Dynamics of CD4⁺ T cell responses against Listeria monocytogenes

Frederik Graw^{*}, K. Scott Weber[†], Paul M. Allen[†], and Alan S. Perelson^{*}

^{*}Los Alamos National Laboratory, Theoretical Biology and Biophysics, MS-K 710, Los Alamos NM 87545, U.S.A.

[†]Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, U.S.A.

Supplemental Material

Figure S1: Data and fitted curves for the CD4⁺ T cell count of LLO118 and LLO56 cells. The separate models correspond to the models explained in Figure 1. In this case, a biphasic contraction phase was assumed in each of the models (see *Materials and Methods*). The total number of CD4⁺ T cells (T, long-dashed line), the number of activated and effector CD4⁺ T cells, respectively (A, E solid line) and the number of memory cells (M, dashed line) are shown.

phase
optosis
apo
rapid
with 1
models
for
estimates
Parameter
51:
Table 5

parameter	symbol	unit	Ν	odel A	Ν	fodel B	Model C	0
Proliferation rate	$ ho^{ m LLO118}$	day^{-1}	0.88	[0.85, 0.9]	0.97	[0.94, 0.99]	0.92 -	
	$ ho^{ m LLO56}$		0.88	[0.85, 0.9]	0.97	[0.94, 0.99]	1.03 -	
Memory cell formation	$r^{ m LLO118}$	day^{-1}	0.028	[0.017, 0.037]	0.024	[0.019, 0.027]	9.88 -	
	$r^{ m LLO56}$		0.084	[0.074, 0.093]	0.035	[0.032, 0.039]	0.39	
Activated cells at $t = 0$	$A(0)^{\rm LL0118}$	cells	165	[156, 172]	150	[142, 157]	- 190	
	$A(0)^{ m LL056}$		80	[75, 85]	82	[76,88]	- 54	
Death rate of memory cells	$\delta_M^{\rm LLO118}$	day^{-1}	0.15	[0.14, 0.16]	0.13	[0.12, 0.14]	0.11 -	
	$\delta_M^{ m LLO56}$		0.06	[0.05, 0.06]	0.06	[0.05, 0.06]	- 90.0	
Death rate of activated cells	δ_A	day^{-1}	0.16	I	0.14	[0.0, 0.35]	0.13 -	
Fast apoptosis rate	$\alpha^{ m LLO118}$	day^{-1}	0.24	[0.21, 0.27]	0.41	[0.18, 0.63]	0.22 -	
	$lpha^{ m LLO56}$		0.84	[0.73, 0.94]	1.92	[1.36, 2.48]	1.15 -	
End of proliferation phase	T	day	7.4	[7.3, 7.5]	7.4	[7.2, 7.5]	7.0	
Duration of fast contraction phase	\bigtriangledown	day	7.15	[6.39, 7.91]	16.53	I	- 10.1	
residual mean square	MNSQ		3.533		3.524		3.499	
-	1							

Parameter estimates for the basic model ((A), Eqs. (1a) and (1b)), a model with the assumption of a constant memory production during the proliferation phase ((B), Eqs. (4a) and (4b)), and for a model assuming the alternative differentiation pathway ((C), Eqs. (5a) and (5b)). For all models, we assume a biphasic contraction phase for the activated/ effector cells as indicated in Eq. (3). 95% confidence intervals for the estimates are calculated based on the standard error approximated by the Hessian-matrix. MNSQ indicates the residual mean square for each model (see Materials and Methods for the calculation).