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Supplementary Discussion 

 

Genes defining 8.1 and 8.2 do not represent extremes of a Gaussian distribution of 

gene expression. 

It was important to determine if groups 8.1 and 8.2 were defined by distinct bimodal gene 

expression profiles, or if the groups represented the extreme ends of a Gaussian 

distribution of gene expression. To test this, the AAV cohort was randomly subdivided 

into two groups, identifying 323 differentially-expressed genes (FDR < 0.05). Expression 

of these genes across the AAV cohort was compared to a series of idealised template 

distributions (Supplementary Fig. 8e) to determine the closest match. As expected, most 

genes (75%) were normally distributed across the population, with only 12.4% 

conforming to a bimodal distribution (Supplementary Table 7a). When the same 

analysis was performed using 1860 genes defining groups 8.1 and 8.2 (FDR<0.05, fold-

change>1.5), it was found that 67.3% best fitted a bimodal distribution template, while 

only 14.3% conformed to a normal distribution (Supplementary Table 7b), 

demonstrating a significant skewing away from the Gaussian distribution in expression of 

genes differentiating 8.1 and 8.2 (p < 0.0001, Fig. 3e).     
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Changes in both naive and memory T cell gene expression are integral to the 

signature defining the prognostic groups. 

We attempted to classify patients into the two subgroups using flow cytometric 

quantification of TMEM populations. Despite a significant difference in the absolute size 

and proportion of TMEM populations between subgroups 8.1 and 8.2 these populations 

overlapped (Supplementary Fig. 10b, c) and so could not be used to confidently predict 

subgroup identity. This implied that gene changes in naive T cells may also contribute. 

This was supported by three lines of evidence. First, 216 of 1030 genes (21%) 

characteristic of the TEM population7 are found in the gene list best defining the difference 

between 8.1 and 8.2 – broadly similar to the 63 of 369 genes (17%) characteristic of TN 

cells 7 (Supplementary Fig. 10d). Second, increased expression of mRNA for the anti-

apoptotic molecule Bcl2 was characteristic of group 8.1. Increased expression of Bcl2 

protein was similarly seen in the TMEM population but also, more strongly, in the TN 

subset (Supplementary Fig. 10e). Third, clear bimodal expression patterns were seen for 

a subset of genes known to be specifically expressed by TN cells7 (Supplementary Fig. 

10f-i). This indicates that these TN genes are differentially expressed in each of groups 

8.1 and 8.2 in the same way as TMEM and other genes, consistent with them being an 

integral component of the signature rather than being present by chance as the result of 

being at the extreme of normal distribution of gene expression.  

These results taken together provide a model which might explain correlation of the 

CD8 expression signature with clinical disease, and which is supported, but not proven, 



 3

by these data. The variation in gene expression in naive T cells, prior to antigen 

encounter, seen in group 8.1 may drive increased differentiation into memory T cells, at 

least in part via IL7R and TCR signalling. This in turn could increase effector T cell 

generation, tissue damage and thus disease flare (Supplementary Fig. 11). 

Prognostic subgroups in AAV may be identified using expression of 3 genes 

In order to facilitate the translation of these prognostic expression signatures to 

clinical practice we developed a predictive model using expression data from a smaller 

number of genes. Robust discrimination of both subgroups in AAV and SLE could be 

achieved using as few as three target genes (positive predictive value (PPV) 94%, 

negative predictive value (NPV) 100%, Fig 4g, h). The single patient incorrectly 

classified was the only ‘borderline’ case, originally classed as 8.1 by one clustering 

technique and 8.2 by another (Supplementary Fig.1d). Reclassification of this individual 

as 8.1 would improve rather than weaken the observed association with poor outcome. 

Multiple gene combinations could be used to classify patients accurately, with the 3 gene 

classifier illustrated in Supplementary Fig. 12 chosen by optimising signal-to-noise 

ratios between the subgroups (Supplementary Methods) – it showed no discrimination 

between the two disease phenotypes (Fig.4 g). Interestingly, the three genes included 

(ITGA2, PTPN22, NOTCH1) have all been associated with the development of T cell 

memory responses and with autoimmunity9-15. It should, however, be noted that the 

accuracy of prediction depended on the use of RNA from purified CD8 T cells and could 

not be replicated using RNA from un-separated PBMC (Fig. 4i). 
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Subgroups 8.1 and 8.2 may not be discernible after therapy  

We sought to determine whether the gene expression signature could predict 

prognosis in a cross-sectional fashion when applied to patients with inactive disease. 33 

