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Supplementary Figure 1: Initial filtering of methods in multiple comparisons within method fami-
lies on several datasets. From top to bottom: performance of the two PCA variants; performance
of the two shrinkage-based covariance estimation variants; performance of kNN and the two LWA
variants; performance of the RGE variants L2Cov and SMG; performance of the regression variants
of GR (L2Reg) and SR (L1Inf and GLL2); performance of the final candidates to be used as the
RGE representative method.
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Supplementary Figure 2: gtPCC on all 12 datasets (y axis) as a function of the number of selected
probes (x axis).
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Supplementary Figure 3: Pearson correlation coefficients for individual probes using PSI methods
(y axis) vs. baselines (x axis).
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Supplementary Figure 4: Mean and 95% confidence intervals for correlation coefficients between
imputations in smoothed windows around the correlation coefficients within the measured data,
for the datasets and methods that were analyzed for their PPC values in the main text.
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Supplementary Figure 5: Sample-sample correlations (SSC, see text) and tagSSC (textured bars,
see text) on several datasets.



Supplementary Figure 6

0.1

0.3

0.5

0.7

0.9

0.1 0.3 0.5 0.7 0.9

age, SR, 100 probes

0.0

0.008

0.015

0.023

0.03

0.0 0.018 0.035 0.053 0.07

0.3

0.4

0.4

0.5

0.6

0.1 0.3 0.5 0.7 0.9

age, SR, 100 probes

0.0

0.006

0.013

0.019

0.025

-1.5 -0.75 0.0 0.75 1.5

0.0

0.3

0.5

0.7

1

0.0 0.3 0.5 0.7 1

imm, SR, 100 probes

0.0

0.04

0.08

0.12

0.16

0.0 0.25 0.5 0.75 1.0

0.4

0.4

0.5

0.5

0.6

0.0 0.3 0.5 0.7 1

imm, SR, 100 probes

0.0

0.006

0.013

0.019

0.025

4.0 5.75 7.5 9.25 11.0

0.0

0.3

0.5

0.7

1

0.0 0.3 0.5 0.7 1

CMap, RGE, 200 probes

0.0

0.011

0.023

0.034

0.045

0.01 0.033 0.055 0.078 0.1

(a)

(c)

Imputation error quantile

Imputation error quantile

R
e
p
lic

a
te

 v
a
ri

a
n
ce

q
u
a
n
ti

le
M

e
a
n
 e

x
p
re

ss
io

n
q
u
a
n
ti

le

(b)

(d)

Replicate variance

Mean expression

D
e
n
si

ty
D

e
n
si

ty

10% highest errors 10% lowest errors

10% highest errors 10% lowest errors

Supplementary Figure 6: Analysis of imputation error by variance of biological replices and absolute
expression. (a) Mean quantile of replicate variance as a function of quantile of imputation error.
(b) Density plots of biological replicate variance for the worst and best 10% probes by imputation
error. (c) Mean absolute expression levels quantile by imputation error quantile. (d) Density plots
of mean absolute expression levels for the best 10% and worst 10% probes by imputation accuracy.
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Supplementary Figure 7: Performance of the mixture model RGME with varying numbers of
mixture components, also compared with the mixture-free RGE.
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Supplementary Figure 8: Comparisons of pairs of metrics, with each dataset marked by a different
shape and color. A monotonic relationship within a dataset implies that both metrics are equivalent
in terms of raking the different methods, and manifests as a group of points in the same shape and
color such that a point which is to the right of another point is also above it.



Supplementary Table 1

Metric Predictor LWA RGE SR

Relative performance

SPRL -0.740 0.717 0.567

Samples -0.336 0.484 0.438

Selected probes -0.351 0.468 -0.065

Target probes 0.599 -0.225 -0.562

Selected to target probe ratio -0.748 0.549 0.46

Linearity -0.243 0.463 0.266

gtPCC

SPRL 0.485 0.735 0.743

Samples 0.239 0.533 0.544

Selected probes 0.046 0.196 0.163

Target probes -0.227 -0.481 -0.389

Selected to target probe ratio 0.291 0.581 0.506

Linearity 0.708 0.759 0.672

Supplementary Table 1: Spearman correlations between the components of SPRL and the relative
and absolute (as measured by gtPCC) performance of LWA, RGE and SR.



Supplementary Results

Initial method selections

We developed many selection and imputation methods, based on established statistical methods
and novel ideas. Some of our methods are similar in some aspects to other methods previously used
for imputation but all were developed from scratch based on a unified framework of examining the
joint selection and imputation problem.

We performed an initial evaluation of all methods using a more limited selection of data sets
in order to first weed out methods that are strictly dominated by others, and later do an in-depth
analysis of only the remaining methods.

PCA variants

We implemented two probe selection methods that are based on PCA: PCAC, which uses prob-
abilistic PCA to estimate a covariance matrix and performs selection and imputation under the
framework of Regularized Gaussian Estimation models; and PCAR, which uses PCA Regression
directly. Since PCAC dominates (Supplementary Fig. 1, first row) and its running time is lower
as well, we did not use PCAR is further experiments.

LWA with and without probe-specific kernel width

We compared the performance of Locally Weighted Averaging with and without probe-specific
kernel width, and compared both with the nonparametric kNN method, with k chosen by cross-
validation. Both LWA variants are better than kNN, and using probe-specific kernel width does
not improve the imputation accuracy (Supplementary Fig. 1, third row). For this reason, we
included only the more intuitive single-kernel-width LWA variant in the main comparison.

Comparison between linear regression methods

We implemented three methods based on regularized linear regression for imputation, and differ in
the probe selection stage. GR (L2Reg) uses a greedy selection strategy whereas the two variants
of SR involve variable selection and accuracy of imputation in a single objective. The SR variants
dominate GR (Supplementary Fig. 1, fifth row). The two SR variants show very similar
performance, so we picked the one based on the L1,∞ norm since it provides a stronger separation
between the goals of variable selection and shrinkage. Theoretically, too much shrinkage could
have a negative impact on the selection process.

Comparison between L2Cov and SMG

The two RGE variants L2Cov and SMG both estimate a covariance matrix by maximizing the
data likelihood minus an L2 penalty term on the entries of the inverse of the covariance matrix.
L2Cov uses a uniform regularization coeffcient for all the entries in the precision matrix, while
SMG uses an entry-specific coefficient which is based on the correlation between the two probes.
L2Cov solves the problem in closed form using a single eigen-decomposition, while SMG uses an
iterative gradient-based process, so L2Cov is far faster. The performance is of these two methods
is nearly identical (Supplementary Fig. 1, fourth row) and the running time of SMG is much
longer than that of L2Cov, so we evaluated only L2Cov on the remaining data sets.

RGE variants

We implemented several different methods for estimating covariance matrices for use with the
RGE method. Although once the covariance matrix has been estimated, it is used within the



same framework, the estimation methods themselves differ in their accuracy and time and space
requirements. For this reason we compared them first on a subset of the data sets to evaluate only
the best-performing methods on all the data sets. The L1-regularized precision matrix estimation
method (L1Cov) and Soft Modular Gaussian (SMG) method both perform well in terms of accuracy
(Supplementary Fig. 1, sixth row), but they both require multiple costly matrix inversions or
eigen-decompositions of large (m × m) matrices, and since they do not seem to perform better
overall than Shrinkage Covariance Estimation (the SCESS and SCECV variants) or L2-regularized
precision matrix estimation (L2Cov), which have far lower running times, we did not use them
on the other data sets. Similarly, we chose not to use Probabilistic PCA (PCAC) on the other
data sets, since its performance (imputation error) was worse than the other methods. The two
methods of choosing α for the Shrinkage Covariance Estimation (SCESS and SCECV) method
proved almost identical (Supplementary Fig. 1, second row).

SCESS and L2Cov are nearly identical in terms of accuracy and complexity. We chose to use
the L2Cov variant as representative of the RGE method since it is slightly clearer theoretically,
with a simple intuitive understanding using the well-studied eigenvalue decomposition. For data
sets with too many probes to run the full Gaussian estimation, the only Gaussian method that was
tested was MD, which is feasible since it assumes a modular structure in the covariance matrix,
which greatly reduces computational and memory demands.

Identifying differential expression

To evaluate the abilities of our methods to identify differential expression, we used four related
metrics. All four metrics are based on defining a differentially expressed subset of the held-out
probes and evaluating the ability of the imputations to identify these probes by ranking imputations
by distance from the mean, generating ROC curves and summarizing them using the area under
curve (AUC).

We developed metrics both in probe-space, identifying which probes are differentially expressed
in a given sample, and in sample-space, identifying in which samples is a given probe differentially
expressed. For choosing the “true” subset of differentially-expressed probes, we used both absolute
and relative criteria. The absolute criterion is a twofold or larger change in expression from the
mean value. The relative criterion in being in the top 25%, measured by distance from the mean.
For probe-space, the top 25% is relative to other probes in that sample, and for sample-space, the
top 25% is relative to the expression values of that probe in other samples.

The four metrics are therefore: absolute in probe-space (GSDEAUC), relative in probe-space
(GSDE25AUC), absolute in sample-space (SSDEAUC), relative in sample-space (SSDE25AUC).

Our experiments show that the four metrics are almost equivalent in terms of ranking, preserv-
ing the order between methods and number of selected probes within a dataset (Supplementary

Fig. 8, top). Furthermore, they are also almost equivalent with the gtPCC metric (Supplementary

Fig. 8, bottom), implying that our conclusions from the comparative analysis using gtPCC can
be applied to the ability to detect differential expression as well.

For the main analysis of performance, we chose the metric of identifying which probes are
differentially-expressed in a new sample, using the absolute criterion, since this combination is
most commonly used in practice.

Density heatmaps for baseline vs advanced methods

As another form of validation, we compared the imputations of the three leading methods against
the baselines on an individual probe level. The improvements of the advanced methods (Supplementary

Fig. 3) are robust across the full range of expression values.



Mixture model results

The main limitation of the RGE, GR and SR methods is that the resulting imputations are all
linear functions of the tag probes. To overcome this limitation, we developed a mixture model
(RGME) on top of RGE, where the full expression data is modeled as a mixture of Gaussians,
and therefore no longer linear. The model is computationally difficult to train (using the EM
algorithm) and we first wanted to see if it results in any improvements at all in the imputation
accuracies beyond the linear models. If the data is sufficiently well-modeled by linear models, the
added number of parameters might actually hurt performance.

The performance of RGME did not significantly exceed that of the mixture-free equivalent
RGE on any dataset with any number of mixture components (Supplementary Fig. 7), so we
did not include it in our in-depth method analysis.

SSC results

Similarly to clustering probes, clustering samples is another common analysis done on gene ex-
pression data. We used the sample-sample correlation (SSC) metric, defined analogously to PPC,
using the target probes to compute the sample correlations (to avoid biasing the result with the se-
lected probes, which are always measured). An interesting baseline for this metric is the similarity
between the true sample-sample correlation matrix based on target probes and the sample-sample
correlation matrix computed using just the selected probes. We refer to this baseline as “tagSSC”.

Several observations can be made about the SSC results (Supplementary Fig. 5): first,
as with the other metrics, the linear methods SR and RGE dominated on high-SPRL datasets,
and the imputations using these methods ranked higher than the corresponding tagSSC values.
This result suggests that the imputations managed to accurately predict expression patterns that
are not directly reflected in the tag probes. However, on pom, with its much lower SPRL value,
the tagSSC values were higher. Second, CR performed very well by this metric, and its SSC and
tagSSC values were nearly identical. This is not surprising, since its imputations are all taken from
the expression levels of the selected probes. Therefore, the difference between SSC and tagSSC
for CR is only due to different cluster sizes: each selected probe contribution to the tagSSC is
identical, but its contribution to the SSC is proportional to the size of the cluster of which it is
the representative. Third, LWA performed poorly on this metric. This may be explained by its
global nature, which strongly limits its ability to capture complex patterns in the sample-sample
correlation matrix, that are due to distinct patterns of differential expression in different probe
subsets, a strongly local phenomenon that is well-modeled by the parametric methods.

Analysis of probes by imputation accuracy

Since a high imputation accuracy on average does not guarantee that all target probes are imputed
with high accuracy, and since some probes might be more important than others, we did an analysis
of probes by imputation error to make sure that the high overall accuracy is not due to high accuracy
on many unimportant probes while more important probes are poorly-imputed.

We first examined imputation error vs. the variance in biological replicates (Supplementary

Fig. 6a), which reflects mostly measurement error, for the three datasets for which we had
replicated (CMap, imm, age). High imputation error is strongly associated with high replicate
variance, which suggests that the imputation errors of these probes are to a large degree due to
unreliable measurements. The distribution of replicate variance of the probes whose imputation
errors are in the top 10% is shifted to the right compared to those probes whose imputation errors
are in the bottom 10% (Supplementary Fig. 6b).

