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1 The General Model

We first present our general model, which encompasses the possibility of variation in outcomes
across individuals within a generation, as well as across generations, and also the possibility of
intelligent behavior. In the following sections we consider several special cases giving rise to the
results stated in the accompanying paper.

Each individual in a population is faced with a single decision in its lifetime, choosing actiona or
b, and this choice results in a certain number of offspring,xa or xb, respectively. The quantities
xa andxb are random variables with a joint distributionΦ (xa, xb). The behavior of individuali is
represented by a0/1 Bernoulli trial, I, with probabilityf , i.e.,a is chosen with probabilityf (in
which caseI = 1), andb is chosen with probability1 − f (in which caseI = 0). When we wish
to specify the outcomes applicable to a particular individual, i, for any of these variables, we add a
subscripti. Similarly, when we wish to specify a particular generation, t, we add the subscriptt.

We assume that an individual with a choice functionI has offspring with the identical choice
functionI. We are interested in the growth of the population of individuals with a specific choice
function over time, and we writent for the number of such individuals in generationt. In general,
we have

nt =

nt−1
∑

i=1

(Iitxait + (1− Iit)xbit) ,

where the sum runs over all individuals in generationt − 1. We assume that although all the
individuals have the same functionI, the random variable for each individual is independent of all
the others. We also assume that the distributionsΦit are independent and identically distributed
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across individualsi and timest. Under these assumptions, the value ofnt can be expressed as

nt
p
= nt−1 (E [Itxat] + E [(1− It) xbt])

p
= nt−1 (E [It] E [xat] + E [1− It] E [xbt] + Cov (It, xat) + Cov (1− It, xbt)) (1)

where the expectations and covariances in (1) are calculated for a typical individual having off-
spring at timet. No subscript,i, is needed to index these individuals since all members of the
population have the same expectation of outcomes and the same choice functionIt. The sym-
bol

p
= denotes equivalence in probability, and this equivalence (1) follows from the Law of Large

Numbers.1 Introducing some new notation, we can rewrite (1) as

nt
p
= nt−1

(

fµat + (1− f)µbt +
√

f(1− f) (σatρat + σbtρbt)
)

, (2)

whereµat andµbt represent the common expected values forxait andxbit for each individuali at
time t, whereσat andσbt represent the corresponding standard deviations, and where ρat andρbt
represent the common correlations at timet of eachxait andxbit with Iit and1− Iit, respectively.
Because all of these values are the same across all individuals having offspring at timet, the
subscripti is not necessary in any of the terms in (2). It is also convenient to write

nt
p
= nt−1

(

fµat + (1− f)µbt + σtρt
√

f(1− f)
)

, (3)

whereρt is the common correlation ofIit with yit = xait − xbit for each individuali having
offspring at timet, and whereσt is the common standard deviation ofyit for such individuals.

We use backward recursion to find that

nT
p
= n0

T
∏

t=1

(

fµat + (1− f)µbt + σtρt
√

f(1− f)
)

,

wheren0 is the number of individuals in the population at timet = 0. From this we deduce that

1

T
lognT

p
→ E

[

log
(

fµat + (1− f)µbt + σtρt
√

f(1− f)
)]

, (4)

where the expectation is taken with respect to the continuous limit of the distribution of the random
variable values over timest.2

1In particular, the sums over the sample population convergealmost surely to the unrestricted means and covari-

ances. This follows since the variance of each relevant random variable must be bounded, provided that there is an

upper bound on the possible number of offspring a single individual may have.
2Note that to apply the Law of Large Numbers here we assume thatthe terms

log
(

fµat + (1− f)µbt + σtρt
√

f(1− f)
)

have bounded variance. This assumption is valid provided that

the distribution of the argument of the logarithm does not have positive mass in arbitrarily small neighborhoods of

zero.
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It is convenient to introduce a new notation for the right-hand side of (4), namely

α = E
[

log
(

fµat + (1− f)µbt + σtρt
√

f(1− f)
)]

. (5)

In what follows, we seek to identify the values ofI that give rise to the maximum value forα,
since individuals with such values will dominate the population over time in a sense made precise
by the following proposition.

