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ABSTRACT  If a population (species) consists of n haploid
lines (subpopulations) which reproduce asexually and each of
which is subject to random extinction and subsequent re-
placement, it is shown that, at equilibrium in which mutational
production of new alleles and their random extinction balance
each other, the genetic diversity (1 minus the sum of squares of
allelic frequencies) is given by 2N, v/(1 + 2N, v), where

N, = N+ n/(2\) + nNv/A,

in which N is the harmonic mean of the population size per line,
n is the number of lines (assumed to be large), A is the rate of line
extinction, and v is the mutation rate (assuming the infinite
neutral allele model). In a diploid population (species) consisting
of n colonies, if migration takes place between colonies at the
rate m (the island model) in addition to extinction and recolo-
nization of colonies, it is shown that effective population size
is
N, = N+ n/[4v+ A+ m)]+ aMv + m)/(v + XA + m).

If the rate of colony extinction (A) is much larger than the mi-
gration rate of individuals, the effective population size is
greatly reduced compared with the case in which no colony
extinctions occur (in which case N, = nN). The stepping-stone
!er of recolonization scheme is also considered. Bearing of
these results on the interpretation of the level of genetic vari-
ability at the enzyme level observed in natural populations is
discussed from the standpoint of the neutral mutation-random

drift hypothesis.

The concept of effective population size, introduced by Wright
(1), has played a fundamental role in treating the process of
random gene frequency drift in finite populations. Useful
formulae have been derived by him and others (2-6) to com-
pute the effective sizes for various situations such as unequal
numbers of males and females, different parents contributing
widely different numbers of young, the population size fluc-
tuating from time to time, and overlapping generations (see refs.
7-9 for reviews).

It is known that most species in nature have subdivided
population structure, and extinction and recolonization of local
populations may occur rather frequently in some groups of
organisms such as insects (see refs. 10 and 11). This will greatly
reduce the effective population size of the species.

Wright (12) pointed out that if local populations are liable
to frequent extinction with restoration from the progeny of a
few stray immigrants, the species may pass repeatedly through
extremely reduced state of effective population size even
though the species include at all times “countless millions of
individuals in its range as a whole.” He suggested that mutations
such as reciprocal translocations that are very strongly selected
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against until half-fixed may require some such mechanism to
become established.

A pioneering study of the effect of local extinction and
recolonization of subpopulations on genetic variability of the
species was made by Slatkin (11) using two models termed
“propagule pool” and “migration pool.” By pursuing the same
problem further, we obtained some results which we report in
this paper. Our model is similar to Slatkin’s propagule pool
model, but we use both “island model” (1) and “stepping-stone
model” (13) of population structure. We shall also discuss some
implication of the results for our interpretation of the amount
of genetic variability observed in natural populations in the light
of the neutral mutation-random drift hypothesis [the neutral
theory, for short (14, 15)].

Random replacement of haploid lines (island model)

Let us consider a population (species) of haploid organisms
consisting of a finite number, n, of subpopulations which we
refer to as lines. All the results in this section, however, hold
equally well if the term “line” is replaced by “local colony™ or
“deme.” Let us assume that each line is subject to extinction
with rate A and that whenever a line is extinct it is immediately
replaced by a line derived from individuals chosen from a single
line in the population. In this section, we assume that, whenever
extinction occurs, every existing line has an equal chance of
becoming a donor, so that the geographical distance is irrelevant
in the replacement (island model). We present the treatment
using the stepping-stone model (where donors are chosen from
neighboring colonies) in the next section. Throughout this
paper, we assume the infinite allele model of Kimura and Crow
(16)—that is, we assume that whenever a mutation occurs at
a locus it represents a new, not a preexisting, allele.

Let P, be the probability that two randomly chosen homol-
ogous genes from a single line at time ¢ are identical by descent
and therefore identical in allelic states. Similarly, let Q; be the
probability of two randomly chosen genes, one each from two
different lines at time ¢, being identical. Consider the species
as a whole and ask what is the probability that two randomly
chosen lines have descended from a single line a short time (At)
ago. Since the probability of extinction of a line during At is
A\At, and since there are n lines as a whole, the probability of
two randomly chosen lines at time ¢ having descended from a
single line At ago is 2A\At/(n — 1). The factor 2 in the nu-
merator comes from the consideration that, when two lines
(tentatively called the first and the second lines) happen to have
descended from a single colony At ago, there are two possi-
bilities—that is, either the first line is the donor (case A in Fig.
1) or the first line is the recipient (case B in Fig. 1). The prob-
ability that two lines at time ¢ + At have descended from two
lines which are separate at time ¢ is therefore 1 — 2A\At/(n —
1).
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FIG. 1. Diagram illustrating extinction and recolonization for the
casen = 6.