AAV patients were rebled 12 months after enrolment, when their disease was in 

remission on maintenance immunosuppression therapy, and their CD8 T cell 

transcriptomes compared. The distinctive gene signature that had defined the two 

subgroups was not preserved (Supplementary Figure 13a, b), though given the intense 

immunosuppression therapy the patients had received in the interim the significance of 

this observation remains uncertain. While this lack of consistency does not impinge on 

the prognostic significance of the gene signature at presentation, of interest when three 

patients (two v8.1 and one v8.2) were arrayed when re-presenting with a subsequent 

disease flare, they segregated into the same group as they had at presentation, raising the 

possibility that the signature might be consistent over time at least in the context of active 

disease. 

Possible factors underlying the gene expression differences in 8.1 and 8.2 

That the signature is seen in both AAV and SLE demonstrates that it is not disease-

specific. This is underlined by the definition of two subgroups in a population of healthy 

controls. The full implications of this remain to be determined,  but it may underlie some 

of the variation in propensity to develop a robust CD8 T cell memory response seen 

within the normal population, something which has long been apparent in vaccination 
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programmes16. It may be, then, that an individual within subgroup 8.1 is not predisposed 

to the development of autoimmune disease per se, but may be more prone to follow a 

relapsing course once tolerance has been broken and disease develops. 

The underlying cause of the gene expression differences between 8.1 and 8.2 is 

likely to be due to a combination of genetic predisposition and/or antigen exposure. The 

former is suggested by evidence that genes characteristically expressed in naive CD8 T 

cells are an important component of the prognostic signature. It is interesting that a 

number of the genes differentially expressed between the groups are those in which 

genetic variation is commonly associated with more than one autoimmune disease – 

genes such as PTPN22, IL7RA and CD2514,17-19.  This supports the concept, emphasised 

by recent genome-wide association studies, that common critical pathways are involved 

in multiple autoimmune diseases20 but it does not necessarily imply that polymorphisms 

in these genes alone are directly responsible for the 8.1/8.2 division – indeed we have not 

found associations between the common disease-associated SNPs in PTPN22, IL7RA, 

and CD25 and either group (data not shown). However, while no simple association is 

apparent it remains possible that variants in these and other genes may contribute in a 

more subtle polygenic way to the genetic risk for developing an ‘8.1 phenotype’, 

something that could only be determined by studying a much larger cohort.  

Alternatively, the expression changes could be driven by an underlying polymorphism in 

a single unknown transcriptional regulator that favours differentiation into cells with one 

or other expression signature.  
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The presence of an ‘8.1’ signature may also in part reflect the context in which a T 

cell-mediated response has occurred. Vaccination studies have shown that repeated 

antigen exposure leads to the accumulation of memory CD8 T cells with effector 

properties21,22. The CD8 TMEM expansion seen in subgroup 8.1 could be generated by 

such enhanced or recurrent priming of memory cells by antigen23. Whether this is driven 

by the nature, frequency or scale of antigen exposure (either directly or via another cell 

type such as the CD4 T cell) is not clear, but the presence of the subgroups in two 

autoimmune diseases characterized by responses to distinct autoantigens, as well as in the 

normal population, suggests it is not driven by a specific autoantigen. Given the potential 

role played by exposure to antigen in driving CD8 TMEM expansion, it is important to be 

cautious in extrapolating the results of studies on these subgroups in the normal 

population to patients presenting with active autoimmune disease. 
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Supplementary Methods 

Patients.   

59 AAV patients and 25 SLE patients (plus 1 patient re-enrolled at the time of repeat 

disease flare) attending or referred to the specialist vasculitis unit at Addenbrooke’s 

hospital, Cambridge, UK between July 2004 and May 2008 were enrolled into the present 

study. 34 patients presenting with active disease between July 2004 and Oct 2006 

composed a prospectively-defined initial vasculitis cohort, while a further 27 patients 

presenting between November 2006 and May 2008 composed a validation cohort, 

defined arbitrarily by date of presentation only. Active disease at presentation was 

defined by Birmingham vasculitis activity score (BVAS24) and the clinical impression 

that induction immunosuppression would be required. Following treatment with an 

immunosuppressant and tapering dose steroid therapy (Supplementary Table 2), 

patients were followed up monthly for up to 52 months. Of the 59 vasculitis patients who 

were enrolled into the study 3 were excluded from follow-up analysis due to failure to 

meet inclusion criteria (x2 concurrent malignancy, x1 non-compliance with maintenance 