Proposition 1 Suppose that two different choice functions,I1 andI2, give rise to valuesα1 andα2,
with the property thatα1 > α2. Individuals with the choice functionI1 will become exponentially
more numerous over time, since

lim
T→∞

nT (I2)

nT (I1)

p
→ lim

T→∞

eT (α2−α1) = 0.

In the following sections, we consider the parameters giving rise to maximal values forα under
various specific assumptions about the nature of the distributionsΦit.

2 The Case of No Intelligence

We say that a member of the population exhibits intelligenceif its behavior correlates positively
with outcomes, i.e., ifρ > 0. If ρ = 0, however, then we say that no intelligence is present.3 In
this situation, we can writeα = α(f), and we writef ∗ for the value off that gives rise to the
maximum value ofα. Also, we can write the expression forα from (5) as

α (f) = E [log (fµat + (1− f)µbt)] .

The valuef ∗ that maximizes this expression forα is characterized by the following proposition.

Proposition 2 If intelligence is not present in a population, the growth-optimal behaviorf ∗ is
given by

f ∗ =







































1 if E [µat/µbt] > 1 andE [µbt/µat] < 1

solution to (7) ifE [µat/µbt] ≥ 1 andE [µbt/µat] ≥ 1

0 if E [µat/µbt] < 1 andE [µbt/µat] > 1

(6)

wheref ∗ is defined implicitly in the second case of (6) by:

E

[

µat

f ∗µat + (1− f ∗)µbt

]

= E

[

µbt

f ∗µat + (1− f ∗)µbt

]

(7)

3The caseρ < 0 would correspond to “intelligence” that leads to a less favorable outcome than no intelligence,

and so we exclude this case from consideration.
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and the expectations are taken with respect to the joint distributions across timet for µat andµbt,
as these distributions are implied by theΦit.

Proof. The result can be seen by computing the first and second derivatives ofα. Because the
second derivative is strictly negative, there is exactly one maximum value obtained in the interval
f ∈ [0, 1]. The values of the first derivative ofα(f) at the endpoints of the interval areα′(0) =

E [µat/µbt]− 1 andα′(1) = 1 − E [µbt/µat]. If α′(0) andα′(1) are both positive or both negative,
thenα(f) increases or decreases, respectively, throughout the interval and the maximum value is
attained atf = 1 or f = 0, respectively. Otherwise,f = f ∗ is the unique point in the interval for
whichα′(f) = 0, wheref ∗ is defined in (7), and it is at this point thatα(f) attains its maximum
value. The expression (6) summarizes the results of these observations for the various possible
values ofE [µat/µbt] andE [µbt/µat]. Note that the caseE [µat/µbt] ≤ 1 andE [µbt/µat] ≤ 1 is
not considered because this set of inequalities implies that α′(0) ≤ 0 andα′(1) ≥ 0, which is
impossible, sinceα′′(f) is strictly negative.

3 A Universal Measure and Cost of Intelligence

As we have noted, the case of no intelligence corresponds to no correlation, i.e.,ρt = 0, while the
case of intelligence corresponds to positive correlation,i.e.,ρt > 0, with higher values representing
more intelligence. The correlationρt cannot necessarily assume any value in the range[0, 1],
however, and it is in fact constrained by the choice off . More specifically,ρt can assume all values
in the range[0, ρt,max(f)] but no values outside this range, whereρt,max(f) is a function dependent
on f and theΦit. A precise value forρt,max is calculated in Proposition 3, below. Because the
upper bound forρt depends uponf , the measureρt is difficult to use as a universal representation
of underlying intelligence. We therefore introduce the additional variableγ, defined as

γ =
ρt

ρt,max(f)
. (8)

This is a universal representation of intelligence in the sense that it represents the fraction of the
maximum possible correlation achievable, and this fraction remains constant even as the maximum
possible correlation varies withf .