We next examined the absolute expression levels of probes compared to their imputation ac-
curacy (Supplementary Fig. 6c) for two of the same datasets (the CMap data was centered
at zero, so we did not have absolute expression levels). High imputation error is associated with



low absolute expression levels, which also supports the hypothesis that the imputation error is to
a large degree due to unreliable measurements. The distribution of absolute expression levels is
shifted towards lower absolute levels for probes in the top 10% worst imputed probes, as compared
with the best 10% imputed probes (Supplementary Fig. 6d).

Finally, we carried out an analysis of Gene Ontology terms associated with the worst 10%
imputed probes, and looked for terms that are underrepresented or overrepresented relative to all
target probes. No terms were significant at p < 0.05 after Bonferroni correction.

The three analyses described above suggest that the less successful imputations are mostly due
to unreliable measurements but not related to any functional classification.

Preservation of correlation structure across all correlation coefficients

PPC is a metric that compares the correlation structure within the observed data to the correlation
structure within the imputations, and our analysis showed that the correlation structure was
strongly preserved in the imputations. It is also of interest to verify that correlations are preserved
not only in aggregate but across the whole range of correlation coefficients. We compared the
average correlation coefficients between the imputed probe values in windows around each value
of measured correlations (Supplementary Fig. 4), for the same datasets, methods and numbers
of selected probes that were used to analyze PPC in the main text. The correlations within
the imputed data were almost identical to the ground-truth correlations across the full range of
correlation coefficients, suggesting that the imputations indeed correctly captured the correlation
structure in the data.

Contributions of individual predictors to the predictive power of SPRL

SPRL predicts relative performance of the individual methods as well as absolute performance as
measured by gtPCC. Since SPRL is the product of several factors, it is of interest to quantify the
individual contribution of these factors. We computed Spearman correlation coefficients between
each component of SPRL (as well as SPRL itself) and the relative and absolute performance of
the three leading methods: LWA, RGE and SR. For relative performance, the ratio of selected
to target probes was the strongest contributer, followed by the number of samples. For absolute
performance, the strongest contributor was linearity, followed by the ratio of selected to target
probes (Supplementary Table 1).



Supplementary Note

Complexity Analysis and Full Mathematical and Implementation
Details

1 Complexity

In this section we briefly analyze the time and space complexity of the probe selection and covari-
ance estimation methods.

1.1 Nearest Neighbor

For each new probe, updating the distance matrix for selected probes and for remaining probes
takes O(n2). Finding the nearest neighbors takes O(n) for each sample, so O(n2) total. Since there
are O(m) probes to test, adding a new probe takes O(n2m) total operations, and for l probes we
have O(lmn2).

Space complexity is simply O(n2) for the distance matrices.

1.2 k-Nearest Neighbors

As in NN, updating the distance matrices takes O(n2). Finding the k nearest neighbors for all n
samples takes O(k log n). Computing the LOOCV errors for using 1, . . . , k neighbors takes O(nk2).
The total time complexity is, therefore, O(lmn(n+k2)). The space complexity is the same as NN,
O(n2).

1.3 Locally weighted averaging

As in NN, for each candidate new probe, updating the distance matrices and computing the weights
takes O(n2). Computing the sum of squared imputation errors for each of the n samples takes
O (nmin (m,n)). If we test nα different values for the kernel width parameter, the total time
complexity is O

(
lmn2 min (m,n)nα

)
. The space complexity is O

(
n2
)

(maintaining the distance
matrix).

The complexity using probe-specific kernel widths is the same, but we need to add the complex-
ity of re-optimizing the kernel widths, which is O

(
l2n2 min (m,n)nβni

)
, where nβ is the number

of values for βj tested, and ni is the number of times we cycle through the kernel widths before
convergence.

1.4 PCA Regression

When adding the t + 1’th probe, we invert, for each 1 ≤ k ≤ min(m,n − 2) and λ ∈ Λ, m − t

matrices of size k × k. We do this in O
(
k2
)

for each k and λ, so in total O
(
mnλ min (n,m)

3
)
.

To choose all l probes and their corresponding values for k and λ, the overall time complexity is

O
(
lmnλ min (n,m)

3
)
. The space complexity is O

(
min (n,m)

2
)
.



1.5 L2-regularized linear regression

When adding the t’th probe, the residual matrix is computed in O (mtn) and the scores for all
probes in O

(
m2n

)
. Solving for the new λ and the new weights is done in O

(
nλm

2n
)

where nλ

is the number of values of λ evaluated. Since this is done l times, the overall time complexity is
O
(
lnλm

2n
)
. The space complexity is O (lm) for the weight matrix.

1.6 GLL2 Regression

Updating an entire row in the weight matrix takes O (mn). A single iteration of cycling through
all weights takes O

(
m2n

)
. Let ni denote the total number of iterations done when solving for the

weights over all values of λ. Then the total time complexity of probe selection is O
(
nim

2n
)
. Even

when using warm starts ni is likely to be quite large and at least on the order of l times a large
constant. The space complexity is O (m (n+ l)).

To solve for the weights using L2-regularized linear regression, the time complexity is as for
L2Reg, O

(
lnλm

2n
)

and the space complexity is O (lm).

1.7 L1,∞ Regression

Updating an entire row in the weight matrix takes O (mn+m logm) time. A single iteration of
cycling through all weights takes O

(
m2 (n+ logm)

)
. As with the GLL2 method, let ni denote the

total number of iterations done when solving for the weights over all values of λ. Then the total
time complexity of probe selection is O

(
nim

2 (n+ logm)
)
. Even when using warm starts ni is

likely to be quite large and at least on the order of l times a large constant. The space complexity
is O (m (n+ l)).

Solving for the weights using L2-regularized linear regression takes O
(
lnλm

2n
)

time and O (lm)
space.

1.8 Gaussian methods

To add a new probe, we compute the full conditional covariance matrix given the current set.
The total cost of inverting the submatrices ΣS(t),S(t) is O

(
l3
)
, since this is done incrementally.

Computing Σ−S,SΣ−1
S,SΣS,−S takes O

(
m2t

)
(for iteration t), so in total O

(
m2l2

)
. Since l < m,

this term dominates the time of inverting the submatrices, and also the time of choosing a probe to
minimize the remaining conditional variance. Hence, the total time complexity is O

(
m2l2

)
. The

space complexity is O
(
m2
)

for storing covariance matrices and inverses.

1.9 PCA Covariance Estimation

To choose the number of components, we compute the covariance matrix for each data sub-
set (with one sample left out) and compute the likelihood of the remaining sample for k =
0, . . . ,min (m,n− 2), which can be done efficiently by incremental updates in a total time of
O
(
m2n+mn2

)
. Generating the actual estimated covariance matrix takes O

(
m2n

)
. The total

time complexity is therefore O
(
m2n+mn2

)
and the space complexity is O

(
m2
)
.

1.10 Shrinkage Covariance Estimation

Estimating α takes O
(
m2n

)
time and O

(
m2
)

space using SCESS. Using cross-validation, it takes

O
(
m2
)

for each of the n samples, so O
(
nαm

2n
)

overall, where nα is the number of values we
evaluate for α.



1.11 L2-regularized precision matrix estimation

We choose σ2 by leave-one-out cross-validation. We first compute the SVD of X inO (mnmin (m,n)).
Then, for each value of σ2 that we evaluate, we go over each of the n training samples and estimate
the covariance matrix of the data with this sample held out. Using efficient rank-one updates in-
stead of full recomputations, this requires O

(
m2
)

operations for each of the n samples, and overall

O
(
nσ2nm2

)
.

1.12 L1-regularized precision matrix estimation

The time complexity is O
(
m3
)

for each iteration. With ni iterations until convergence, this is
O(nim

3). With nλ different values of λ to evaluate and ns cross-validation splits, the overall time
complexity is O

(
nsnλnim

3
)
. The space complexity is O

(
m2
)
.

1.13 Soft modular Gaussian

First, γ is chosen as in L2Cov, in O
(
nγnm

2
)

time. Then, γ1 and γ2 are chosen with a cross-
validation procedure similar to L1Cov above, and since the time and space complexity of estimating
the precision matrix with L1 and L2 regularization are the same, this is done in O

(
nsnγ2

nim
3
)

time and O
(
m2
)

space. Without choosing parameters by cross-validation, this is simply O
(
nim

3
)

time.

1.14 Modular Decomposition

The time complexity of running K-Means is O (ninMnm) where ni is the number of iterations
before convergence. The space complexity is O ((m+ nM )n). The time and space complexity of
probe selection are given in Section 2.6.1 where the method is described.

1.15 Mixture of Gaussians

Let nc be the number of components in the mixture. We first choose σ2 using cross-validation.
This step takes O

(
nσ2nm2

)
as described above for L2Cov. Then we use EM to learn the mixture

model. We use nr restarts and let ni denote the number of iterations until convergence. Each
iteration requires O

(
ncnm

2
)

for the E-step (computing Qi(c) for i = 1, . . . , n and c = 1, . . . , nc)

and O
(
ncnm

2
)

for the M-step, since for each of the nc mixture components we compute the SVD
of a m× n matrix, modify the eigenvalues and compute the m×m covariance matrix. The total
time complexity for the EM learning is O

(
nincnm

2
)

and the space complexity is O
(
ncm

2
)
.

For probe selection, adding the t’th probe requires computing P〈µc,Σc〉

(
XS(t−1)∪{j},i

)
for j /∈

S(t−1), c = 1, . . . , nc and i = 1, . . . , n. Each such computation can be done in O
(
t2
)
, so overall

O
(
ncnmt

2
)
. Since we do this for t = 1, . . . , l, the overall time complexity for probe selection is

O
(
ncnml

3
)
. The space complexity is still O

(
ncm

2
)
.

1.16 Summary

The following table shows the time and space complexity for all methods.



Selection Imputation
Method Time Space Time Space

NN O(lmn2) O(n2) O(m+ ln) O(1)
kNN O

(
lmn

(
n+ k2

))
O(n2) O(km+ ln) O(k)

LWA1 O
`

lmn2 min (m, n) nα

´

O(n2) O (nm) O(n)
LWA2 O

“

ln2 min (m, n)
“

mnα + lnβni

””

O(n2) O (nm) O(n)

PCAR O
(
lmnλ min (n,m)

3
)

O
(
min (n,m)

2
)

O (m min (n, m)) O
(
min (n,m)

2
)

L2Reg O
(
lnλm

2n
)

O (lm) O(lm) O(lm)
GLReg O

(
nim

2n
)

O (m (n+ l)) O(lm) O(lm)
GLL2 O

(
m2n (ni + lnλ)

)
O (m (n+ l)) O(lm) O(lm)

L1Inf O
“

m2 `nin + ni log m + lnλn
´

”

O (m (n+ l)) O(lm) O(lm)
Gaussian models O

(
l2m2

)
O
(
m2
)

O(lm) O
(
m2
)

PCAC O
(
mn2 +m2n

)
O
(
m2
)

O(1) O(1)
SCESS O

(
m2n

)
O
(
m2
)

O(1) O(1)
SCECV O

(
nαm

2n
)

O
(
m2
)

O(1) O(1)
L1Cov O

(
nsnλnim

3
)

O
(
m2
)

O(1) O(1)
L2Cov O

(
nσ2nm2

)
O
(
m2
)

O(1) O(1)
SMG O

(
nγnm

2 + nsnγ2
nim

3
)

O
(
m2
)

O(1) O(1)
MD O

 

ninM nm + mnM + l2
nM
P

i=1

˛

˛Mi

˛

˛

2

!

O

 

`

m + nM

´

n +
nM
P

i=1

˛

˛Mi

˛

˛

2

!

O (lm) O

 

`

m + nM

´

n +
nM
P

i=1

˛

˛Mi

˛

˛

2

!

RGME O
“

nm
“

n
σ2m + ncnim + ncl3

””

O
(
ncm

2
)

O (nclm) O
(
ncm

2
)

2 Full mathematical and implementation details for all meth-

ods

2.1 Notation

Let X ∈ R
m×n be the fully observed data matrix of m genes and n samples. The individual

samples are X1, . . . ,Xn ∈ R
m×1. Individual gene expression values are denoted by xj,i (j’th gene

in i’th sample). A new test sample is denoted by Y ∈ R
m×1. Gene expression matrices and vectors

corresponding to subsets S of genes are denotes by XS and XS,i respectively. For test samples,
only YS is observed, so the full vector Y is completed by imputation.