Let v be the mutation rate per haploid individual per gen-
eration, then we have

Qtyar = (1- vAt)? [(1 _nTl O:

+ 28 (At)] i1
where 0(At) stands for terms of higher order than At. Note that
(1 — vAt)2 or (1 — 20At) if we neglect o(At), represents the
probability that no mutations occur during the time interval
At in two lines. An important assumption made in deriving Eq.
1 is that there is no exchange of individuals between lines. In
other words, there is no exchange of genetic material (recom-
bination) between asexual lines. If “lines” represent local
colonies, within which random matings occur, this means no
migration between colonies.

At equilibrium in which the identity coefficients remain
constant with time so that Q; 4 o+ = Q; and P, o+ = P, writing
the equilibrium values of P; and Q; as P and Q, we get from
Eq. 1,

2\ 2\
-2 P=0, 2
(v+n—l)o+n—1 (2]
where we neglect terms of higher order than At. Thus, we
obtain
Q / P= _._....l_—
14 (n—1o/N’

An analogous formula giving the relationship between two
identity coefficients—that is, identity coefficients of gene
members between and within chromosomes—was obtained by
Ohta (17) in her theoretical study on genetic variation in a
multigene family.

In order to derive a formula for P;, let N, (>0) be the effec-
tive population size of a single line at time ¢. Consider random
sampling of individuals within the line, still assuming no im-
migration of individuals from other lines. Then, we have

A
Piyar = (1—20At) [(1 -2t P + ﬂ]
N,
This is a continuous generation analogue of a more familiar
expression

(3]

(4]

N; N;

which holds when generations are discrete [i.e.,t =0,1,2, ...
(see ref. 7, page 323)]. From Eq. 4, neglecting terms involving
(At)? and letting AP; = Py, as — P}, and substituting dP,/dt
for AP,/ At, we obtain

dP 1

il AP —-
di (2°+N)P‘+N, (6]

P.+1=<1—zu>[(1—i)z>,+ ‘} 5)
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Let h; = 1 — P;; then h, gives the probability that two randomly
chosen homologous genes within a line are distinct in allelic
states. From Eq. 6, we have

dh,
dt
This can be integrated to give

_ o (1€
h, = hg exp[ 20t J; NJ
+ 2 J; ‘ exp [-—20(t—0)— j; ':,—‘i] 4. (8]

Also, in Eq. 6, if we take expectations over all generations and

if we assume (as an approximation) that the harmonic mean of

N, and the arithmetic mean of P; are independent, we get
—(20 + 1/N)P + 1/N =0,

where N is the harmonic mean of N, and P is the average
probability at equilibrium of two randomly chosen genes within
a line being identical. This leads to

1
T 14+ 2No’ (9]

Substituting this in Eq. 3, we get
0= :
(1+ 2No)[1 + (n — 1)v/A]’

Let Hg be the probability of two homologous genes randomly
axtracted from the whole population being identical. Then,

Ho=(1-1/n)Q + (1/n)P (11]

so that we obtain

—20—(2v+1v-‘ hy. (7]

(10]

14+ (n-1k/n 1
1+(m—1Dk 1+28N0 (12)

where k = v/\. The effective number of alleles, n,, as defined
by Kimura and Crow (16) is 1/Hy. If n is large but k is much
smaller than unity, we have n, ~ (1 + nk)(1 + 2Nv). This may
be compared with the situation in which all the individuals in
the population are panmictic rather than grouped into isolated
lines which are subject to extinction and replacement. In such
a situation n, = 1 + 2nNo.

