Supporting Information

Contreras et al. 10.1073/pnas.1216953109

SI Materials and Methods

The two-exponential kinetics of Q_p was reported by Horrigan and Aldrich (1) for BK channels in the absence of Ca^{2+} . They explained this behavior in terms of an allosteric model (Fig. S5A) in which the four voltage sensors have two states, resting, R, and active, A. The R-A equilibrium constant, J is voltage dependent according to the relation $J = J_0 exp(-z_i eV/kT)$, where J_0 is the zero voltage equilibrium constant and every R to A transition results in the transfer of z_J elementary charges across the membrane. Membrane depolarization displaces the R-A equilibrium toward A, and this process generates the fast gating current that when integrated in time gives Q_{fast} . Activation of the voltage sensors displaces the closed, C, to open, O, equilibrium toward the open state due to allosteric coupling, through the allosteric coupling constant D. The O-C equilibrium constant, L, is also voltage dependent ($L = L_0 \exp(-z_L eV/kT)$) and the closed-toopen transition displaces z_L elementary charges. Because the closed-to-open transition is slow, the charge transported contributes to the Q_{pSlow} component of Q_p . The allosteric coupling of the voltage sensors and the channel gate shifts toward A the voltage sensor equilibrium and the additional charge displaced by this rearrangement contributes to Q_{pSlow} . Therefore, the slow component of Q_p is dependent on the closed-to-open transition.

 Horrigan FT, Aldrich RW (1999) Allosteric voltage gating of potassium channels II. Mslo channel gating charge movement in the absence of Ca(2+). J Gen Physiol 114(2): 305–336.

Our results on BK channels associated with the β 1 auxiliary subunits show that Q_p also has a slow component but it appears at voltages where the closed-to-open transition is fully displaced toward the closed state. This result is incompatible with the H-C-A allosteric model, and, therefore we split the closed-to-open transition into two steps (Fig. S5B): The slow component of Q_p represents the charge transported due to the transition from the deeper closed state, C_0 , to another closed state, C_1 , and it is independent of the final transition from C_1 to the open state. This latter transition is governed by the equilibrium constant M, which may be voltage-dependent and may displace charge, but the amplitude of the associated gating current is expected not to be measurable because the opening of the channel in the presence of β 1 is very slow. We have augmented the two-tiered 10state H-C-A allosteric model to a three-tiered 15-state model (Fig. S5B). Now a new allosteric coupling constant E must be added to complete the scheme.

Steady-state analysis of the gating charge, i.e., determination of Q_{fast} and Q_{pSlow} as a function of voltage is sufficient to make a first approximation of the equilibrium constants J and L as a function of voltage and the allosteric coupling constant D. We augmented the model to account for the kinetics of the processes, by splitting the equilibrium constant J, L, and M into forward and backward rate constant (Fig. S5B).

Fig. S1. I_K and I_g currents measured in the same macropatch. I_K currents were recorded in the cell-attached configuration (*A*) to ensure that BK channels were formed by the expected α or α/β complex. After patch excision (*B*), I_g currents were isolated in conditions of 0 K⁺ by repeated bath exchange of the internal side of the macropatch with a K⁺-free solution (internal solution, see *Materials and Methods*).

Fig. 52. ON and OFF gating currents. (A and C) Q_{ON} (red circles) and Q_{OFF} (blue circles) charge of (α/β 1)BK and (α/β 4)BK channel are equal. (B and D) Q_{ON} plotted against Q_{OFF} are linearly related.

Fig. S3. I_{gON} is well fitted using a single exponential decay (red line).

Fig. S4. Kinetics of gating charge. (A-E) Exponential decays of I_{gON} were fitted with an exponential function and the time constants ($\tau_{g_{n}}$ mean \pm SEM) were plotted against the voltage. The solid black line is the best fit to a two-state model (Table S1). All graphs include the Boltzmann fit of the Q-V curve (dashed lines in A-E) and the corresponding V_{h} is indicated by a vertical line for the Q-V curve (solid colored line in A-E). (F) The linear range of each plot was fitted with an exponential decay function and is shown by black lines with the exception of (α/β 4)BK, which is shown by a green line.

Fig. S5. Allosteric models explain the complex kinetics of BK channels in the absence of calcium. (A) Horrigan, Cui, and Aldrich allosteric model (1). States within a row correspond to the possible combinations of the four independent voltage sensors. Subscripts indicate the number of voltage sensors in the active position. Resting/active equilibrium is governed by the voltage-dependent constant *J*. A single channel gates between two possible states, closed and open, with an equilibrium constant *L*. As voltage sensors reach the active state, channel opening is favored by an allosteric factor *D*. (*B*) Allosteric model in which the channel gate opens in two sequential steps. Equilibrium between the first and second row of closed states is governed by *L* and the allosteric factor *D*, whereas allosteric factors *M* and *E* describe equilibrium between $C_{1,0}$ through $C_{4,0}$ and O_1 through O_4 .

1. Horrigan FT, Cui J, Aldrich RW (1999) Allosteric voltage gating of potassium channels I. Mslo ionic currents in the absence of Ca(2+). J Gen Physiol 114(2):277-304.

Fig. S6. Changes in z_j and $V_{1/2}$ account for calcium sensitivity in ($\alpha/\beta4$)BK channels. Data from ref. 1 (bluish-green circles) are superimposed with simulation of (α)BK (dashed black line) and ($\alpha/\beta4$)BK channels (dashed bluish-green line) using the H–C–A model (Fig. 4A) with the following parameters: (α)BK V_h = 140 mV, z_j = 0.58, z_L = 0.31, D = 19, C = 14, E = 2.8, L_0 = 1e-6, and K_d = 8.2 (data from ref. 2). For ($\alpha/\beta4$)BK all parameters were the same except $V_{1/2}$ = 186 mV and z_j = 0.4.

Wang B, Rothberg BS, Brenner R (2006) Mechanism of beta4 subunit modulation of BK channels. J Gen Physiol 127(4):449–465.
Orio P, Latorre R (2005) Differential effects of beta 1 and beta 2 subunits on BK channel activity. J Gen Physiol 125(4):395–411.

Table S1. Fit parameters of gating charge-voltage relationships for (α)BK and (α / β x)BK channels

		(α)ΒΚ	(α/β1)BK	(α/β2IR)BK	(α/β3b)BK	(α/β4)BK
V _h (mV)	Mean	169	112	130	189	186
	SD	12	12	17	9	6
z (e ₀)	Mean	0.63	0.58	0.61	0.56	0.48
	SD	0.06	0.06	0.04	0.02	0.02
	N	14	8	7	8	7

All of the corresponding Q(V) curves were displaced in the voltage axis by $\Delta V = (V_h - \langle V_h \rangle)$. V_h and z obtained from the fit of the Q(V)data to a Boltzmann function.

Channel	z (e ₀)	δ	α_0 (s ⁻¹)	β ₀ (s ⁻¹)
(α)BK	0.63	0.29	4.5	70
(α/β1)ΒΚ	0.58	0.30	7.5	28
(α/β2IR)BK	0.61	0.30	4.5	37
(α/β3b)BK	0.56	0.30	4.5	48
(α/β4)ΒΚ	0.48	0.28	7.0	19

Table S2. Fit parameters of the kinetics of gating charge

Best fit to a two-states model with z constrained to the values found for the Q-V relation.