2.2 k-Nearest Neighbors

2.2.1 Selection and imputation

For a new observed test vector YS , find its k nearest neighbors among XS :

I [X, Y ;S, k] = arg min
I⊆{1,...,n}:|I|=k

∑

i∈I

∑

j∈S

(Xj,i − Yj)
2

The imputation is then

Y =
1

k

∑

i∈I[X,Y ;S,k]

Xi

In words, we find the k nearest neighbors and predict their average.
Probe selection is done by greedy forward selection. The set S is constructed iteratively, where

at each step a new probe is chosen to minimize the leave-one-out cross-validation (LOOCV) error,
given the probes already chosen. Denote the LOOCV error with k nearest neighbors and the
probeset S by J [X;S, k], then:



J [X;S, k] =

n∑

i=1

∑

j /∈S


xj,i −

1

k

∑

i′∈I[X−i,Xi;S,k]

xj,i′




2

Initially, S(0) = φ. Then, in each new iteration, all probe candidates j /∈ S(t) are examined to
minimize the LOOCV error:

ĵS(t) = arg min
j /∈S(t)

J [X;S ∪ {j}, k]

Then, S(t+1) = S(t) ∪ {ĵS(t)}.
A further improvement involves choosing k ∈ {1, . . . , kmax} itself to minimize the LOOCV

error:

〈ĵS(t) , k̂〉 = arg min
j /∈S(t),1≤k≤kmax

J [X;S ∪ {j}, k]

2.2.2 Implementation

A naive implementation to select l probes involves l iterations, where in each iteration O (m)
probes and kmax values of k are considered given the current set S(t) to minimize the LOOCV
error. Computing I [X−i,Xi;S, k] requires the distances between XS,i and XS,i′ to be computed
for all i′ 6= i, which is O (|S|n) and then sorted (we can ignore this cost). Computing the actual
error for a given set of neighbors is O ((m− |S|)k). Since we do this n times, the complexity for
each pair 〈S, k〉 is O

(
n2|S|+ nmk

)
. Since we consider O (m) probes and kmax values of k, and we

have l iterations, the overall complexity is O
(
lnm2k2

max + l2n2mkmax

)
.

To make this more efficient, we first note that ‖X − Y ‖22 = XTX + Y TY − 2XT , so

∑

j /∈S


xj,i −

1

k

∑

i′∈I[X−i,Xi;S,k]

xj,i′




2

= XT
−S,iX−S,i −

−
2

k

∑

i1∈I[X−i,Xi;S,k]

XT
−S,i1X−S,i +

+
1

k2

∑

i1,i2∈I[X−i,Xi;S,k]

XT
−S,i1X−S,i2

and

J [X;S, k] = Tr
(
W [S, k]T A [S]

)

where A[S] ∈ R
n×n is defined by A[S]i1,i2 = XT

−S,i1
X−S,i2 , andW [S, k] = I+U [S, k]+V [S, k],

where U [S, k]i1,i2
= − 2

k1 [i2 ∈ I [X−i1 ,Xi1 ;S, k]] and V [S, k]i1,i2
= 1

k2 |{1 ≤ i ≤ n : {i1, i2} ⊆ I [X−i,Xi;S, k]}|.

For a more efficient implementation we maintain A
[
S(t)

]
. Updating this matrix is easy and

efficient since A [S ∪ {j}]i1,i2
= A [S]i1,i2

− xj,i1xj,i2 .

In each iteration, we compute the distances ‖XS(t)∪{j},i1 − XS(t)∪{j},i2‖
2
2 for all j /∈ S(t) and

1 ≤ i1, i2 ≤ n. This computation is efficient since ‖XS∪{j},i1 −XS∪{j},i2‖
2
2 = ‖XS,i1 −XS,i2‖

2
2 +

(xj,i1 − xj,i2)
2
, so computing the distance matrices and the kmax ranked nearest neighbors of each

sample for each added probe in each iteration is done in O
(
n2m

)
, and updating the distance

matrix between iterations is done in O
(
n2
)
.



Given the ranked nearest neighbors, we can set U [S, 0] = 0 and V [S, 0] = 0, and compute
U [S, k + 1] from U [S, k] in O(n) and V [S, k + 1] from V [S, k] in O(nk).

Using these improvements, each iteration (minimizing over both 1 ≤ k ≤ kmax and 1 ≤ j ≤
m) can be done in O

(
mn2 +mnk2

max

)
, and the overall complexity is O

(
lmn

(
n+ k2

max

))
. The

complexity of imputation is O (n|S|+mk) (finding the k nearest neighbors and averaging them).

2.3 Locally weighted averaging

2.3.1 Selection and imputation

For a new observed test vector YS , we compute its distance from all training samples and gen-
erate weights from these distances, which we use to impute a weighted average of the train-
ing samples. Let σ̂2 [S] = 1

n(n−1)

∑
i1 6=i2

‖XS,i1 − XS,i2‖
2
2, then the unnormalized weights are

w̃i = exp
(
−‖YS−XS,i‖

2
2

2ασ̂2[S]

)
and the actual weights are wi = w̃i

n
P

i′=1

w̃i′

. α is a parameter of the method

which scales the mean distance. The imputation is Y =
n∑

i=1

wiXi.

Selection is done by forward greedy selection, where each probe is chosen to minimize the
LOOCV error. This error is

J [X;S, α] =

n∑

i=1

∑

j /∈S


xj,i −

∑

i′ 6=i

wi′xj,i




2

Initially, S(0) = φ. Then, in each new iteration, all probe candidates j /∈ S(t) are examined to
minimize the LOOCV error:

ĵS(t) = arg min
j /∈S(t)

J [X;S ∪ {j}, α]

Then, S(t+1) = S(t) ∪ {ĵS(t)}. α can also be optimized (out of some predefined space Θ) to
minimize the LOOCV error:

〈ĵS(t) , α̂〉 = arg min
j /∈S(t),α∈Θ

J [X;S ∪ {j}, α]

2.3.2 Implementation

In each iteration, we need to compute for each candidate probe the LOOCV error when it is added
to the current probeset. To compute this error we first need to compute for each of the n samples
the n − 1 distances and corresponding weights. As before, computing the distances using the
probeset S ∪ {j} given the distances using S is done in O

(
n2
)
. Hence, computing the normalized

weights for all candidate probes and all samples only requires O
(
mn2

)
operations.

To compute the LOOCV error without generating the whole imputed vectors, we use:

∑

j /∈S


xj,i −

∑

i′ 6=i

wi′xj,i




2

= XT
−S,iX−S,i − 2

∑

i′ 6=i

wi′X
T
−S,iX−S,i′ +

∑

i1,i2 6=i

wi1wi2X
T
−S,i1X−S,i2

As before we maintain the inner product matrix A [S]. Computing the errors for allm candidate
genes, then, requires O

(
mn3

)
operations. If we optimize also over α, then the overall complexity

is O
(
lm|Θ|n3

)
.



For both kNN and locally weighted averaging, the main code is written in Python, but all the
scores computations are written in C for faster running times.

2.3.3 Probe-specific kernel width

We also implemented a variant of the Locally Weighted Averaging method where each probe can

have its own kernel width. In this case, the unnormalized weights are w̃i = exp

(
−

P

j∈S

βj(yj−xj,i)
2

2ασ̂2[S]

)
.

Due to the invariance of multiplying all β’s and α by the same constant, we set the first kernel
width to 1.

To choose the probes and the kernel widths, we initialize with the empty probeset S(0) = φ
and then repeat for t = 1, . . . , l:

1. Fix the current probeset S(t−1) and the kernel widths β(t−1). Add a new probe j with βj = 1
to S(t−1) and choose new value α(t) to minimize the LOOCV error for S(t−1) ∪{j} (with the
kernel widths β(t−1)) and α(t).

2. Fix α(t) and the new probeset S(t) = S(t−1) ∪ {j}.

3. Choose β(t) by looping over j ∈ S(t) and choosing β
(t)
j to minimize the LOOCV error with

β
(t)
j′ fixed for all j′ 6= j, until convergence.

2.3.4 Probabilistic interpretation

Let Z1, . . . , Zn ∈ N be discrete random variable with no prior, and Xi|Zi = k ∼ N
(
µk;σ2I

)
.

Since there is no prior on Z, optimizing the likelihood (using hard assignments) over the hidden
variables Z and the parameters µ gives: Zi = i and µi = Xi. This gives the generative model:
Z ∼ U (1, n) and X|Z = i ∼ N

(
Xi;σ

2I
)
. Using this generative model, we do the imputation by

computing the expected value of the missing expression values:

E [Y−S |YS ] =
n∑

i=1

P (Z = i|YS)E [Y−S |Z = i]

=

n∑

i=1

P (YS |Z = i)
n∑

i′=1

P (YS |Z = i′)
X−S,i

=
n∑

i=1

X−S,i

exp

(
− 1

2σ2

∑
j∈S

(yj − xj,i)
2

)

n∑
i=1

exp

(
− 1

2σ2

∑
j∈S

(yj − xj,i′)
2

)

=
n∑

i=1

X−S,i
w̃i

n∑
i′=1

w̃i′

=
n∑

i=1

wiX−S,i

Hence, selection corresponds to learning a generative model using maximum likelihood estima-
tion of both µ and hard assignments to Z, and imputation corresponds to computing the expected
value under this model over the unobserved variables given the observed ones.

σ2 cannot be estimated by maximum likelihood estimation since when it is not fixed, the
likelihood is unbounded and goes to infinity as σ2 → 0: logP (X|Z;µ, σ2) = −mn

2 log(2π) −
mn log σ. We can estimate σ2 using the LOOCV marginal log-likelihood:



l(X;µ, σ2) =
n∑

i=1

log


 1

n− 1

∑

i′ 6=i

(
2πσ2

)−m/2
exp

(
−
‖Xi −Xi′‖22

2σ2

)


= −n log(n− 1)−
mn

2
log
(
2πσ2

)
+

n∑

i=1

log


∑

i′ 6=i

exp

(
−
‖Xi −Xi′‖22

2σ2

)


∂l(X;µ, σ2)

∂σ2
= −

mn

2σ2
+

n∑

i=1

∑
i′ 6=i

exp
(
−‖Xi−Xi′‖

2
2

2σ2

)
‖Xi−Xi′‖

2
2

2σ4

∑
i′ 6=i

exp
(
−

‖Xi−Xi′‖
2
2

2σ2

)

σ2 =
1

mn

n∑

i=1

∑

i′ 6=i

wi,i′‖Xi −Xi′‖
2
2

where wi,i′ = exp
(
−‖Xi−Xi′‖

2
2

2σ2

)
is itself a function of σ2. This can be solved by iterative

methods. In practice, this method of choosing σ2 performs poorly due to the assumption of
independence between different probes given the class variable Z (the Naive Bayes assumption),
which is false in practice and leads to double-counting. In practice, we use α

n(n−1)

∑
i1 6=i2

‖XS,i1 −

XS,i2‖
2
2 as detailed above.

2.4 Generative models

2.4.1 Imputation

Given a probability distribution P (X) over expression vectors X ∈ R
m and a set of selected probes

S, we perform imputation by computing the expected value over the unobserved probes given the
observed ones:

Y−S =

∫
P (X−S |XS)X−SdX−S

=
1

P (XS)

∫
P (X−S ,XS)X−SdX−S

The choice of expected value as imputation method is done to minimize the squared error. We
could also impute using the most likely assignment to the unobserved expression values:

Y MAP
−S = arg max

X−S

P (XS ,X−S)

2.4.2 Selection

Now assume we have the generative model P (X) but not the set of selected probes S. We want
to minimize the expected squared error of the imputation:



ǫ [S] =

∫
P (X ′)‖X ′

−S − E [X−S |X
′
S ] ‖22dX

′

= E
[
‖X ′

−S − E [X−S |X
′
S ] ‖22

]
= E


∑

j /∈S

(
X ′

j − E [Xj |X
′
S ]
)2



=
∑

j /∈S

E

[(
X ′

j − E [Xj |X
′
S ]
)2]

=
∑

j /∈S

Var [Xj |XS ]

This shows the intuitive notion that the expected error for a set of probes is simply the remaining
variance conditioned on these probes being observed. The problem of finding the set S of some
fixed size that minimizes ǫ [S] is generally hard. In practice, if we can compute Var [Xj |XS ] for
any S, we can use a greedy algorithm: initialize S(0) = φ, then for t = 1, 2, . . . , l: compute

v
(t)
j =

∑
j′ /∈S∪{j}

Var
[
Xj′ |XS∪{j}

]
for j /∈ S(t−1) and let S(t) = S(t−1) ∪ {arg min

j
v
(t)
j }.