More generally, if N, is the effective size of a haploid pop-
ulation, then n, = 1 + 2N,v. Thus, equating this with 1/Hy
where Hy is given by Eq. 12, and assuming n >> 1 and k < 1,
we obtain 1 + 2N,v = (1 + nk)(1 + 2Nv) or

N. =N + n/(2\) + nNo/\. [13]

Similarly, for a diploid population consisting of a large
number, n, of local colonies each with the effective size N, if
exchange of individuals between colonies is extremely rare and
if extinction and recolonization occur frequently, n, = (1 +
nk)(1 + 4Nv). Equating this with 1 + 4N,v, we obtain

N, =N + n/(4\) + nNo/\. [14]

Note that this is much smaller than the effective size of a cor-
responding population which is completely panmictic, in which
case we have N, = nN.

}_I():

Steprmg-stone model with local extinction and
recolonization

We consider a one-dimensional stepping-stone model with n
subpopulations arranged on a circle. Because of geographical
structure, we refer to subpopulations as “colonies,” although
the term “lines” could still be used for them. We assume that
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every existing colony is subject to extinction with rate A per
generation and that, whenever extinction of a colony occurs,
it is replaced by individuals from either one of two adjacent
colonies.

Let g be the probability that two different colonies which
are k steps apart do not share a common ancestor during the past
t generations—that is, they are kept separate at least for the last
t generations. In what follows, although we treat ¢ as a contin-
uous variable, it is convenient to measure time required for one
generation as the unit. Then

8ke+ar = (1 — 2NAt)gy,
+ ANAt(gk—1, + 8k+1:) + 0(At). (15]

Neglecting the terms o(At) and substituting dgi./dt for
Agy/ At where Agis = gk + At — 8k, we obtain the following
set of differential equations:

d
%’E = Mgk-1,t — 28kt + 8k+ 1), (16]
wherek=1,2 ...,n—1, and
80t = gnt=0.
The solution of Eq. 16 which satisfies the initial condition g o
=1fork=1,2, ...,n— lisasfollows:
n—1 ;
Ghs = 2 S cie~M—eos Tt gin k_ﬂ, (17]
n 5 n
where
n—1 .
ci= Y sin !cﬂ
k=1 n

Because 1 — g is the probability of two colonies that are k
steps apart sharing a common ancestral colony some time
during the past ¢ generations, d(1 — gi.)/dt or —dgx,/dt
represents the probability density that these two colonies are
derived from a common colony ¢ generations back. Thus, the
probability Qx of two genes chosen from colonies which are
geographically k steps apart being identical is given by

® o dgk:
- — 20t 28Kt
() P j; e it dt,

where e ™20 represents the probability of two gene lineages
remaining identical in allelic states after they diverged ¢ gen-
erations ago. Noting Eq. 17, we obtain
o2p n-l ¢, sin (ki/n)
== 5 . 18

Ok n ‘=zl 1+ v/{A[1 — cos(wi/n)}} (18]
Then, the average probabi'lity of identity for two homologous
genes each chosen randomly from two different colonies is

_ o ep ¢
O -0 HTF o —cos (i

This corresponds to Eq. 3 in the island model.

Effects of migration

In the preceding analyses, we assumed that there is no migration
(equal exchange of individuals) among different subpopula-
tions. Such an assumption is realistic if local extinction and
recolonization occur much more frequently than exchange of
individuals between existing subpopulations. It is obviously
desirable to extend these models to allow migration.

We consider an island model with the entire population
consisting of n haploid colonies and assume that migrations
among different colonies occur at a constant rate. Thus, every
colony receives a fraction mAt of individuals from the entire
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population during a short time interval At. Using the same
notations as before, we obtain

Piyar= (1 —0At)? [(l — mAt)? [Pt + 1- P

t

:

+ 2mAtQ,] + o(At) (20]

and

Qr+ae = (1 = 0At)%(1 — A1 — mAt)?Q,

+ 20\ + m)At (% P, + 2 ; 10;) + o(At),  [21]

where P; and Q; are the identity probabilities within and be-
tween lines, and v, m, A, N;, and n are, respectively, the
mutation rate, the migration rate, the colony extinction rate,
the colony size, and the number of colonies.