In the case in which there is no variation in theΦit across time, then the values ofρt andρt,max(f)
are the same for allt, and we write these common value asρ andρmax(f). This is the case we
considered in our main paper, and there we simply usedρ as the measure of intelligence instead
of γ, since the two measures are the same up to a constant rescaling factor that is common across
all generations. For purposes of this Supplementary Information, however, we deal with the more
general situation in which we must useγ instead ofρ as the universal measure of intelligence.

We suppose that a member of a population has a particular value of f ∈ [0, 1] and a particular
value ofγ ∈ [0, 1], and that these attributes are passed on to all offspring of an individual. In terms
of f andγ, the expression forα in in (5) can be written

α = E
[

log
(

fµat + (1− f)µbt + σtγρt,max(f)
√

f(1− f)
)]

. (9)
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We also consider the possibility thatγ has a cost,c(γ), associated with it, and that once this cost is
factored in, the expression forα becomes

α = E
[

log
(

fµat + (1− f)µbt + σt (γ − c(γ)) ρt,max(f)
√

f(1− f)
)]

. (10)

We assume thatc(0) = 0 andc(γ) > 0 for γ > 0. We also assume thatγ−c(γ) > 0 for sufficiently
small values ofγ and thatγ − c(γ) < 0 for values ofγ sufficiently close to 1. Thus, at least some
small amount of intelligence is beneficial, but high costs make the choice ofγ = 1 prohibitively
expensive. In addition, we make the further assumption thatc is twice continuously differentiable
and thatc′(γ) > 0 andc′′(γ) > 0. Because of this assumption, there is a unique value ofγ∗ that
maximizesγ − c(γ).

γ∗ = uniqueγ such thatc′(γ) = 1. (11)

It is convenient to introduce some additional notation related to the distribution of theyit, which is
given by the functionΦit. We writeϕt for the probability thatyit > 0 for individuals in generation
t, i.e.,

ϕt = Prob(yit > 0). (12)

This value is thus the probability that choicea is superior to choiceb in generationt. In addition, we
write δ+t andδ−t for the expected value ofyit conditional on eitheryit > 0 or yit ≤ 0, respectively.
That is,

δ+t = E[yit|yit > 0] and δ−t = E[yit|yit ≤ 0]. (13)

The values ofϕt, δ
+
t , andδ−t are constant across all individuals in generationt because the functions

Φit are independent and identical across individuals in generation t. In much of what follows, we
also find it convenient to make the following assumption about the independence ofyit andIit,
conditional on the sign ofyit. This assumption may be violated in a fully general case, butit
allows us to simplify our analysis and obtain more tractableformulas while still retaining a rich
framework in which to operate.

A 1 For all i andt, conditional on the sign ofyit, the distribution ofyit and the distribution ofIit
are independent. Thus,

E[Iityit|yit > 0] = δ+t E[Iit|yit > 0] and E[Iityit|yit ≤ 0] = δ−t E[Iit|yit ≤ 0].

In other words, the value ofIit can only depend upon the sign ofyit, and thus the question of
whethera or b is the superior choice, and not upon additional informationabout the degree of the
superiority of one choice over the other.

Under assumption A1, and using Propositions 3 and 4, which are proven in Section 4 below, we
can rewrite (10) as

α = E
[

log
(

fµat + (1− f)µbt +
(

δ+t − δ−t
)

(γ − c(γ)) (min(f, ϕt)− fϕt)
)]

. (14)

We seek the values off andγ that maximizeα, as defined in (14). If the optimal value occurs
whenf = 0 or f = 1, then the amount of intelligence is clearly irrelevant, since the term involving
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intelligence vanishes and behavior is simply deterministic. If the optimal value occurs whenf ∈
(0, 1), then the optimal amount of intelligence is clearlyγ = γ∗, as defined above. The nature of
the optimal choice off is derived in Propositions 5 and 6, in the case of no systematic variation
across generations, and Proposition 7, in the general case.