2.4.3 Learning

We usually don’t have a single generative model P (X) as used above. Suppose we have a family of
models P with a probability measure Q over P and a training set D. Then, given a set of probes

S, we perform imputation by: Y−S = EP∼Q(P |D)

[
EY ′

−S
∼P (X−S |XS)

[
Y ′
−S |YS

]]
. This is a Bayesian

Model Averaging approach where we integrate over the models based on their posterior probability
given the training data.

To select a probeset S, we want to minimize the squared error as before, and choose:

Ŝ = arg min
S⊆{1,2,...,m}:|S|=l

∑

j /∈S

EP (X)∼Q(P |D)

[
VarX∼P (X) [Xj |XS ]

]

Instead of computing the expectation over all models, we can approximate it by using only the
most likely model arg max

P∈P
Q(P |D) or by samples, if we can sample from Q(P |D).

2.5 Gaussian models

Suppose X ∼ N (µ;C). Then for a probeset S,

X−S |XS ∼ N
(
µ−S + C−S,SC

−1
S,S (XS − µS) ;C−S,−S − C−S,SC

−1
S,SCS,−S

)

and the expected squared error is:

J [S] = Tr
[
C−S,−S − C−S,SC

−1
S,SCS,−S

]

For any symmetric invertible matrix

(
A v
vT b

)
, it holds that

(
A v
vT b

)−1

=

(
A−1vvT A−1

b−vT A−1v
+A−1 A−1v

vT A−1v−b
vT A−1

vT A−1v−b
1

b−vT A−1v

)

Using this property, we can efficiently invert CS∪{j},S∪{j} given that we have already computed

C−1
S,S :



C−1
S∪{j},S∪{j} =




C−1
S,S

CS,jCj,SC−1
S,S

Cj,j−Cj,SC−1
S,S

CS,j
+ C−1

S,S

C−1
S,S

CS,j

Cj,SC−1
S,S

CS,j−Cj,j

Cj,SC−1
S,S

Cj,SC−1
S,S

CS,j−Cj,j

1
Cj,j−Cj,SC−1

S,S
CS,j




Now we can compute the difference ∆[S]j = J [S ∪ {j}]− J [S] in expected errors due to the
addition of a single probe j:

∆ [S]j = −Cj,j + Tr
[
C−S,SC

−1
S,SCS,−S

]
− Tr

[
C−S−{j},S∪{j}C

−1
S∪{j},S∪{j}CS∪{j},−S−{j}

]
(1)

Now let Σ[S] = C−S,SC
−1
S,SCS,−S and Σ[S]j = C−S−{j},S∪{j}C

−1
S∪{j},S∪{j}CS∪{j},−S−{j}, and

let r denote the i’th index in −S − {j}, then:

(Σ[S]j)i,i =
(
C−S−{j},S∪{j}C

−1
S∪{j},S∪{j}CS∪{j},−S−{j}

)
i,i

=

t+1∑

k=1

(
C−S−{j},S∪{j}

)
i,k

(
C−1

S∪{j},S∪{j}CS∪{j},−S−{j}

)
k,i

= Cr,j

(
C−1

S∪{j},S∪{j}CS∪{j},−S−{j}

)
t+1,i

+
t∑

k=1

(C−S,S)i,k

(
C−1

S∪{j},S∪{j}CS∪{j},−S−{j}

)
k,i

= Cr,j

(
Cj,SC

−1
S,SCS,r

Cj,SC
−1
S,SCS,j − Cj,j

+
Cj,r

Cj,j − Cj,SC
−1
S,SCS,j

)
+

+ Cr,SC
−1
S,S

((
CS,jCj,SC

−1
S,S

Cj,j − Cj,SC
−1
S,SCS,j

+ I

)
CS,r +

CS,jCj,r

Cj,SC
−1
S,SCS,j − Cj,j

)

= (Σ [S])i,i +
σ [i; j|S]

2

Cj,j − Cj,SC
−1
S,SCS,j

= (Σ [S])i,i +
σ [i; j|S]

2

σ [j; j|S]

σ [i; j|S] = Ci,j − Ci,SC
−1
S,SCS,j

Plugging this result into Equation 1 gives:

∆ [S]j = −
∑

i/∈S∪{j}

σ [i; j|S]
2

σ [j; j|S]
− Cj,j + Cj,SC

−1
S,SCS,j = −

∑

i/∈S

σ [i; j|S]
2

σ [j; j|S]

2.5.1 Principal Component Analysis

PCA is a specific case of a Gaussian model, where a low-rank approximation of the covariance

matrix is used. Let X̄ = 1
n

n∑
i=1

Xi and Σ̂ = 1
n−1

n∑
i=1

(
Xi − X̄

) (
Xi − X̄

)T
. The eigen-decomposition

of the empirical covariance matrix is Σ̂ = UΛUT , where Λ is diagonal and U ∈ R
m×m satisfies

UTU = I. The total variance is
m∑

i=1

Λi,i. The i’th principal component Ui explains
Λi,i

Tr[Λ] of the

variance. By using only the first k principal components we have a rank-k approximation to Σ̂

which explains

k
P

i=1

Λi,i

Tr[Λ] of the variance in the data. Denote by U1:k ∈ R
m×k the matrix obtained by



taking the first k columns of U , and Λ1:k the diagonal matrix obtained by using the first k elements
on the diagonal of Λ. Then U1:kΛ1:kU

T
1:k is a rank-k approximation to Σ̂. Since this approximation

is singular and uses no components from the space orthogonal to U1:k, which contains

P

i>k

Λi,i

Tr[Λ] of

the variance, we add back this space with a total contribution to the variance as it had originally

by adding 1
m−k

(∑
i>k

Λi,i

)(
I − U1:kU

T
1:k

)
. Let Σ = U1:kΛ1:kU

T
1:k + 1

m−k

(∑
i>k

Λi,i

)(
I − U1:kU

T
1:k

)
,

then we model the data as X ∼ N (µ; Σ) where µ = X̄.
To choose the number of principal components to be used, we use leave-one-out cross-validation

and compute the total log-likelihood of the left-out samples given the covariance estimated on the
remaining ones. This is done efficiently by not computing the full covariance matrix or its inverse
at any stage, but rather only the results of their product with the test sample.

2.5.2 PCA Regression

In addition to using PCA as a specific case of a Gaussian model, we can use PCA regression directly

for probe selection and imputation. For a probeset S, let v =
(
UT
S,1:kUS,1:k

)−1

UT
S,1:k (YS − µS)

be the least-squares solution for the PCA coefficients, and U−S,1:kv + µ−S is the imputation. The

reconstruction squared error is

∥∥∥∥U−S,1:k

(
UT
S,1:kUS,1:k

)−1

UT
S,1:k (YS − µS)− (Y−S − µ−S)

∥∥∥∥
2

2

.

We use forward greedy selection to choose probes to minimize the LOOCV reconstruction
error. Since UT

S∪{j},1:kUS∪{j},1:k = UT
S,1:kUS,1:k + UT

j,1:kUj,1:k, we can compute the inverse easily.

Let AS =
(
UT
S,1:kUS,1:k

)−1

and uS = ASU
T
j,1:k, then

AS∪{j} =
(
UT
S∪{j},1:kUS∪{j},1:k

)−1

= AS −
ASU

T
j,1:kUj,1:kAS

1 + Uj,1:kASUT
j,1:k

= AS −
uSu

T
S

1 + Uj,1:kuS

Given the current set S, we compute the LOOCV error using S ∪ {j} for all j /∈ S, 1 ≤ k ≤
min [n− 2,m] and λ ∈ {2x|x ∈ {αmin, . . . , αmax}} where in our experiments αmin = −20, αmax = 0.

2.5.3 Shrinkage covariance estimation

Rather than using the maximum likelihood covariance estimate 1
n

n∑
i=1

(
Xi − X̄

) (
Xi − X̄

)T
, we

use this estimate for the main diagonal but shrink the off-diagonal elements by α, so: Σ̂ =

α
n

n∑
i=1

(
Xi − X̄

) (
Xi − X̄

)T
+(1−α)D where D is a diagonal matrix with Dj,j = 1

n

n∑
i=1

(
Xj,i − X̄j

)2
.

We choose α to maximize the LOOCV likelihood. Let C be the estimated covariance matrix

using the full training data: C = 1
n

n∑
i=1

XiX
T
i −

(
1
n

n∑
i=1

Xi

)(
1
n

n∑
i=1

Xi

)T

. The estimated covariance

matrix C−i when leaving out sample i is C−i = 1
n−1

∑
i′ 6=i

XiX
T
i −

(
1

n−1

∑
i′ 6=i

Xi′

)(
1

n−1

∑
i′ 6=i

Xi′

)T

,

and D−i the diagonal matrix defined by (D−i)j,j = 1
n−1

∑
i′ 6=i

(
Xj,i − (µ−i)j

)2

, where µ−i =

1
n−1

∑
i′ 6=i

Xi′ .



The LOOCV likelihood is:

−2l (α : D) = nm log (2π)+

n
X

i=1

log |αC−i+(1−α)D−i|+

n
X

i=1

(Xi − µ−i)
T (αC−i + (1 − α) D−i)

−1 (Xi − µ−i)

(2)

An analytical solution for α based on the LOOCV likelihood is hard, and we compare two
approaches:

1. A numerical search to minimize Equation 2. Let M−i = D
−1/2
−i (C−i −D−i)D

−1/2
−i and let

M−i = U−iΛ−iU
T
−i be its eigen-decomposition. Also let d−i,j = (D−i)j,j and λ−i,j = (Λ−i)j,j .

Then

αC−i + (1− α)D−i = D−i + α (C−i −D−i)

= D
1/2
−i

(
I + αD

−1/2
−i (C−i −D−i)D

−1/2
−i

)
D

1/2
−i

= D
1/2
−i

(
I + αU−iΛ−iU

T
−i

)
D

1/2
−i

= D
1/2
−i U−i (αΛ−i + I)UT

−iD
1/2
−i

log |αC−i + (1− α)D−i| =

m∑

j=1

(log (d−i,j) + log (1 + αλ−i,j))

(αC−i + (1− α)D−i)
−1

= D
−1/2
−i U−i (αΛ−i + I)

−1
UT
−iD

−1/2
−i

−2l (α : D) = nm log (2π) +

n∑

i=1

m∑

j=1

(log (d−i,j) + log (1 + αλ−i,j)) +

+

n∑

i=1

(Xi − µ−i)
T
D

−1/2
−i U−i (αΛ−i + I)

−1
UT
−iD

−1/2
−i (Xi − µ−i)

= nm log (2π) +
n∑

i=1

m∑

j=1

(log (d−i,j) + log (1 + αλ−i,j)) +

+

n∑

i=1

m∑

j=1

v2
−i,j

1 + αλ−i,j

where V−i = UT
−iD

−1/2
−i (Xi − µ−i).

2. Choose α as previously suggested [3]. α∗ =

P

i6=j

dVar(si,j)

P

i6=j

s2
i,j

where sj1,j2 is the unbiased empirical

estimate of the covariance between probes j1 and j2: sj1,j2 = 1
n−1

n∑
i=1

(xj1,i − x̄j1) (xj2,i − x̄j2)

and V̂ar (si,j) is the empirical unbiased estimate of the variance of si,j .

In practice, both methods perform quite similarly, with the actual α values chosen very similar
as well.

2.5.4 Regularized covariance estimation

In this formulation, we place a prior on the estimated covariance matrix Σ̂, which is a Gaussian

prior on the entries of the precision matrix Σ−1: P (Σ) = (2π)
−m2

2 σ−m2

exp

(
−1
2σ2

m∑
i=1

m∑
j=1

(
Σ−1

i,j

)2
)

.

Then, the likelihood is:



−2l (Σ : X) = mn log (2π)− n log
∣∣Σ−1

∣∣+
n∑

i=1

(
Xi − X̄

)T
Σ−1

(
Xi − X̄

)
+

+ m log (2π) + 2m2 log σ +
1

σ2
Tr
[
Σ−2

]

∂ (−2l (Σ : X))

∂Σ−1
= −nΣ +

n∑

i=1

(
Xi − X̄

) (
Xi − X̄

)T
+

2

σ2
Σ−1

Let 1
n

n∑
i=1

(
Xi − X̄

) (
Xi − X̄

)T
= UΛUT be the eigen-decomposition of the empirical covariance

matrix. Setting the gradient to 0:

0 = Σ2 −
Σ

n

n∑

i=1

(
Xi − X̄

) (
Xi − X̄

)T
−

2

nσ2
I

Σ =
1

2n

n∑

i=1

(
Xi − X̄

) (
Xi − X̄

)T
±


 1

4n2

(
n∑

i=1

(
Xi − X̄

) (
Xi − X̄

)T
)2

+
2

nσ2
I




1/2

=
1

2
UΛUT ±

(
1

4
U

(
Λ2 +

8

nσ2
I

)
UT

)1/2

= U

(
1

2
Λ +

1

2

√
Λ2 +

8

nσ2
I

)
UT

Since 8
nσ2 > 0, the minus solution results in a matrix which is not positive semi-definite, so the

only solution is the plus solution.