From these equations we get

dPg/dt = —2(0 + m)Pt + (1 —Pg)/Ng + 2mQ, [22]

and

dQ./dt = —2(v + X\ + m)Q,
+ 2A+m){P, + (n — 1)Q,}/n. [23]

At equilibrium in which dP;/dt = 0 and dQ,/dt = 0, we get
P=1/[1+2Nv + 2nNmo/(nvo + \ + m)) [24]

and
Q =1/{(1 + 2Nv)[1 + no/(\ + m)] + 2nNmo/(\ + m)}
(25]
so that
Q/P =1/[1+nv/(A + m)]. [26]

For m = 0 (no migration), Eqs. 24 and 25 reduce, respectively,
to Egs. 9 and 10 except that n in Eq. 25 has to be replaced by
n — 1. This discrepancy arises because we ignored the differ-
ence between n and n — 1 in deriving equations in this sec-
tion.

The probability of identity of two randomly chosen homol-
ogous genes from the whole population is Hy = [P + (n — 1)
Q]/n, and if we equate 1/H( with 1 + 2N,v, we get

N.=N + n/[2(v + A\ + m)]
+nN@® + m)/(v + X + m). [27]

For a diploid population, the corresponding formula is

N.=N + n/[4(v + )\+m).]
+nN(@ + m)/(v + A + m). [28]

Monte Carlo experiments

To test the validity of the above analyses, simulation experi-
ments were carried out. An outline of the experiments is as
follows. At the beginning, 10 lines each with 20 haploid indi-
viduals are assumed; and at the beginning, all the individuals
have identical alleles. The first operation in each generation is
to test if extinctions occur to the lines. For each line, a random
number that is distributed uniformly in the interval (0, 1) is
drawn, and this is compared with a given A. If the drawn ran-
dom number happens to be less than A, that particular line is
terminated and it is replaced by a certain number (Ny) of in-
dividuals randomly drawn from a single line which is chosen
according to the model. For the island model, the donor line
is chosen randomly from the remaining n — 1 lines. For the
stepping-stone model the donor line is chosen from one of the
two neighboring lines with equal probability. However, if the
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drawn random number is greater than A, that line remains
unchanged. The second operation in the simulation is the pro-
duction of mutation. For each gene a random number is drawn
and it is compared with a given value of v. If the random
number happens to be less than v, mutation to a new allele oc-
curs. Otherwise, the gene remains unchanged. The third op-
eration is to increase the line size. Every line which is less than
20 individuals is increased by 1. The last operation is random
sampling of gametes to form individuals in the next generation
within each line.

These four operations constitute one generation for each line,
and this cycle is repeated for a large number of times. The first
2/v generations were discarded to eliminate initial effects, and
then data for Q, P, and Q/P were taken at an interval of 10
generations. In Table 1, the averages of these quantities over
30 observations are presented, and they are compared with
corresponding theoretical values. In these simulations rather
high mutation and extinction rates and small population sizes
were assumed to save computing time.

Discussion

From the above analyses, it is clear that, when local extinction
and recolonization occur frequently, not only the effective size
of the total population (species) is much reduced but also di-
vergence of subpopulations is largely prevented. As an example,
let us consider a haploid population (species) consisting of
100,000 lines (n = 105). Let us assume that each line starts from
a single individual and, although it may grow into a line (sub-
population) comprising an immense number of individuals, it
then becomes extinct on the average in 1000 generations (A =
1073) with the result that its harmonic size is only N = 100. Let
us also assume that mutation rate per generation isv = 1078,
Then, from Eq. 13, we get the effective size of the population
of about 50 million—i.e., N, = 5 X 107.

The sum of squares of allelic frequencies for the total pop-
ulation is Ho =~ 0.5. This means that the genetic diversity (1
minus sum of squares of allelic frequencies) is only 50%. Yet,
at any moment, this species may comprise an immense number,
say 1029, of individuals. From Egs. 9 and 10, we have P ~ 1, Q
~ 0.5, which means that genetic variability is almost entirely
due to line differences. Such a situation most likely may be met
by lower organisms which reproduce almost exclusively by
asexual means and which can increase rapidly in number when
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conditions become favorable but then easily become extinct
when conditions become unfavorable.

A remarkable example of this type of population structure
is represented by Escherichia coli as revealed by recent studies
by Levin (B. R. Levin, personal communication) and Selander
and Levin (18). According to Levin (B. R. Levin, personal
communication), “‘periodic selection” (i.e., appearance of a
clone with a high fitness followed by its rapid expansion) occurs
frequently, but gene exchange between clones through plasmid
and phage-mediated mechanisms is extremely rare; its rate
appears to be lower than the mutation rate. This is consistent
with the finding by Selander and Levin (18), who surveyed
electrophoretic variation at 20 enzyme loci in 109 clones of E.
coli from natural populations, that the number of distinctive
E. coli genotypes is rather limited; electrophoretically identical
clones were obtained from unassociated hosts. They obtained
an estimate of mean genetic diversity of 0.4718.

