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Geometrical Method to Compute Intersection Points 

In WHA or NHA, we need to calculate the intersection point between the grid edge and 

the molecular surface. In the manuscript, we have described a simple algebraic method 

to compute the intersection points. Here for the sake of completeness and comparison, 

we describe a comparable method that is often used in the literature, i.e. via geometric 

relations among different atoms and probe spheres.  

Denote the inside and outside grid point as M and N, respectively, and their labels as 

LM and LN, respectively. Suppose their corresponding owners, i.e. atom or probe 

spheres, are OM and ON with radii RM and RN, respectively. If an owner sphere OM 



intersects the grid edge, we denote the intersection point as PM. Similarly we denote 

the intersection point of an owner sphere ON and the grid edge as PN. The intersection 

point is assigned based on the following rules, and shown in Figure S-1. 

 

Figure S-1. Various scenarios (a-f) of intersection point assignment. The diagram 

shows two atoms jointed by the reentry volume. The solid line represents the 

SES surface. The dotted circles represent solvent probes. The dotted diamond 

represents the reentry cones formed by the solvent accessible arc and the two 

atomic centers. 

1. If LM=-2 and LN=2, the required intersection point is 

PM, i.e. the intersection point with the van der Waals 

sphere/contact surface is computed with the atom whose 

surface is closest to M. (Figure S-1: segment a) 

2. If LM=-1 and LN=1, the required intersection point is 

PN, i.e. the intersection point with the reentry 

surface is computed with the closest solvent probe to N. 

(Figure S-1: segment b) 

3. If LM=-1 and LN=2, and if PN is outside the reentry 

cones, the required intersection point is PN, otherwise, 

it is PM. (Figure S-1: segments c and d) 

4. If LM=-2 and LN=1, and if PM is outside the reentry 

cones, the required intersection point is PM, otherwise, 

it is PN. (Figure S-1: segments e and f) 

It should be pointed out that it is not guaranteed that the geometric algorithm 

outlined above can always calculate the intersection points correctly. However, the 

error due to the incorrect calculation should, in principle, reduce when the grid spacing 



is reduced. Figure S-2 illustrates a simple situation where the algorithm may fail. The 

intersection plane shown in Figure S-2 goes through the solvent accessible arc of two 

neighbor atoms. The dash line represents the arc points and the solid line represents the 

SES surface. Point j and j+1 are two neighbor grid points. Since they are in the reentry 

region, point j is labeled as 1 and point j+1 is labeled as −1. Their corresponding owners 

are C+ and C−, respectively. Figure S-2 shows that the correct intersection point of the 

grid edge and the SES surface is point P, sphere C+ intersects the grid line at P’, and 

sphere C− does not intersect the grid line. Thus the above algorithm returns P’ as the 

intersection point. Apparently the failure is due to the fact that the true intersection 

point P can never be derived from the knowledge of point j, j+1, C+, and C− alone. Of 

course the error certainly becomes smaller when the grid spacing becomes smaller. That 

is to say the algorithm does have the correct convergence behavior with respect to the 

grid spacing. 

 

Figure S-2. Limitations of the geometric method for calculation of the 

intersection points between the molecular surface and grid edges. 

 