2.5.5 L2 regularized inverse covariance estimation with different regularization coef-

ficients

The analytical solution to the L2 regularized inverse covariance estimation described in Sec-
tion 2.5.4 assumed a single regularization coefficient σ2. Now we generalize this to the following
optimization problem:

MaximizeΣ

n∑

i=1

(
−
m

2
log (2π)−

1

2
log |Σ| −

1

2
(Xi − µ)

T
Σ−1 (Xi − µ)

)
−

m∑

j1=1

m∑

j2=1

λj1,j2

(
Σ−1

)2
j1,j2

(3)

Let J = Σ−1 and Σ̂ = 1
n

n∑
i=1

(Xi − µ) (Xi − µ)
T
. The Equation 3 is equivalent to:

MaximizeΣ n log |J | − nTr
[
Σ̂J
]
−

m∑

j1=1

m∑

j2=1

λj1,j2J
2
j1,j2 (4)

Introduce Z with the constraint Z = J and the Lagrange multipliers W , then the Lagrangian
is:



L (J, Z,W ) = nTr
[
Σ̂J
]
− n log |J |+

m∑

j1=1

m∑

j2=1

λj1,j2Z
2
j1,j2 + Tr [W (J − Z)]

inf
Zj1,j2

L = inf
Zj1,j2

λj1,j2Z
2
j1,j2 −Wj1,j2Zj1,j2

Zj1,j2 =
Wj1,j2

2λj1,j2

inf
Zj1,j2

L =





−
W 2

j1,j2

4λj1,j2
if λj1,j2 > 0

0 if λj1,j2 = 0 and Wj1,j2 = 0

−∞ if λj1,j2 = 0 and Wj1,j2 6= 0

inf
J
L = inf

J
nTr

[(
Σ̂ +

1

n
W

)
J

]
− n log |J |

Σ̂ +
1

n
W = J−1

Σ = Σ̂ +
1

n
W

J =

(
Σ̂ +

1

n
W

)−1

inf
J
L = n (m− log |J |)

Combining the above, we get the dual:

g (W ) = inf
J,Z
L (J, Z,W )

=




−∞ if ∃j1, j2 : λj1,j2 = 0 and Wj1,j2 6= 0

−n (log |J | −m)−
∑

j1,j2:λj1,j2
>0

W 2
j1,j2

4λj1,j2
otherwise

The dual objective is:

MaximizeW −n log |J | −
∑

j1,j2:λj1,j2
>0

W 2
j1,j2

4λj1,j2

s.t. ∀j1, j2 : λj1,j2 = 0⇒Wj1,j2 = 0

For a dual feasible point W , the corresponding primal point is J =
(
Σ̂ + 1

nW
)−1

, the primal

objective value is nTr
[
Σ̂J
]
− n log |J | +

m∑
j1=1

m∑
j2=1

λj1,j2J
2
j1,j2

, the dual objective value is nm −

n log |J | −
∑

j1,j2:λj1,j2
>0

W 2
j1,j2

4λj1,j2
and the duality gap is

η (W ) = nTr
[
Σ̂J
]

+

m∑

j1=1

m∑

j2=1

λj1,j2J
2
j1,j2 +

∑

j1,j2:λj1,j2
>0

W 2
j1,j2

4λj1,j2

− nm (5)

We solve the dual by gradient ascent. Initialize Σ(0) = αΣ̂ + (1 − α)D where D is a diagonal

matrix withDi,i = Σ̂i,i for some α close to 1. LetW (0) = n
(
Σ(0) − Σ̂

)
= n (1− α)

(
D − Σ̂

)
. Then

Σ(0) is positive definite and W (0) is a feasible point. Now, for a feasible point W let Σ = Σ̂ + 1
nW

and J = Σ−1. The gradient is:



∇W g = n∇W log

∣∣∣∣Σ̂ +
1

n
W

∣∣∣∣−
Wj1,j2

2λj1,j2

= n ()

∂g

∂Wj1,j2

=

{
Jj1,j2 −

Wj1,j2

2λj1,j2
if λj1,j2 > 0

Jj1,j2 otherwise

Each step consists of computing the direction of change (the gradient G) and a line search to
optimize t, the size of the move in that direction. For the current value of W , let Σ = Σ̂ + 1

nW ,

J = Σ−1 =
(
Σ̂ + 1

nW
)−1

, G = ∇W g and M = 1
nJ

1/2GJ1/2. Also let ψ1, . . . , ψn be the eigenvalues

of M . Then:

f (t) = g (W + tG) = n log

∣∣∣∣Σ̂ +
1

n
W +

t

n
G

∣∣∣∣−
∑

j1,j2:λj1,j2
>0

(Wj1,j2 + tGj1,j2)
2

4λj1,j2

Σ̂ +
1

n
W +

t

n
G = Σ +

t

n
G = Σ1/2

(
I +

t

n
Σ−1/2GΣ−1/2

)
Σ1/2

= Σ1/2 (I + tM)Σ1/2

log

∣∣∣∣Σ̂ +
1

n
W +

t

n
G

∣∣∣∣ = log |Σ|+
∑

i

log (1 + tψi)

Note that if min
i

(1 + tψi) > 0 then I + tM is positive definite and since Σ is positive defi-

nite (and therefore Σ1/2 is positive definite), the product Σ1/2 (I + tM)Σ1/2 is positive definite
and it is equal to Σ̂ + 1

nW + t
nG. Conversely, if Σ̂ + 1

nW + t
nG is positive definite then so is

Σ−1/2
(
Σ̂ + 1

nW + t
nG
)

Σ−1/2, which is equal to I+ tM , and this implies that 1+ tψi > 0 for all i.

Hence, 1 + tψi > 0 for all i is a necessary and sufficient condition for Σ̂ + 1
nW + t

nG being positive
definite, and we constrain the line search to the range of values of t such that 1 + tψi > 0 for all i.
To find the optimal t within that range, we use Newton’s method:

f ′(t) = n
∑

i

ψi

1 + tψi
−

∑

j1,j2:λj1,j2
>0

Gj1,j2 (Wj1,j2 + tGj1,j2)

2λj1,j2

f ′′(t) = −n
∑

i

ψ2
i

(1 + tψi)
2 −

∑

j1,j2:λj1,j2
>0

G2
j1,j2

2λj1,j2

Each iteration of the gradient ascent procedure consists of:

• Computing Σ = Σ̂ + 1
nW . O(m2).

• Computing the eigen-decomposition of Σ. O(m3).

• Computing J = Σ−1. O(m3).

• Computing J1/2 (using the eigen-decomposition already computed). O(m3).

• Computing the gradient G as described above. O(m2).



• Computing M = J1/2GJ1/2 and its eigen-decomposition. O(m3).

• Line search to find optimal t. O(rm2) where r is the number of inner line search iterations.

• Perform the move: W ←W + tG. O(m2).

Overall, an iteration takes O(m3) operations. Convergence is determined by comparing the
duality gap to a threshold.

2.5.6 L1 regularized inverse covariance estimation

We use the projected subgradient method [1] to estimate a (sparse) L1 regularized inverse covari-
ance matrix, and use this matrix as described above.

2.5.7 L∞-regularized linear regression

Since our goal is to predict all probes from a small set of selected probes, a good linear model
to use is one which automatically results in a small set of probes which have nonzero weights for
predicting any of the other probes. If W ∈ R

m×m is the weight matrix such Y = WTX, we would
like W to have few nonzero rows.

Additionally, we would like to control sparsity and shrinkage separately: controlling sparsity
allows us to choose the number of probes that we will use, and a separate control of shrinkage
allows us to use cross-validation to optimize the prediction accuracy separately from the resulting
number of probes. Finally, we would like our optimization goal to be convex in the weights,
for computational reasons. This prevents us from using something like an L0 norm which only
considers the number of nonzero rows.

One possible alternative is to use a sum of L∞ norms:
m∑

j=1

‖Wj‖∞ =
m∑

j1=1

m
max
j2=1
|wj1,j2 |. The

advantages of this penalty term are that it is convex and can be optimized using coordinate descent,
and it results in a solution which is sparse in nonzero rows, but at the same time its shrinking
effects on the weights are minimal.

To solve for a single weight while keeping all others fixed, we have the following optimization
problem:

Minimizewj1,j2

1

2

n∑

i=1




xj2,i −

∑

j 6=j1

wj,j2xj,i


− wj1,j2xj1,i




2

+ λ
m

max
j=1
|wj1,j |

The partial derivative of the likelihood without the penalty term with respect to wj1,j2 is:

∂L (W )

∂wj1,j2

=
n∑

i=1

xj1,i




m∑

j=1

wj,j2xj,i − xj2,i




wj1,j2 is optimal (keeping all other weights fixed) if |wj1,j2 | <
m

max
j=1
|wj1,j | and

n∑
i=1

xj1,i

(
m∑

j=1

wj,j2xj,i − xj2,i

)
=

0, or |wj1,j2 | =
m

max
j=1
|wj1,j | and

n∑
i=1

xj1,i

(
m∑

j=1

wj,j2xj,i − xj2,i

)
> −λ (for wj1,j2 > 0),

n∑
i=1

xj1,i

(
m∑

j=1

wj,j2xj,i − xj2,i

)
<

λ (for wj1,j2 < 0),

∣∣∣∣∣
n∑

i=1

xj1,i

(
m∑

j=1

wj,j2xj,i − xj2,i

)∣∣∣∣∣ < λ (for wj1,j2 = 0).



Since the optimal value for wj1,j2 does not depend on wj1,j for j 6= j2 given
m

max
j=1
|wj1,j |, we can

efficiently solve for an entire row at a time.
To solve for one row while keeping all others fixed, we have the following optimization problem:

MinimizeWr∈Rm

1

2

n∑

i=1

m∑

j=1




xj,i −

∑

k 6=r

wk,jxk,i


− wr,jxr,i




2

+ λ
m

max
j=1
|wr,j |

Equivalently:

MinimizeWr∈Rm
1
2

n∑
i=1

m∑
j=1

((
xj,i −

∑
k 6=r

wk,jxk,i

)
− wr,jxr,i

)2

+ λMr

Subject to ∀j 6= r, |wr,j | ≤Mr

If there was no penalty term, we could simply set the derivatives to zero to get the unpenalized
optimal values:

ŵr,j =

−
n∑

i=1

xr,i

(
∑

j2 6=r

wj2,jxj2,i − xj,i

)

n∑
i=1

x2
r,i

Now examine the optimal assignments to Wr if Mr is given. Let I
(1)
r = {j 6= r : ŵr,j ≥Mr},

I
(2)
r = {j 6= r : ŵr,j ≤ −Mr}, and I

(3)
r = {j 6= r : |ŵr,j | < Mr}. Then using those notations, the

optimal values of Wr are:

wr,j =





Mr if j ∈ I
(1)
r

−Mr if j ∈ I
(2)
r

ŵr,j if j ∈ I
(3)
r

The objective value for a given Mr is:



J (Mr) =
1

2

∑

j∈I
(3)
r

n∑

i=1


∑

k 6=r

wk,jxk,i + ŵr,jxr,i − xj,i




2

+

+
1

2

∑

j∈I
(1)
r

n∑

i=1


∑

k 6=r

wk,jxk,i +Mrxr,i − xj,i




2

+

+
1

2

∑

j∈I
(2)
r

n∑

i=1


∑

k 6=r

wk,jxk,i −Mrxr,i − xj,i




2

+ λMr

J ′ (Mr) =
∑

j∈I
(1)
r

n∑

i=1

xr,i


∑

k 6=r

wk,jxk,i − xj,i +Mrxr,i


+

+
∑

j∈I
(2)
r

n∑

i=1

xr,i


xj,i −

∑

k 6=r

wk,jxk,i +Mrxr,i


+ λ

=

(∣∣∣
{
j ∈ I(1)

r ∪ I(2)
r

}∣∣∣
n∑

i=1

x2
r,i

)
Mr −

−
∑

j∈I
(1)
r ∪I

(1)
r

∣∣∣∣∣∣

n∑

i=1

xr,i


∑

k 6=r

wk,jxk,i − xj,i



∣∣∣∣∣∣
+ λ

Setting the derivative to zero gives the optimal Mr given I
(1)
r , I

(2)
r , I

(3)
r :

M̂r =

∑
j∈I

(1)
r ∪I

(1)
r

∣∣∣∣∣
n∑

i=1

xr,i

(
∑
k 6=r

wk,jxk,i − xj,i

)∣∣∣∣∣− λ
∣∣∣
{
j ∈ I

(1)
r ∪ I

(2)
r

}∣∣∣
n∑

i=1

x2
r,i

2.5.8 L2-regularized linear regression

This method is still linear, but it is discriminative rather than generative. We directly predict the
expression values of the unobserved probes from those of the observed ones. For a probeset S, we
first subtract the mean X̄ from X to get X̃ and solve:

WS =
(
X̃SX̃

T

S + λI
)−1 (

X̃S

)(
X̃−S

)T

W ∈ R
l×m−l is the prediction matrix. The imputation is then: Y−S = WT

S YS .
Given a probeset, the LOOCV likelihood as a function of λ is:

−l (λ : D) =

n∑

i=1

∑

j /∈S

(
Xj,i − X̃j,−iX̃

T

S,−i

(
X̃S,−iX̃S,−i + λI

)−1

XS,i

)2



Let XSX
T
S = U [S]S[S]U [S]T be the eigen-decomposition of XS . Then X̃S,−iX̃

T

S,−i =

XSX
T
S −XS,iX

T
S,i −

1
n−1

(
∑
i′ 6=i

XS,i′

)(
∑
i′ 6=i

XS,i′

)T

.