4 Upper Bound on Correlation

In this section we consider the restrictions on the possiblevalues forρt. The value ofρt is subject
to constraints that depend upon the nature of the distributionsΦit(xa, xb), as well as on the value
of f for the population. The next proposition makes this dependence clear, when assumption A1
holds.

Proposition 3 Under assumption A1, the value ofρt is given by

ρt = Corr (Iit, yit) = Corr (Iit, H (yit))

(

δ+t − δ−t

σt/
√

ϕt(1− ϕt)

)

, (15)

whereH(yit) is the Heaviside function, which is 1 whenyit > 0 and 0 otherwise. The values ofδ+t ,
δ−t , andϕt are as defined in (13) and (12). The correlation betweenIit andH (yit) may be also be
written as

rt
def
= Corr (Iit, H (yit)) =

(πt − ϕtf)
√

ϕt(1− ϕt)
√

f(1− f)
, (16)

where
πt = Prob (Iit = 1 andyit > 0) . (17)

The value ofrt and that ofπt are the same for each individuali in a given generationt.

Proof. The result follows directly from the definition of correlation. We have

Corr (Iit, yit) =
E [Iityit]− E [Iit] E [yit]

Std (yit) Std (Iit)

=
πtδ

+
t + (f − πt)δ

−

t − f
(

ϕtδ
+
t + (1− ϕt)δ

−

t

)

σt

√

f(1− f)

= (πt − ϕtf)
δ+t − δ−t

σt

√

f(1− f)

=

(

πt − ϕtf
√

f(1− f)
√

ϕt(1− ϕt)

)(

δ+t − δ−t

σt/
√

ϕt(1− ϕt)

)

= Corr (Iit, H (yit))

(

δ+t − δ−t

σt/
√

ϕt(1− ϕt)

)

,

which proves (15).
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The value ofπt does not depend upon the choice of individuali because the functionsΦit andIit are
independent and identically distributed across individuals in generationt. The lack of dependence
of rt on the choice of individuali within a given generation can be seen by noting that

rt = Corr (Iit, H (yit)) =
πt − ϕtf

√

f(1− f)
√

ϕt(1− ϕt)
,

and observing that the right-hand side of this equation doesnot depend upon the choice of individ-
ual i.

An implication of the formula in (15) is that the possible values forρt cannot necessarily be ar-
bitrarily close to 1. The range of possible values forρt is made more precise by the following
proposition.

Proposition 4 Under assumption A1, the range of possible values forπt when intelligence is
present is

fϕt < πt ≤ min (f, ϕt) . (18)

The corresponding range of possible values forrt is

0 < rt ≤ rt,max, where rt,max =
max (f, ϕt)− ϕtf

√

f(1− f)
√

ϕt(1− ϕt)
. (19)

The inequalityrt < 1 holds wheneverf 6= ϕt. The corresponding range of possible values forρt
is

0 < ρt ≤ ρt,max, where ρt,max = rt,max
δ+t − δ−t

σt/
√

ϕt(1− ϕt)
. (20)

The inequalityρt,max < 1 holds unlessrt = 1 and bothE [y2it|yit > 0] = (E [y2it|yit > 0])
2 and

E [y2it|yit ≤ 0] = (E [y2it|yit ≤ 0])
2.

Proof. From the definition ofπt in (17), it is clear thatπ must be bounded above bymin (f, ϕt).
Also, because intelligence only occurs whenρt > 0, the formulas in (15) and (16) show that it
must also be the case thatπt is bounded below byfϕt, and this suffices to prove (18).

