB₄ contents assayed by ELISA (*n* = 6 blood donors compiled from two independent experiments). (*B*) PMNs were prestimulated with 50 ng/mL GM-CSF for 30 min. Afterward, PMNs were either left unstimulated or stimulated with immobilized ICs, as described in *Methods*. After 20 h cell-free supernatants were harvested and LL-1 β was determined by ELISA (*n* = 7 blood donors compiled from two independent experiments). All data are presented as mean ± SEM. **P* < 0.05, ****P* < 0.001 for indicated group vs. control.

Fig. S7. Origin of PMNs and tissue macrophages in chimeric mice. BMC were generated, as described in *Methods*, and cells for FACS analysis were harvested 4 wk after reconstitution of BM. (A) BM cells were isolated from $Fcer1g^{-/-} \rightarrow WT$ (CD45.2^{+/+} \rightarrow CD45.1^{+/+}) BMC and stained with anti-CD45.2 FITC, anti-CD45.1PE, and anti-Ly6G PerCP-Cy5.5. CD45.1 vs. CD45.2 expression in neutrophils (cells first gated for neutrophils in the FSC – SSC plot and then for Ly6G^{+/+} cells) is shown. (*B*) BM cells were isolated from $Fcer1g^{-/-}WT$ (CD45.2^{+/+} \rightarrow CD45.1^{+/+}) mixed BMC and stained with anti-CD45.2 FITC, anti-CD45.1PE, and anti-Ly6G PerCP-Cy5.5. CD45.1 vs. CD45.2 expression in PMNs (cells first gated for neutrophils in the FSC – SSC plot and then for Ly6G^{+/+} cells) is shown. (*B*) BM cells were isolated from $Fcer1g^{-/-}WT$ (CD45.2^{+/+} \rightarrow CD45.1^{+/+}) mixed BMC and stained with anti-CD45.2 FITC, anti-CD45.1PE, and anti-Ly6G PerCP-Cy5.5. CD45.1 vs. CD45.2 expression in PMNs (cells first gated for neutrophils in the FSC – SSC plot and then for Ly6G^{+/+} cells) is shown. (*C*) Cells recovered by peritoneal lavage from $Fcer1g^{-/-} \rightarrow$ WT (CD45.2^{+/+} \rightarrow CD45.1^{+/+}) BMC were stained with anti-CD45.2 FITC, anti-CD45.1 PE, and anti-F4/80 PerCP-Cy5.5. CD45.1 vs. CD45.2 expression in macrophages (cells first gated for macrophages in the Forward Scatter Channel vs. Side Scatter Channel plot and then for F4/80^{+/+} cells) is shown.

Generation of bone marrow chimera

Generation of mixed bone marrow chimera

Fig. S8. Schematic of the generation of bone marrow chimeric mice.

NAS PNAS