Using the Sherman-Morrison formula:

Mi [λ] =
(
X̃S,−iX̃S,−i + λI

)−1

=


XSX

T
S + λI −XS,iX

T
S,i −

1

n− 1


∑

i′ 6=i

XS,i′




∑

i′ 6=i

XS,i′




T



−1

Ri [λ]
−1

=
(
XSX

T
S + λI −XS,iX

T
S,i

)−1

=
(
XSX

T
S + λI

)−1


I +

XS,iX
T
S,i

1−XT
S,i

(
XSX

T
S + λI

)−1

XS,i

(
XSX

T
S + λI

)−1




Mi [λ] =


Ri [λ] +


∑

i′ 6=i

XS,i′




 1

1− n

∑

i′ 6=i

XS,i′




T



−1

= Ri [λ]
−1



I +

(
∑
i′ 6=i

XS,i′

)(
∑
i′ 6=i

XS,i′

)T

n− 1−

(
∑
i′ 6=i

XS,i′

)T

Ri [λ]
−1

(
∑
i′ 6=i

XS,i′

)Ri [λ]
−1




l (λ : D) =

n∑

i=1

∑

j /∈S

(
Xj,i − X̃j,−iX̃

T

S,−iMi [λ]XS,i

)2

This allows efficient computation of the LOOCV likelihood for r different values of λ at the

cost of O
(
rn |S|2

)
, given the SVD of XS .

For efficient computation, we will need to compute the SVD of XS incrementally. Let X =

USV T . We want the SVD of

(
X
y

)
. Let:

U1 =

(
U 0
0 1

)

k =
∥∥y
(
I − V V T

)∥∥
2

J =
y
(
I − V V T

)

k

Q1 =

(
S 0
yV k

)

V T
1 =

(
V T

J

)

Then:



U1Q1V
T
1 =

(
US 0
yV k

)(
V T

J

)

=

(
USV T

yV V T + y − yV V T

)
=

(
X
y

)

SinceQ1 is not diagonal, we need to diagonalize it. The matrixQ1Q
T
1 =

(
S 0
yV k

)(
S V T yT

0 k

)
=

(
S2 SV T yT

yV S yV V T yT + k2

)
is an arrowhead matrix and we use this property as previously sug-

gested [2] to compute its eigen-decomposition Q1Q
T
1 = U2S

2
2U

T
2 . Then let V2 = QT

1 U2S
−1
2 , so that

U2S2V
T
2 = U2S2S

−1
2 UT

2 Q1 = Q1.
Now let U3 = U1U2, S3 = S2 and V3 = V1V2 to get:

U3S3V
T
3 = U1U2S2V

T
2 V

T
1 = U1Q1V

T
1 =

(
X
y

)

This allows us to update the SVD of XS with a new probe to the SVD of XS∪{j} in O
(
|S|2

)
.

To select a probeset, we apply a greedy procedure, choosing at each iteration the probe that

maximizes the likelihood with λ fixed. Assume we already computedQ−i =
(
X̃S,−iX̃

T

S,−i + λI
)−1

.

Then:

A [j] =
(
X̃S∪{j},−iX̃

T

S∪{j},−i + λI
)

=



(
X̃S,−iX̃

T

S,−i + λI
)

X̃S,−iX̃
T
j,−i

X̃j,−iX̃
T

S,−i X̃j,−iX̃
T
j,−i + λ




v = X̃S,−iX̃
T
j,−i

u = Qv

d =
1

X̃j,−iX̃T
j,−i + λ− vTu

A [j]
−1

=

(
Q+ duuT −du
−duT d

)

Now solving for the regularized regression weights:

A [j]
−1

(
X̃S,−i

X̃j,−i

)
=


 QX̃S,−i + du

(
uT

X̃S,−i − X̃j,−i

)

−d
(
uT

X̃S,−i − X̃j,−i

)



W [j] = A [j]
−1

(
X̃S,−i

X̃j,−i

)
X̃

T

−S−{j},−i

=


 QX̃S,−i + du

(
uT

X̃S,−i − X̃j,−i

)

−d
(
uT

X̃S,−i − X̃j,−i

)

 X̃

T

−S−{j},−i =

(
U [j]
u [j]

)

The imputation of probe j1 using S ∪ {j2} would then be:



r [j] = d
(
uT

X̃S,−i − X̃j,−i

)

yj1,j2 = U [j2]
T
j1X̃S,i + u[j2]j1X̃j2,i

= X̃j1,−i

((
r[j2]

TuT + X̃
T

S,−iQ
)
X̃S,i − r[j2]

T X̃j2,i

)

= X̃j1,−ip [j2]

p [j2] =
(
r[j2]

TuT + X̃
T

S,−iQ
)
X̃S,i − r[j2]

T X̃j2,i

The corresponding error:

t [j2] = r [j2] X̃
T

−S,−iX̃−S,i

ǫ̂ [j2] =
∑

j1 /∈S

(
yj1,j2 − X̃j1,i

)2

= X̃T
−S,iX̃−S,i − 2yT

j2X̃−S,i + yT
j2yj2

= X̃T
−S,iX̃−S,i + 2X̃j2,it [j2]− 2X̃T

S,iQ−iX̃S,−i

(
X̃T

j2,−it [j2] + 1
)

+ yT
j2yj2

yT
j2yj2 =

∑

j1 /∈S

y2
j1,j2 =

∑

j1 /∈S

X̃j1,−ip [j2] p [j2]
T
X̃T

j1,−i

= p [j2]
T

X̃
T

−S,−iX̃−S,−ip [j2]

2.5.9 Group lasso regression

This method uses regularization for selection as well as parameter estimation. Let W ∈ R
m×m be

the imputation matrix, such that S [W ] = {1 ≤ j ≤ m :
m∑

k=1

W 2
j,k > 0}.

Then given W , the likelihood term is:
n∑

i=1

∥∥WTXi −Xi

∥∥2

2
. We add a group lasso penalty term

λ
m∑

j=1

√
m∑

k=1

W 2
j,k. Then the optimization goal is:

Minimize
1

2

n∑

i=1

∥∥WTXi −Xi

∥∥2

2
+ λ

m∑

j=1

√√√√
m∑

k=1

W 2
j,k (6)

This goal is convex in W and we solve it by coordinate descent on rows of W . When all the
rows are fixed except the j’th row, the goal is:

J (Wj) = const +
1

2

n∑

i=1

∥∥WT
j xj,i −

(
Xi −W

T
−jX−j,i

)∥∥2

2
+

√√√√
m∑

k=1

W 2
j,k

Let Ri = Xi −WT
−jX−j,i be the matrix of residuals. Take the gradient of J :



∂J(Wj)

∂Wj
=

n∑

i=1

xj,i (xj,iWj −Ri) +
λWj√
m∑

k=1

W 2
j,k

n∑

i=1

xj,iRi =

(
n∑

i=1

x2
j,i

)
Wj +

λ

‖Wj‖2
Wj

Wj =

n∑
i=1

xj,iRi

(
n∑

i=1

x2
j,i

)
+ λ

‖Wj‖2

Wj = ‖Wj‖2

n∑
i=1

xj,iRi

‖Wj‖2

(
n∑

i=1

x2
j,i

)
+ λ

‖Wj‖2 =
‖Wj‖2

‖Wj‖2
n∑

i=1

x2
j,i + λ

∥∥∥∥∥
n∑

i=1

xj,iRi

∥∥∥∥∥
2

‖Wj‖2 =

∥∥∥∥
n∑

i=1

xj,iRi

∥∥∥∥
2

− λ

n∑
i=1

x2
j,i

If

∥∥∥∥
n∑

i=1

xj,iRi

∥∥∥∥
2

≤ λ, then Wj = 0. Otherwise,

Wj =

‖Wj‖2

n∑
i=1

xj,iRi

∥∥∥∥
n∑

i=1

xj,iRi

∥∥∥∥

=
‖Wj‖2

‖Wj‖2
n∑

i=1

x2
j,i + λ

∥∥∥∥∥
n∑

i=1

xj,iRi

∥∥∥∥∥
2

n∑
i=1

xj,iRi

∥∥∥∥
n∑

i=1

xj,iRi

∥∥∥∥

=
‖Wj‖2

‖Wj‖2
n∑

i=1

x2
j,i + λ

n∑

i=1

xj,iRi

=
‖Wj‖2∥∥∥∥

n∑
i=1

xj,iRi

∥∥∥∥
2

n∑

i=1

xj,iRi

=

n∑
i=1

xj,iRi

n∑
i=1

x2
j,i


1−

λ∥∥∥∥
n∑

i=1

xj,iRi

∥∥∥∥
2




We can combine both cases and write:



Wj =

n∑
i=1

xj,iRi

n∑
i=1

x2
j,i


1−

λ∥∥∥∥
n∑

i=1

xj,iRi

∥∥∥∥
2




+

(7)

For each number of genes we assign a value of λ. For l = 0, we need

∥∥∥∥
n∑

i=1

xj,iXi

∥∥∥∥
2

≤ λ

for all 1 ≤ j ≤ m. Hence, λ [0] = max
1≤j≤m

∥∥∥∥
n∑

i=1

xj,iXi

∥∥∥∥
2

. Now assume we have S[l], λ[l] and a

solution W [l] for that value of λ. We compute the residuals Ri with that value of W , and choose

λ[l + 1] = max
j /∈S

∥∥∥∥
n∑

i=1

xj,iRi

∥∥∥∥
2

. This gives the highest value of λ such that below this value, keeping

all other weights fixed, a new probe is introduced. Since the optimal value for this probe is still

0 when λ is computed as described above, we set λ[l + 1] = αmax
j /∈S

∥∥∥∥
n∑

i=1

xj,iRi

∥∥∥∥
2

for some α < 1

(α = 0.99 in our experiments).

2.5.10 GLL2: Group Lasso selection with L2 regression

In Section 2.5.9 we described how to use group lasso regularization for both selection and shrinkage.
Since the regularization parameter is chosen to yield a prespecified number of probes, it is not
optimized for best generalization to unobserved data, and in fact it is quite likely that its chosen
values are very unsuitable for good generalization of predictions.

For this reason, in this method we use the group lasso regularization described in Section 2.5.9
for selection, but once the probes have been selected, we use L2-regularized linear regression to
impute the missing values. The regularization parameter for the L2-regularized regression is chosen
using leave-one-out cross-validation.

2.6 Modular methods

2.6.1 Covariance estimation with module structure

In this method, we combine any of the other methods for covariance estimation with exploitation
of the modular structure of gene expression.

Given a partition of the probes into modules M1, . . . ,MnM
, let Cj be the module to which

probe j is assigned, then we model the vector of gene expression X as Xj = ZCj
+ νj + ǫj , where

Z1, . . . , ZnM
are the module means and Z ∼ N (ξ; Ψ), νj is the difference between the expression of

probe j and the mean of its module and Cj1 6= Cj2 ⇒ νj1 ⊥ νj2 , and ǫ ∼ N
(
0, σ2I

)
. In words, the

mean module expression is modeled as a multivariate Gaussian, and the differential expression of
the probes within each module from the module mean is another multivariate Gaussian with zero
mean. This differential expression is independent of the differential expression of all probes from
different modules. Hence, the dependencies between the expression values of probes from different
modules are only through the dependencies between the means of their modules. Additionally
there is independent Gaussian noise added to each probe.