The genetic structure of E. coli population can most easily
be understood by regarding it as a collection of asexual lines.
Random sampling of such lines occurs frequently through pe-
riodic selection. We can think of each line being derived from
a single individual (bacterium) in which a mutation that endows
higher competitive ability happens to occur followed by rapid
expansion of its progeny by asexual means to form countless
individuals. Eventually such a line may become extinct to be
replaced by a new “periodic” line. We may regard intestines
of mammals as a sort of chemostat in which periodic selection
goes on continuously. Thus, the effective size of E. coli is not
really very large, contrary to the claim of Milkman (19) who
considers that his observations on allozyme variation in E. coli
(20, 21) are inconsistent with the neutral theory. It is now clear
that Milkman’s criticism against the neutral theory is not war-
ranted, as pointed out by Levin (personal communication). In
this respect, Nei (22) had a remarkable insight when he sug-
gested in 1976 that the effective size of E. coli in the long evo-
lutionary history must be much smaller than 1019, contrary to
Milkman’s (19) claim that E. coli has been at a population size
well over 1010 for at least 4 X 100 generations. “This is because
an E. coli colony rapidly grows under certain circumstances,
while in other circumstances it easily becomes extinct” (22).

A similar criticism of the neutral theory of protein poly-
morphisms was made by Ayala et al. (23) on the ground that,
in the neotropical fruit fly Drosophila willistoni which has
immense population size (which they think has at least the ef-

Table 1. Comparisons of Monte Carlo simulation results (Sim.) with the theoretical
expectations (Theo.)
P Q/P
v A N Sim. Theo. Sim. Theo.
Island model

0.05 0.1 10.4 0.599 0.510 0.154 0.182

0.02 0.1 10.4 0.759 0.706 0.295 0.357

0.01 0.1 10.4 0.872 0.828 0.507 0.526

0.001 0.1 104 0.987 0.980 0.853 0.917

0.002 0.05 13.2 0.958 0.951 0.735 0.735

0.005 0.05 12.6 0.907 0.888 0.566 0.526
Stepping-stone model

0.002 0.05 134 0.951 0.949 0.683 0.593

0.005 0.05 134 0.889 0.883 0.316 0.386

0.01 0.01 —_ — — 0.077 0.081

0.01 0.1 — —_ — 0.415 0.386

In these simulation experiments listed, the initial line size after extinction (Vo) is assumed to be 2.
Letters v, A, and N denote mutation rate, extinction rate, and harmonic mean of the population size
per line, respectively. Ten lines (n = 10) each with the maximum of 20 haploid individuals are assumed.
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fective size N, = 109, with geographical distribution encom-
passing several million square kilometers), the observed het-
erozygosity is roughly 18%. They pointed out that, even if we
assume a very low neutral mutation rate such as v = 1077, we
still have 4N 0 = 400 and, from the neutral theory, the pre-
dicted heterozygosity should practically be 100%, contrary to
their observation. In this case, however, if we assumethattherate
of local extinction (A) of subpopulations is much higher than
that of equal exchange of individuals (m) between subpopu-
lations, the effective size of the species N, is much smaller than
nN, the product of the number of colonies (n) and the effective
size of individual colony (N). In fact, if m/\ is small, N, ~
nN(m/\) from Eq. 28. In D. willistoni, it is possible that the
effective size is 2 orders of magnitude less than what Ayala et
al. claim and that their criticism of the neutral theory is un-
warranted.

It is known that the average heterozygosity among loci per
individual in diverse species, including those with apparently
immense population sizes, is mostly restricted to the range
0-20% and seldom exceeds 30% (24). This observation has been
used repeatedly as evidence against the neutral theory (see ref.
25). It is likely that local extinction and recolonization of sub-
populations occur commonly in many species having very large
apparent population sizes, and effective population sizes are
therefore greatly reduced. In conjunction with the model of
effectively neutral mutations (26) in which selective constraint
is incorporated, such a difficulty of the neutral theory seems
to be resolved.
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