immunosuppression). Repeat analysis with inclusion of these patients did not affect the 

significance of outcomes presented. Prospective disease monitoring was undertaken with 

serial BVAS disease scoring24 and full biochemical, haematological and immunological 

profiling (Supplementary Table 1). At each time-point of follow-up, disease activity 

was allocated into one of three categories: Flare (at least 1 major or 3 minor BVAS 

criteria), low-grade activity (0 major and 1-2 minor BVAS criteria) or no activity (0 

major or minor BVAS criteria). All disease flares were cross-checked against patient 
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records to confirm clinical impression of disease activity and the need for intensified 

therapy as a result. Treatment strategies were recorded (Supplementary Table 2). 

Categorisation of disease activity was performed by a single investigator (EFM) who was 

blinded to the gene expression-defined subgroup allocation of each patient. Additional 

flares were defined in the absence of BVAS scoring if patients attended for emergency 

investigation (bronchoscopy, or specialist ophthalmological or Ear/Nose/Throat surgical 

review) which confirmed evidence of active disease. To differentiate between discrete 

flares clear improvement in disease activity was required in the form of an improvement 

in flare-related symptoms together with a reduction in BVAS score, a reduction in 

markers of inflammation (CRP, ESR), and a reduction in immunosuppressive therapy. 

The SLE cohort was composed of 25 patients attending or referred to the Addenbrooke’s 

Hospital specialist vasculitis unit between July 2004 and May 2008 meeting at least four 

ACR SLE criteria25, presenting with active disease (defined below) and in whom 

immunosuppressive therapy was to be commenced or increased. Following treatment 

with an immunosuppressant (Supplementary Table 5) patients were followed up 

monthly for up to 1000 days. Disease monitoring was undertaken with serial BILAG 

disease scoring26 and full biochemical, haematological and immunological profiling 

(Supplementary Table 4). A timepoint of follow-up was defined as a discrete disease 

flare if it met all 3 of the following prospectively-defined criteria: 1. new BILAG score A 

or B in any system, 2. clinical impression of active disease by the reviewing physician 

and 3. increase in immunosuppressive therapy as a result. Additional flares were defined 

in the absence of BILAG scoring if patients were admitted directly to hospital as 

emergency cases for increased immunosuppressive therapy. To differentiate between 
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disease flares clear improvement in disease activity was required in the form of an 

improvement in flare-related symptoms together with a reduction in BILAG score and a 

reduction in immunosuppressive therapy. 

Control subjects 

40 healthy caucasian individuals, age and sex matched to the disease cohorts were 

recruited, bled and samples processed in an identical fashion to patient samples. A further 

27 healthy individuals were recruited from the National University Hospital in Singapore 

and again were processed in an identical fashion.  

 

Cell separation and RNA extraction.   

Venepuncture was performed at a similar time of day to minimise gene expression 

differences arising from circadian variation27.  Peripheral blood mononuclear cells 

(PBMC), CD4 and CD8 T cells, CD19 B cells, CD14 monocytes and CD16 neutrophils 

were isolated from whole blood by centrifugation over ficoll and positive selection using 

magnetic beads as previously described28.  The purity of separated cell subsets was 

determined by two-colour flow cytometry. Total RNA was extracted from each cell 

population using an RNeasy mini kit (Qiagen) according to the manufacturer’s 

instructions. RNA quality was assessed using an Agilent BioAnalyser 2100 and 

quantified using a NanoDrop ND-1000 spectrophotometer. 
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Naïve CD8 T cell isolation 

Naïve CD8 T cells (CD3+8+45RA+62L+) were isolated using a human naïve CD8 T cell 

isolation kit (Miltenyi Biotec) according to the manufacturer’s instructions.  

 

Microarray hybridisation.  

 -      Mediante custom spotted microarray  

Total RNA (250 ng) was converted into double-stranded cDNA and labelled with Cy3- or 

Cy5-dCTP as previously described28.  Appropriate Cy3- and Cy5-labelled samples were 

pooled and hybridised to custom spotted oligonucleotide microarrays (mediante) 

comprised of probes representing 25, 342 genes and control features as previously 

described29  All samples were hybridised in duplicate, using a dye-swap strategy, against 

a common reference RNA derived from pooled PBMC samples.  Following 

hybridisation, arrays were washed and scanned on an Agilent G2565B scanner.  