The distribution over the probes is then N (µ; Σ) where µ is the empirical mean and Σ is
the full estimated covariance matrix given σ2 (variance of the noise), ξ (module mean expression
values), Ψ (estimate covariance of module means), and Φ1, . . . ,ΦnM

(estimate covariance matrices
for νMi

− ξi, the intra-module deviation from the module mean): the sub-matrix corresponding to
the covariance within a module Mj is Ψj,j1|Mj |1

T
|Mj |

+Φj +σ2I, and the sub-matrix corresponding

to the covariance between modules Mj1 and Mj2 is Ψj1,j21|Mj1 |
1T

|Mj2 |
.



This general model dictates the form of the overall Gaussian distribution over all genes, given
the module assignments and the distributions of Z and ν. We also need to specify how to choose
the modules M1, . . . ,MnM

and how to estimate the covariances over Z and ν.
One way of evaluating a particular module assignment is to ignore ν and use the Bayesian score

P (X|C1, . . . , Cm) which integrates over the hidden variables Z and ǫ. Due to the structure of the
model, if we ignore ν this results in a closed-form expression which is the product of the individual
marginal module probabilities P (XMr

). Since for j ∈ Mr we have Xj − Zr ∼ N
(
0, σ2

)
, then

E [Xj ] = EZr
[E [Xj |Zr]] = EZr

[Zr] = ξr, Var [Xj ] = Var [Zr] + σ2 = Ψr,r + σ2 and for j1, j2 ∈Mr

we have Cov [Xj1 ;Xj2 ] = Ψr,r. Hence, the marginal distribution over XMr
is N (ξr; Σr) where

Σr = Ψr,r11T + σ2I and its inverse is Jr = 1
σ2

(
I − Ψr,r

σ2+|Mr|Ψr,r
11T

)
which allows us to compute

P (X) = (2π)
m/2

nM∏
r=1

√
|Jr| exp

(
− 1

2 (XMr
− ξr)

T
Jr (XMr

− ξr)
)
. Ignoring ν means we only need

to estimate expectations and variances, but no covariances.
Since σ2 is not known, we approximate marginalizing over it by doing Metropolis Hastings with

an initialization of
(
σ2
)(0)

= 1 and two proposal moves:
(
σ2
)(t+1)

= γ
(
σ2
)(t)

and
(
σ2
)(t+1)

=

γ−1
(
σ2
)(t)

, which have equal probabilities. Then we use the Bayesian score described above to
compute an acceptance probability.

For a given module assignment, we can use any of the covariance estimation methods to esti-
mate Ψ, the covariance matrix for the module means, and Σ1, . . . ,ΣnM

, the covariance matrices
for the differential expression from the module mean of probes within a module. The simplest
implementation uses K-means clustering to generate a single module assignment. We can use the
Bayesian score described above to compare within different clustering results, for different runs
of K-means with the same or over a range of values for K. We can also use a search method
to optimize the Bayesian score directly. For improved robustness, we use 100 random restarts of
K-means and take the one with the best K-means objective score. We compute the Bayesian score
for the best module assignment for each K (30 ≤ K ≤ 100 in jumps of 5) and use the assignment
with the best score. The value of σ2 is chosen to maximize the Bayesian score. We refer to this as
“K-Means Module Assignment”. In practice, for our experiments we used 100 random K-means
restarts for each number of modules that we tested.

A more refined approach is to sample module assignments using the Bayesian score, and for
each module assignments, estimate the corresponding full covariance matrix (by estimating Ψ and
Σ1, . . . ,ΣnM

), and finally average over these covariance matrices. This may result in a better
estimate of the full covariance matrix which takes into account the uncertainty of the module
assignments.

The sampling is done using Metropolis-Hastings, and the Markov chain is a mixture of two
kernels, where in each step the kernel to be used is chosen randomly with a prespecified probability.
The first Markov chain kernel generates proposal moves that move one probe between modules. A
probe is chosen uniformly at random, and then either joined to one of the other modules (chosen
at random) or (if it is not the only probe in its module) is moved to a new module with the same
probability as being moved to any of the existing modules. For this Markov chain, the proposal
probabilities satisfy Q (Π→ Π′) = Q (Π′ → Π).

The second Markov chain kernel is based on moves that split and join modules. The type of
move is chosen at random, where the probability of a join move is p (or 0 if there is only one
module, or 1 if every probe is in its own module). A join move consists of choosing two modules
uniformly at random and joining them. The corresponding proposal probability (for joining two
modules in Π′ to a single module in Π) is Q (Π′ → Π) = 2p

nM (nM−1) . A split move consists of

choosing a module with at least two probes uniformly at random, and reassigning all its probes at
random to one of two new modules, as long as at least one probe is assigned to each of the new
modules. The corresponding proposal probability (for splitting module i in Π to two non-empty
modules in Π′) is Q (Π→ Π′) = 1−p

|{i′:|Mi′ |≥2}|
2

2|Mi|−2
= 1

|{i′:|Mi′ |≥2}|
“

2|Mi|−1−1
” .



ns samples are generated using the Metropolis-Hastings algorithm, and the nb first samples are
thrown away. For each of the remaining samples, a full covariance matrix is estimated and the
final covariance matrix is the average of these matrices.

In practice, we did not use this sampling method due to its extremely long running times.

2.6.2 Efficient probe selection with modules

Let vi ∈ R
m be a column vector such that (vi)j = 1 [Cj = i]. In other words, it is the in-

dicator function of the j’th module. Let V ∈ R
m×nM be the matrix with v1, . . . , vnM

as its

columns. The full covariance matrix is: Σ = Diag (Φ1, . . . ,ΦnM
) + σ2I +

nM∑
i1=1

nM∑
i2=1

vi1v
T
i2

Ψi1,i2 =

Diag
(
Φ1 + σ2I, . . . ,ΦnM

+ σ2I
)

+ VΨV T . Let A = Diag
(
Φ1 + σ2I, . . . ,ΦnM

+ σ2I
)

and A−1 =

Diag
((

Φ1 + σ2I
)−1

, . . . ,
(
ΦnM

+ σ2I
)−1
)
. Then by the Woodbury formula:

Σ−1 = A−1 −A−1V
(
Ψ−1 + V TA−1V

)−1
V TA−1

For two given probes j1 and j2, their conditional covariance given S is Σj1,j2 −Σj1,SΣ−1
S,SΣS,j2 .

Let VS be the module assignment indicator matrix as V above, restricted to S, then ΣS,j =
VSΨT

Cj
+ uj where ΨT

Cj
is the row of Ψ that corresponds to the module to which probe j belongs,

and uj is a vector that corresponds to the within-module covariance of j with elements of S (so
(uj)k = 0 for elements k that are not in the same module as j). The conditional covariance is,
then:

Σj1,j2 −
(
ΨCj1

V T
S + uT

j1

) (
A−1

S −A
−1
S VS

(
Ψ−1 + V T

S A
−1
S VS

)−1
V T
S A

−1
S

)(
VSΨT

Cj2
+ uj2

)

The imputation weights for probe j belonging to module c are:

(
ΨcV

T
S + uT

j

) (
A−1

S −A
−1
S VS

(
Ψ−1 + V T

S A
−1
S VS

)−1
V T
S A

−1
S

)

Since A−1
S is block-diagonal, A−1

S VS is a |S| × nM matrix where the i’th column is the sum
of the columns of AS corresponding to the i’th module, and therefore is nonzero only in rows
corresponding to the i’th module. MS = V T

S A
−1
S VS is a diagonal nM × nM matrix with Mi,i =∑

j1∈S:Cj1
=i

∑
j2∈S:Cj2

=i

(
A−1

S

)
j1,j2

.

uT
j A

−1
S VS is a row vector of nM elements, all of them zeros except the Cj ’th element, which is

equal to

∑

j1∈S:Cj1
=Cj

∑

j2∈S:Cj2
=Cj

(
ΦCj

)
j,j1

(
A−1

S

)
j1,j2

Hence:

uT
j1A

−1
S VSΨT

Cj2
= ΨCj1

,Cj2

∑

k1∈S:Ck1
=Cj1

∑

k2∈S:Ck2
=Cj1

(
ΦCj

)
j1,k1

(
A−1

S

)
k1,k2

So we compute for each module the sum of columns of A−1
S corresponding to its probes, and

then for each probe in the module we compute the weighted sum of the elements of this sum where
the weights are taken from the internal module covariance matrix. Let rj denote this scalar. This

is done in a total of
nM∑
i=1

|Mi ∩ S|
2

operations. Then uT
j1
A−1

S VSΨT
Cj2

is simply rj1 , multiplied by the

inter-module covariance of Cj1 and Cj2 .



uT
j1
A−1

S uj2 is nonzero only when Cj1 = Cj2 = c and is equal to
∑

k1∈S:Ck1
=c

∑
k2∈S:Ck2

=c

(Φc)j1,k1

(
A−1

S

)
k1,k2

(Φc)j2,k2
.

For each module, this is done in |Mi ∩ S|
3

operations.

Similarly, uT
j1
A−1

S VS
(
Ψ−1 + V T

S A
−1
S VS

)−1
V T
S A

−1
S uj2 is equal to rj1rj2

(
Ψ−1 + V T

S A
−1
S VS

)−1

Cj1
,Cj2

.

Also, ΨCj1
V T
S A

−1
S VS

(
Ψ−1 + V T

S A
−1
S VS

)−1
V T
S A

−1
S VSΨT

Cj2
is equal to

ΨCj1
M
(
Ψ−1 + V T

S A
−1
S VS

)−1
V T
S (AS)

−1
Cj1

,Cj2
MΨT

Cj2

and so can be computed in O
(
n3

M

)
for all pairs of modules.

To efficiently choose the t’th probe, then:

1. Compute B
(t)
c =

∑
j∈S:Cj=c

(
A−1

S(t)

)
j

for c = 1, . . . , nM . Complexity: O

(
nM∑
i=1

∣∣S(t) ∩Mi

∣∣2
)

.

2. Compute G(t) = V T
S(t)A

−1
S(t)VS(t) using G

(t)
i,i =

∑
j1∈S(t):Cj1

=i

B
(t)
Cj2

. Complexity: O (t).

3. Compute H(t) =
(
Ψ−1 +G(t)

)−1
. Complexity: O

(
n3

M

)
. This update can be done incremen-

tally, which brings the complexity down to O
(
n2

M

)
.

4. Compute L(t) = Ψ
(
G(t) −G(t)H(t)G(t)

)
Ψ. Complexity: O

(
n3

M

)
.

5. Compute r
(t)
j =

∑
k∈S(t)∩MCj

(
ΦCj

)
j,k
B

(t)
k,Cj

for all j. Complexity: O

(
nM∑
i=1

|Mi|
∣∣S(t) ∩Mi

∣∣
)

.

6. Compute J (t) = H(t)G(t)Ψ. Complexity: O
(
n3

M

)
.

7. Compute D
(t)
i = (Φi)Mi\S(t),Mi∩S(t) A

−1
S(t)∩Mi

. Complexity: O

(
nM∑
i=1

|Mi|
∣∣S(t) ∩Mi

∣∣2
)

.

8. Compute K
(t)
i = D

(t)
i (Φi)Mi∩S(t),Mi\S(t) . Complexity: O

(
nM∑
i=1

|Mi|
2 ∣∣S(t) ∩Mi

∣∣
)

.

9. Compute a
(t)
c =

∑
j∈Mc\S(t)

r
(t)
j and b

(t)
c =

∑
j∈Mc\S(t)

(
r
(t)
j

)2

for c = 1, . . . , nM . Complexity:

O (m).

10. For j1 and j2 such that Cj1 6= Cj2 , we have σ(t) [j1; j2] = ΨCj1
,Cj2
−L

(t)
Cj1

,Cj2
+r

(t)
j1

(
J

(t)
Cj1

,Cj2
−ΨCj1

,Cj2

)
+

r
(t)
j2

(
J

(t)
Cj2

,Cj1
−ΨCj1

,Cj2

)
+r

(t)
j1
H

(t)
Cj1

,Cj2
r
(t)
j2

. Let αj1,c = ΨCj1
,c−L

(t)
Cj1

,c+r
(t)
j1

(
J

(t)
Cj1

,c −ΨCj1
,c

)
,

βj1,c = J
(t)
c,Cj1

−ΨCj1
,c + r

(t)
j1
H

(t)
Cj1

,c. Then σ(t) [j1; j2] = αj1,Cj2
+ βj1,Cj2

r
(t)
j2

and for c 6= Cj1 ,
∑

j2∈Mc\S(t)

σ(t) [j1; j2]
2

= α2
j1,c

∣∣Mc \ S
(t)
∣∣+ 2αj1,cβj1,c

∑
j2∈Mc\S(t)

r
(t)
j2

+ β2
j1,c

∑
j2∈Mc\S(t)

(
r
(t)
j2

)2

11. The conditional covariance between probes j1 and j2 given S(t) is Σj1,j2−L
(t)
Cj1

,Cj2
+r

(t)
j1
r
(t)
j2
H

(t)
Cj1

,Cj2
−(

r
(t)
j1

+ r
(t)
j2

)
ΨCj1

,Cj2
+ J

(t)
Cj1

,Cj2
r
(t)
j1

+ J
(t)
Cj2

,Cj1
r
(t)
j2

. If Cj1 = Cj2 = c, an additional term
(
K

(t)
c

)
j1,j2

is subtracted.