The range of possible values forrt can be derived by substituting the limits of the possible range
for πt into the expression forrt in (16), and the range of possible values forρt follows from (15).
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To obtain an upper bound onρt,max, it is useful to proceed by first deriving a lower bound forσt.
Note that Hölder’s Inequality shows that

σ2
t = E

[

y2it
]

− (E [yit])
2 = ϕt E

[

y2it|yit > 0
]

+ (1− ϕt) E
[

y2it|yit ≤ 0
]

− (ϕt E [yit|yit > 0] + (1− ϕt) E [yit|yit ≤ 0])2

≥ ϕt (E [yit|yit > 0])2 + (1− ϕt)
(

E
[

y2it|yit ≤ 0
])2

− (ϕt E [yit|yit > 0] + (1− ϕt) E [yit|yit ≤ 0])2

= ϕt(1− ϕt)
(

δ+t − δ−t
)2

.

The expectations are all taken with respect to a particular individual within generationt and are
also independent of the specific choice of individual withinthe generation. Also, the conditions
for equality in Hölder’s inequality show that equality only holds for our lower bound onσ2

t when
bothE [y2it|yit > 0] = (E [y2it|yit > 0])

2 andE [y2it|yit ≤ 0] = (E [y2it|yit ≤ 0])
2. The lower bound

onσ2
t can be re-written as

δ+t − δ−t

σt/
√

ϕt(1− ϕt)
≤ 1,

and this the upper bound onρt,max described in the proposition.

5 Intelligence and No Variation Across Generations

We now consider the case in which there may be intelligence, so that it is possible to haveγ > 0,
but we assume that there is no variation in the distribution of possible outcomes across generations.
Thus, we haveµat = µa, µbt = µb, δ

+
t = δ+, δ−t = δ−, andϕt = ϕ. In this case, we can write the

expression forα from (9) as

α = log
(

fµa + (1− f)µb + (γ − c(γ)) (min(ϕ, f)− ϕf)
(

δ+ − δ−
))

. (21)

Note that we do not take the expectation of the logarithm in this expression forα, since the value
of the logarithm is constant across generations under the current assumptions. The values off and
γ that maximizeα in the case in which intelligence is costless (so thatc(γ) ≡ 0) are characterized
by the following proposition.

Proposition 5 Under assumption A1, and under the further assumptions thatintelligence has no
cost and that there is no variation in outcome possibilitiesacross generations, the values off and
γ at whichα is maximized aref = ϕ andγ = 1, provided thatϕ ∈ (0, 1). If ϕ is either 0 or 1,
thenα is maximized whenf = ϕ, and the value ofγ is irrelevant.

Proof. The expression forα in (21) is maximized when the argument of the logarithm is maxi-
mized, and this can be written

eα = fµa + (1− f)µb + γ (min (ϕ, f)− ϕf)
(

δ+ − δ−
)

.
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The partial derivative ofeα with respect toγ is

∂eα

∂γ
= (min (ϕ, f)− ϕf)

(

δ+ − δ−
)

,

and this value is greater than 0 provided thatf 6∈ {0, 1}, sinceδ+−δ− > 0. Thus, iff 6∈ {0, 1}, eα

is a strictly increasing function ofγ, and the maximum value ofeα for any fixed value off ∈ (0, 1)
is obtained whenγ = 1.

The partial derivative ofeα with respect tof is

∂eα

∂f
= ϕ(1− γ)δ+ + (1− ϕ(1− γ))δ−,

whenf > ϕ, and

∂eα

∂f
= (1− (1− ϕ)(1− γ))δ+ + (1− ϕ)(1− γ)δ−,

whenf < ϕ. Whenγ = 1, the expressions for∂eα/∂f becomes simplyδ− or δ+, whenf > ϕ
andf < ϕ, respectively. Becauseδ− < 0 andδ+ > 0, eα obtains its maximum forf ∈ (0, 1) is at
f = ϕ andγ = 1.