- Affymetrix Human Gene 1.0 ST microarray 

Aliquots of total RNA (200ng) were labelled using Affymetrix’s WT sense Target 

labelling kit and hybridised to Human Gene 1.0 ST Arrays (Affymetrix) following the 

manufacturer’s instructions. After washing, arrays were scanned using a GS 3000 

scanner (Affymetrix).  
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Data analysis.   

Raw image data were extracted using Koadarray v2.4 software (Koada Technology) and 

probes with a confidence score >0.3 in at least one channel were flagged as present.  

Extracted data were imported into R where log transformation and background 

subtraction were performed followed by within-array print-tip Loess normalisation and 

between-array aquantile and scale normalisation in the Limma package30, part of the 

bioconductor project (www.bioconductor.org). Normalised data were then imported into 

Genespring v7.2 (Agilent) for further analysis. Only data demonstrating a strong negative 

correlation between dye swap replicates and low level expression of excluded cell 

specific markers was used in downstream analyses. Affymetrix raw data (.CEL) files 

were imported into R and subjected to variance stabilisation normalisation using the VSN 

package in BioConductor. 

Differential expression between defined phenotypes was assessed using one-way 

ANOVA with FDR controlled at 5%. Genes showing minimal variation between defined 

phenotypes were excluded from analysis using a fold change (FC) filter set at either 1.5 

or 2-fold as specified. The degree of overlap between different gene lists was measured in 

Genespring using the hypergeometric probability function with a specified universe of all 

T-cell expressed genes. Enrichment of literature-curated gene signatures within different 

microarray datasets was determined using GSEA4. Follow-up analysis of disease activity 

was performed using the Kaplan-Meier survival method with a log-rank test of 

significance between groups. Comparisons of outcome and associated clinical variables 
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between subgroups were analysed using the non-parametric Mann Whitney U test or the 

Chi-square test as appropriate. The Bonferroni correction for multiple testing was applied 

to correct for multiple testing where appropriate.  

Clustering.   

Hierarchical clustering and principal components analysis using an uncentred correlation 

distance metric and average linkage clustering were performed either in Genespring or 

Cluster with visualisation in Treeview31.  

Multidimensional scaling and the global test of clustering 

Multidimensional scaling was performed in BRB-Array Tools version 3.7.0 Beta_2 

release developed by Dr Richard Simon and BRB-Array Tools Development Team1 and a 

global test of clustering was applied32. Briefly, a series of simulated datasets are 

generated based on the mean and standard deviation of the top 3 principal components of 

the experimental dataset, only with univariate Gaussian distributions. The nearest 

neighbour distance between experimental and simulated specimens as represented in 3-

dimensional principal component space is then calculated, along with the empirical 

distribution function (EDF) of those distances (for any distance, d, the EDF is the 

proportion of distances that are less-than or equal to d). Data showing clustered 

‘substrucutre’ will demonstrate lower EDF scores, each sample being closer to at least 

one other sample than with the simulated data. The significance of this may be calculated 

by comparison with the simulated distribution. 

 



 13

Consensus clustering 

Consensus cluster matrices were generated in Genepattern 8 using resampling-based 

clustering2. Briefly, subsamples of a dataset are subjected to repeated rounds of clustering 

which are summarised in a consensus matrix which indicates the proportion of clustering 

runs in which two samples cluster together. A distinct consensus matrix is generated for 

each of the number of clusters to be considered (k=1, 2….n), with the expectation that the 

most stable subdivision of the dataset will lead to the most robust co-clustering of 

samples across multiple clustering iterations. Visual inspection and/or interrogation of 

each consensus matrix thus allows the optimal number of clusters to be defined. 

ClusterComparison in ExpressionProfiler:NG 

Comparisons between flat and hierarchical clustering methods were performed using 

ClusterComparison3 in ExpressionProfiler:NG33. Briefly, a hierarchical tree is divided at 

multiple levels to optimise the correspondence between the resulting clusters and those 

derived by using a flat (e.g. k-means) clustering algorithm.  

Expression density distribution mapping 

The CD8 T cell dataset from the AAV patients (n=59) was randomly subdivided in a 

stratified fashion such that the relative proportions of subgroups 8.1 and 8.2 were 

preserved in each. Differentially expressed genes (FDR<0.05 and fold-change >1.5) 

between these randomly-assigned subgroups were identified using ANOVA. This list of 

differentially expressed genes was then imported into R and the best-fit expression 

density distribution determined using the BioConductor expression density diagnostics 

package in R  using a neural networks classifier. This procedure was repeated for genes 
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differentially expressed between subgroups v8.1 and v8.2 in the same cohort of patients. 