12. We can now compute the scores for all j /∈ S(t) in O

(
mnM +

nM∑
i=1

|Mi|
2

)
. The overall

complexity of the procedure described above is O

(
mnM +

nM∑
i=1

|Mi|
2 ∣∣S(t) ∩Mi

∣∣
)

. The worst-

case complexity for selecting all l probes is O

(
mnM + l2

nM∑
i=1

|Mi|
2

)
.

13. The imputation weights for probe j given Mc ∩S(t) are:
(
ΨCj ,c − J

(t)
c,Cj
− r

(t)
j H

(t)
Cj ,c

)
B

(t)
c . If

Cj = c, a term of
(
D

(t)
c

)
j

is added.

2.6.3 Soft modular Gaussian

In this method for estimating the covariance matrix, we use the prior Jj1,j2 ∼ N
(
0; η2

j1,j2

)
where

η2
j1,j2

= 1

2γ1 exp(−γ2rj1,j2)
and rj1,j2 is the linear Pearson correlation between probes j1 and j2:

rj1,j2 =

n
P

i=1
(Xj1,i−X̄j1)(Xj2,i−X̄j2)

s

n
P

i=1
(Xj1,i−X̄j1)

2 n
P

i=1
(Xj2,i−X̄j2)

2

. This gives rise to the penalty term γ1

m∑
j1=1

m∑
j2=1

exp (−γ2rj1,j2) J
2
j1,j2

.

We estimate the covariance matrix Σ using the method described in Section 2.5.5.
γ1 and γ2 are chosen using cross-validation in the following procedure: first, we choose γ

by cross-validation to optimize the likelihood with the constant penalty γ
m∑

j1=1

m∑
j2=1

J2
j1,j2

which

corresponds to the prior Jj1,j2 ∼ N
(
0; 1

2γ

)
. With this prior, the expected Frobenius norm of the

precision matrix is E

[
m∑

j1=1

m∑
j2=1

J2
j1,j2

]
= m2

2γ . Then, for each γ2, we choose γ1 to give the same

expected Frobenius norm:
m∑

j1=1

m∑
j2=1

1

2γ1 exp(−γ2rj1,j2)
= m2

2γ . Hence, γ1 =
γ

m
P

j1=1

m
P

j2=1

exp(γ2rj1,j2)

m2 . We

choose γ2 and the matching γ1 using cross-validation.

2.7 Mixture models

2.7.1 Definition

Let {Pθ (X) |θ ∈ Θ} be a parametric family of distributions where Θ is the parameter space,
C ∼ P (C|φ) be a discrete class variable (φ parameterizes the class distribution) andX|C = c ∼ Pθc

.
This defines a mixture model over X with C being the class variable. Let P (θ) be a prior over θ.
We assume that (θc1

⊥ θc2
) for all c1 6= c2. Then the marginal likelihood is:

P (X) =

∫

φ

P (φ)

∫

θ

(∏

c

P (θc)

)
n∏

i=1

∑

c

P (C = c|φ)Pθc
(Xi)dθdφ

2.7.2 Learning

We learn the model using the EM algorithm. In the E-step, we fix θ and φ and compute Qi(Ci =

c) = P (Ci = c|Xi,θ) =
Pθc (Xi)P (Ci=c|φ)
P

c′
Pθc (Xi)P (Ci=c|φ) . In the M-step, we use the expected sufficient statistics

Q(Ci = c) to re-estimate θ and φ by maximizing the expected log-likelihood with respect to Q:



〈θ̂, φ̂〉 = arg max
〈θ,φ〉

logP (φ) +
∑

c

logP (θc) +

n∑

i=1

∑

c

Qi(c) (logP (C = c|φ) + logPθc
(Xi))

Since we assume parameter independence, we can solve separately:

φ̂ = arg max
φ

logP (φ) +

n∑

i=1

∑

c

Qi(c) logP (C = c|φ)

θ̂c = arg max
θc

logP (θc) +
n∑

i=1

Qi(c) logPθc
(Xi)

2.7.3 Selection

Given a probeset S and a data sample Xi, the inferred distribution given XS,i is:

Qi (Ci,Xi|XS,i) = P (Ci|XS,i)P (X−S,i|Ci,XS,i)

The KL divergence between the learned mixture-model distributionQi (Ci,Xi) = Qi (Ci)PθCi
(Xi)

and the inferred distribution Q (Ci,Xi|XS,i) is:

Di [S] = KL (Qi (Ci,Xi) ‖Q (Ci,Xi|XS,i))

= const−
∑

c

Qi(c) logQ(c|XS,i)−
∑

c

Qi(c) logPθc
(X−S,i|XS,i)

= const +
∑

c

Qi(c) logPθc
(XS,i)−

∑

c

Qi(c) logQ (c|XS,i)

Q(c|XS,i) =
Q(c)Pθc

(XS,i)∑
c′
Q(c′)Pθc′

(XS,i)

To minimize this distance, we would like to choose a probeset S to minimize
n∑

i=1

Di [S]. Using

a greedy algorithm, this only requires us to compute at each iteration Pθc

(
XS∪{j},i

)
for all c and

j.

2.7.4 Selection for mixtures of Gaussians

If θc = 〈µc,Σc〉 and X|θc ∼ N (µc; Σc), then

Pθc (XS,i) = (2π)−|S|/2

˛

˛

˛

(Σc)S,S

˛

˛

˛

−1/2

exp

„

−
1

2

`

XS,i − (µc)S
´T

(Σc)
−1

S,S

`

XS,i − (µc)S
´

«

= log Pθc (Xi) − log Pθc (XS,i)

Let C = Σc, then to compute C−1
S∪{j},S∪{j} efficiently using C−1

S,S we use:

C−1
S∪{j},S∪{j} =




C−1
S,S

CS,jCj,SC−1
S,S

Cj,j−Cj,SC−1
S,S

CS,j
+ C−1

S,S

C−1
S,S

CS,j

Cj,SC−1
S,S

CS,j−Cj,j

Cj,SC−1
S,S

Cj,SC−1
S,S

CS,j−Cj,j

1
Cj,j−Cj,SC−1

S,S
CS,j






Now, let x = (XS,i − µS), y = xj,i−µj , v = C−1
S,S (XS,i − µS), u = Cj,Sv, d = 1

Cj,j−Cj,SC−1
S,S

CS,j
,

then

(
XS∪{j} − µS∪{j}

)T
C−1

S∪{j},S∪{j}

(
XS∪{j} − µS∪{j}

)
= d (u− y)2 + xTC−1

S,Sx

To compute |CS∪{j}| we use:

(
C−1

S,S 0

0 1

)
CS∪{j},S∪{j} =

(
I C−1

S,SCS,j

Cj,S Cj,j

)

∣∣CS∪{j},S∪{j}

∣∣ = |CS,S |
(
Cj,j − Cj,SC

−1
S,SCS,j

)

Hence,

−2 log
Pθc

(
XS∪{j},i

)

Pθc
(XS,i)

= log (2π) + log
(
Cj,j − Cj,SC

−1
S,SCS,j

)
+

(
Cj,SC

−1
S,S (XS,i − µS)− (xj,i − µj)

)2

Cj,j − Cj,SC
−1
S,SCS,j

2.7.5 Multinomial class prior

Let P (C = c|φ) = φc where 1 ≤ c ≤ nc and
nc∑

c=1
φc = 1. Also let φ ∼ Dirichlet

(
α
nc
, . . . , α

nc

)

be a BDe prior over φ corresponding to a uniform distribution and an imaginary sample size of

α. Denote the expected sufficient statistics by M̄ [c] =
n∑

i=1

Qi(c) and M̄ = n. Then the posterior

over φ using the expected sufficient statistics is Dirichlet
(

α
nc

+ M̄ [1], . . . , α
nc

+ M̄ [nc]
)
. Taking the

expected value then gives φc =
α

nc
+M̄ [c]

α+n .
On the other hand, to use the MAP solution in the M-step, we introduce the Lagrange multiplier

η for the constraint
∑
c
φc = 1 and take partial derivatives:

L (φ, η) =

nc∑

c=1

(
α

nc
− 1

)
log (φc) +

nc∑

c=1

log (φc)

(
n∑

i=1

Qi(c)

)
+ η

(
nc∑

c=1

φc − 1

)

∂L

∂φc
=

1

φc

(
α

nc
− 1 +

n∑

i=1

Qi(c)

)
+ η

φc =
−1

η

(
α

nc
− 1 +

n∑

i=1

Qi(c)

)

1 =
−1

η
(n+ α− nc)⇒ η = − (n+ α− nc)

φc =
1

n+ α− nc

(
α

nc
− 1 +

n∑

i=1

Qi(c)

)
=

α
nc
− 1 + M̄ [c]

α+ n− nc

To choose the number of clusters, we can use cross-validation.



2.7.6 Mixture of Gaussians

We use θc = 〈µc,Σc〉 and X|θc ∼ N (µc; Σc). Assume the prior on µc is µc ∼ N (µ,Σ). Then the
maximum likelihood estimate for µc is:

lQ (µc) = logP (µc) +

n∑

i=1

Qi(c) logPθc
(Xi)

= const−
1

2
(µc − µ)

T
Σ−1 (µc − µ)−

1

2

n∑

i=1

Qi(c) (Xi − µc)
T

Σ−1
c (Xi − µc)

0 = Σ−1 (µc − µ) + Σ−1
c

n∑

i=1

Qi(c) (µc −Xi)

µc =

(
Σ−1 + Σ−1

c

n∑

i=1

Qi(c)

)−1(
Σ−1µ+ Σ−1

c

n∑

i=1

Qi(c)Xi

)

If we don’t use a prior on µc, the maximum likelihood estimate is simply:

µc =

n∑
i=1

Qi(c)Xi

n∑
i=1

Qi(c)

In general, we can use any of the Gaussian models described above for Σc. Following are some
specific cases. We need to estimate a covariance matrix using one of the methods described above,
but using weights on the data. We denote by wi the individual weights, by W ∈ R

1×n the row
vector containing the weights and by W ∈ R

n×n the diagonal matrix with W on its diagonal.

2.7.7 Mixture of L2-regularized estimated precision matrices

In this formulation, we place a prior on the estimated covariance matrix Σ̂, which is a Gaussian

prior on the entries of the precision matrix Σ−1: P (Σ) = (2π)
−m2

2 σ−m2

exp

(
−1
2σ2

m∑
i=1

m∑
j=1

(
Σ−1

i,j

)2
)

.

Then, the weighted likelihood is:

−2l (Σ : X) = mn log (2π)−
n∑

i=1

wi log
∣∣Σ−1

∣∣+
n∑

i=1

wi

(
Xi − X̄

)T
Σ−1

(
Xi − X̄

)
+

+ m log (2π) + 2m2 log σ +
1

σ2
Tr
[
Σ−2

]

∂ (−2l (Σ : X))

∂Σ−1
= −

n∑

i=1

wiΣ +

n∑

i=1

wi

(
Xi − X̄

) (
Xi − X̄

)T
+

2

σ2
Σ−1

Let
n∑

i=1

wi

(
Xi − X̄

) (
Xi − X̄

)T
= UΛUT be the eigen-decomposition of the weighted-data

empirical covariance matrix. Setting the gradient to 0:



0 =

(
n∑

i=1

wi

)
Σ2 − Σ

n∑

i=1

wi

(
Xi − X̄

) (
Xi − X̄

)T
−

2

σ2
I

Σ =

n∑
i=1

wi

(
Xi − X̄

) (
Xi − X̄

)T
±



(

n∑
i=1

wi

(
Xi − X̄

) (
Xi − X̄

)T
)2

+
8

n
P

i=1

wi

σ2 I




1/2

2
n∑

i=1

wi

=
1

2
n∑

i=1

wi


UΛUT ±


U


Λ2 +

8
n∑

i=1

wi

σ2
I


UT




1/2



=
1

2
n∑

i=1

wi

U


Λ +

√√√√
Λ2 +

8
n∑

i=1

wi

σ2
I


UT

The minus solution results in a matrix which is not positive semi-definite, so the only solution
is the plus solution.
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