If ϕ is 0 or 1, then the value off that maximizesα andeα is clearlyf = ϕ, and the value ofγ is
irrelevant, since intelligence is irrelevant for an optimal outcome in this situation.

Proposition 5 shows that, whenc(γ) ≡ 0, more intelligence, i.e., a higherγ value, is always
desirable, except in situations in which behavior is completely deterministic, i.e.,f is equal to
0 or 1. This result makes sense when intelligence is costless, but to make the situation more
realistic, we also consider the situation in which an intelligence level ofγ is associated with a cost
c(γ) 6≡ 0 of the type described in Section 3. The next proposition characterizes the values off and
γ that maximizeα when there is no variation across generations and when thereis such a cost to
intelligence.

Proposition 6 Under assumption A1, and under the further assumptions thatthere is no variation
in outcome possibilities across generations and that thereis a costc(γ) of intelligence of the type
described in Section 3, the values off andγ that maximizeα are characterized in the following
way. Ifµb > µa andϕ ∈ (0, 1), then

f ∗ =







































ϕ if γ∗ − c(γ∗) > µb−µa

δ++µb−µa
;

[0, ϕ] if γ∗ − c(γ∗) = µb−µa

δ++µb−µa
; and

0 if γ∗ − c(γ∗) < µb−µa

δ++µb−µa
.

(22)
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Hereγ∗ is as defined in (11). Ifµb < µa andϕ ∈ (0, 1), then

f ∗ =







































ϕ if γ∗ − c(γ∗) > µa−µb

µa−µb−δ−
;

[ϕ, 1] if γ∗ − c(γ∗) = µa−µb

µa−µb−δ−
; and

1 if γ∗ − c(γ∗) < µa−µb

µa−µb−δ−
.

(23)

If µa = µb thenf ∗ = ϕ, and ifϕ ∈ {0, 1}, thenf ∗ = ϕ. In all cases for whichf ∗ 6∈ {0, 1}, the
optimal choice ofγ is γ∗. If, however,f ∗ ∈ {0, 1}, then intelligence is unimportant, and the choice
of γ does not matter.

Proof. The proof follows from a straightforward analysis of the partial derivatives ofeα with
respect toγ andf . The derivative ofeα with respect toγ is

∂eα

∂γ
= (1− c′(γ)) (min(ϕ, f)− ϕf)

(

δ+ − δ−
)

,

and for any value off ∈ (0, 1), this partial derivative is zero exactly whenγ = γ∗. Thus, if the
optimal value off is in the interior of the interval[0, 1], the optimal value ofγ is γ∗.

Whenγ = γ∗, the partial derivative ofeα with respect tof can be written

∂eα

∂f
= µa − µb + (δ+ − δ−)(γ∗ − c(γ∗))(1− ϕ), (24)

whenf < ϕ, and
∂eα

∂f
= µa − µb + (δ+ − δ−)(γ∗ − c(γ∗))(−ϕ), (25)

whenf > ϕ. Whenµb > µa andϕ ∈ (0, 1), the expression in (25) is always negative, and so
eα is decreasing inf in the regionf ∈ [ϕ, 1]. Also, the sign of (24) is positive, zero, or negative,
according to whetherγ∗−c(γ∗) is larger, equal to, or less than, respectively, the value ofµb−µa

δ++µb−µa
.

In these three situations, the functioneα is increasing, constant, or decreasing, respectively, in the
regionf ∈ [0, ϕ]. These observations lead directly to the results in (22).

The remaining results of the proposition follow from similar analysis of the partial derivative ofeα

with respect tof in the various cases described.

6 Example of Optimal Choice with Intelligence

In this section, we provide an illustrative example of our model in the case of no variation across
generations and the possibility of intelligence in behavior.