Significant differences in distribution of these genes were determined with a chi-square 

test comparing bimodal’ vs ‘other’ and ‘normal’ vs ‘other’. 

Differential co-expression analysis 

The naïve CD8 T cell data for 11 AAV patients from the combined cohort were subjected 

to differential co-expression analysis using the coXpress package in R34. Briefly, 

hierarchical clustering was performed on the samples (n = 4) from subgroup 8.1 and a 

threshold of Pearson correlation r2 > 0.6 was applied to generate co-expressed gene 

subsets. Significance of co-correlation was determined by comparison against co-

correlation seen in 1000 genesets drawn randomly from the same dataset.  The same 

process was applied to samples (n = 7) from subgroup 8.2. Only those genesets showing 

significant (p<0.05) co-expression in subgroup 8.1 but not in 8.2 (p>0.05) were 

considered to be co-expressed and were used for further analysis of functional 

interpretation. 

Gene set enrichment analysis and pathway definitions 

Genes incorporated in pathways were derived from two existing, independently-curated 

databases, MSigDB4 and Ingenuity systems 35. Alternatively specific signatures were 

derived from the literature as described. Enrichment of specific pathways was assessed 

using Gene-Set enrichment analysis (GSEA)4. Briefly, all genes from a dataset are ranked 

in order of their differential expression between two defined phenotypes (in this case 8.1 

and 8.2). The distribution of a defined set of genes (such as pathway or signature) within 

this ranked list is assessed. Multiple random permutations of the actual phenotypes 

generate a null distribution against which to assess the significance of the enrichment of 

the gene set in question. 
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 Knowledge-based network generation and pathway analysis 

Gene subsets identified by co-expression analysis were further investigated using the 

Ingenuity Pathways Analysis35 platform. Briefly, for network analysis genes from a 

specified target set of interest are progressively linked together based on a measure of 

their interconnection, which is derived from known functional interactions. Additional 

highly interconnected genes which are absent from the target genes (open symbols) may 

be added to complete a network of arbitrary size (set at n = 35). Networks may be ranked 

by significance which reflects the probability of randomly generating a network of 

similar size from genes included in the full knowledge database containing at least as 

many target genes as in the network in question. For pathways analysis, the over-

representation of canonical pathways (pre-defined, well-characterised metabolic and 

signalling pathways curated from extensive literature reviews) amongst a specified set of 

target genes is assessed, with significance determined by computing a Fisher’s exact test 

with Benjamini-Hochberg correction for multiple testing. 

 

Quantitative RT-PCR. 

mRNA levels of IL7Ra and CD69 were determined using Taqman Gene Expression 

Assays (Applied Biosystems) on an ABI PRISM 7900HT instrument according to the 

manufacturer’s instructions.  Transcript abundance was calculated by comparison to a 

standard curve. 

Flow cytometry.   

Immunophenotyping was performed using a CyAn ADP flow cytometer (Dako), and data 

was analysed using FlowJo software (Tree Star). At least 500,000 total events were 
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collected per sample, reactions were standardised with multicolour calibration particles 

(BD Biosciences) with saturating concentrations of the following antibodies: PE-Bcl2 

(Clone Bcl-2/100, BD Biosciences), APC-CD45RA (Clone HI100, BD Biosciences), PE-

Cy5 CD3 (Clone HIT3a, BD Biosciences), PE-Cy7 CCR7 (Clone 3D12, BD 

Biosciences), PE-CD127 (Clone hIL-7R-M21, BD Biosciences), PE-CD69 (Clone CH/4, 

Abcam), PE-IL2RA (Clone 143-13, Abcam), Pacific Blue CD8 (Clone RPA-T8, BD 

Biosciences). 

Classifier 

CD8 T cell datasets  – either complete  or using a restricted target gene list as indicated  - 

for each of three populations (AAV, n=59; SLE, n=25; combined n=84) were split into 

50% “training” and “test” cohorts in a randomised, stratified fashion. Using a support 

vector machines algorithm a predictive model was derived from the training set and 

applied to the test set to assess its predictive performance. Genes incorporated into the 

optimised classification model were chosen on the basis of favourable signal-to-noise 

ratio metric between the specified phenotypes, demonstrated expression in CD8 T cells 

and on their defined roles in CD8 T cell memory. Development of the predictive 

classifier was performed using the Genepattern 2.0 platform8. 

 

Ethical approval.  

Ethical approval for this study was obtained from the Cambridge Local Research Ethics 
Committee (Ref 04/023). 
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