For purposes of our example, we assume a cost function of a particular type, namely

c(γ) = κ
γ2

1− γ
,
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Figure 1: Values ofγ∗ andγ∗ − c(γ∗) as functions ofκ, the cost of intelligence parameter in (26).

whereκ > 0 is a parameter that can be chosen higher to indicate a greatercost to intelligence, or
lower to indicate the reverse situation. This functionc(γ) can also be written

c(γ) = κ

(

−γ − 1 +
1

1− γ

)

, (26)

and it is straightforward to check that it satisfies all of ourrequirements for a cost function for
γ ∈ [0, 1]. Specifically,γ − c(γ) > 0 for small values ofγ, andγ − c(γ) < 0 for values ofγ
sufficiently close to 1. Also,c(γ) is twice continuously differentiable, is increasing, and is convex.
For this cost function, the value ofγ∗ defined in (11) can be written

γ∗ = 1−

√

κ

1 + κ
.

Also, the value ofγ∗ − c(γ∗), which is needed to determine the cases specified in Proposition 6,
can be written

γ∗ − c(γ∗) = 1 + 2
(

κ−
√

κ(1 + κ)
)

.

The values ofγ∗ andγ∗ − c(γ∗) are plotted as functions ofκ in Figure 1.

The result of Proposition 6 is illustrated in Figure 2. We assume thatµb > µa, and we use the
horizontal axis to indicate the size of the ratior = δ+/(µb − µa). We use the vertical axis to
indicate the value ofκ. For anyr andκ values, Proposition 6 can be used to determine the optimal
f value, namelyf ∗. The value off ∗ is either 0 orϕ, except whenγ∗ − c(γ∗) = 1/(1 + r), and
in this special case the value off ∗ may be anywhere between 0 andϕ. The deterministic value 0
is possible while the deterministic value 1 is not simply because we have assumed thatµb > µa.
As the figure indicates, a sufficiently high cost of intelligence, as indicated by a highκ value,
corresponds to the deterministic choicef ∗ = 0 and no use of intelligence. When intelligence has a
low enough cost for a given ratio value, however, the optimalchoice isf ∗ = ϕ, which is the same
frequency forf as occurs in probability matching.
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Figure 2: Values off ∗ for particular values ofκ andr = δ+/(µb−µa). The region toward the upper
left corresponds to relatively costly intelligence and deterministic behavior of the formf ∗ = 0. The
region toward the lower right corresponds to relatively cheap intelligence and probability matching
of the formf ∗ = ϕ. On the line between the two large regions, any value forf ∗ between 0 andϕ
is optimal.

7 Intelligence and Variation Across Generations

The final case we consider is the one in which individuals may be intelligent and in which there
may be variation in outcomes over time. The following proposition describes nature of the optimal
choice off andγ in this setting under certain assumptions.

Proposition 7 Under assumption A1, and under the further assumptions thatthe distribution of
ϕt is smooth and that intelligence has a cost of the type described in Section 3, the maximal value
of α occurs whenγ = γ∗. In addition, if the optimal choice off is in the interior of the interval
[0, 1], then this choice is defined implicitly by the equation

E

[

µat − µbt + (γ∗ − c(γ∗))
(

δ+t − δ−t
)

(H(ϕt − f)− ϕt)

f ∗µat + (1− f ∗)µbt + (γ∗ − c(γ∗))
(

δ+t − δ−t
)

(min(ϕt, f)− ϕtf)

]

= 0,

whereH is the Heaviside function, and where the expectations are taken with respect to the joint
distributions across timet for µat andµbt, as these distributions are implied by theΦit.

Proof. The optimality of the choiceγ = γ∗ follows from consideration of the derivative ofα
with respect toγ. The optimality off described in the proposition follows from the fact that the
second derivative ofα with respect tof is continuous and strictly negative, sinceϕt has a smooth
distribution. Also, because the optimal value off is assumed to occur in the interior of the interval
[0, 1], it follows that this value is the unique place at which the derivative with respect tof vanishes,
whenγ = γ∗.
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