SUPPORTING INFORMATION

Individual RNA base recognition in immobilized oligonucleotides using a protein nanopore

Mariam Ayub and Hagan Bayley*

Department of Chemistry, University of Oxford, Oxford, OX1 3TA, United Kingdom

αHL Protein Preparation. Heptameric αHL WT was produced as described¹ by E. Mikhailova in our laboratory. Aliquots of the purified protein were collected and stored at -80 °C. The mutant αHL genes were prepared from αHL NN (E111N/K147N) and NNY (E111N/K147N/M113Y) by using a kit for site-directed mutagenesis (QuikChange II XL, Catalog no. 200522-5, Stratagene), and their DNA sequences were verified as before¹.

Electrical Recordings. Lipid bilayers were formed from 1,2-diphytanoyl-*sn*glycero-3-phosphocholine (DPhPC, Avanti Polar Lipids) across a 40- μ m aperture in a PTFE film (20- μ m thickness, Goodfellows, UK) that separated two compartments of a recording chamber². Both compartments contained 500 μ L of 1 M KCl, 25 mM Tris-HCl, pH 7.5, with 100 μ M EDTA. Current recordings were performed by using a patch clamp amplifier (Axopatch 200B, Axon Instruments, CA) with the *cis* compartment connected to ground. The recording chamber was enclosed in a grounded aluminium Faraday cage. Under the buffer conditions used, the α HL pores remained open, without gating during measurements. The α HL pores and the oligonucleotides (Table S1) were added to the *cis* compartment. ssDNA/ssRNA molecules, with a biotinyl group covalently attached to the 3' end through a linker, were obtained from Dharmacon (Thermo Fisher, UK) (Figure S1). Solutions of the biotinylated oligonucleotides, at 100 μ M in 10 mM Tris-HCl, pH 7.5, 100 μ M EDTA, were mixed with equal volumes of 25 μ M streptavidin (SA) (New England Biolabs, Catalog No. N7021S) in the same buffer. Each oligonucleotide (pre-incubated with SA for at least five minutes) was added to the *cis* compartment to a final concentration of 200 nM. With the episodic stimulation mode in the pClamp software (version 10.1, Molecular Devices), the Digidata 1440A digitizer (Molecular Devices) was used to apply repeated voltage steps to drive single oligo-btn•streptavidin complexes into the pore (the electrical protocol used for these measurements is illustrated in Figure S2a).

Briefly, +200 mV was applied to the *trans* side for 900 ms to drive the negatively charged, biotinylated oligonucleotides into the pore. The capture of a strand by an α HL pore was observed as a stepwise decrease in the open pore current level (I₀) to a lower, but stable, current level (I_{RES}). A voltage of -140 mV was then applied for 50 ms to eject the immobilized strand from the pore. Subsequently, the applied potential was stepped to 0 mV for 50 ms. The one second sequence was repeated for at least 400 cycles for each ssDNA/ssRNA species added, with >90% of cycles giving current blockades. In general, when comparing several oligonucleotide species, one of the set was first added to the *cis* chamber and the currents were recorded. Subsequently, a second, third, fourth and if required, a fifth species was added and additional currents were recorded. For example, the data in Figures 2, 3, 4 and 5 come from >4 oligonucleotide species, with sequences that differ by a single nucleotide. When such experiments were repeated, the

oligonucleotides were added to the chamber in a different order. The amplified signal (arising from the ionic current passing through the pore) was low-pass filtered at 5 kHz and sampled at 25 kHz.

Data Analysis. Data were analyzed and prepared for presentation with pClamp software (version 10.2, Molecular Devices). Single channel searches were performed to obtain the average current level for each ssDNA/ssRNA blockade (I_{RES}). The mean I_{RES} value for each oligonucleotide was determined by performing a Gaussian fit to a histogram of the I_{RES} values. The current blockade for each oligonucleotide was also described by a residual current (I_{RES%}), in which the average remaining current during a blockade (I_{RES}) is expressed as a percentage of the open pore current (I_0): $I_{RES\%}$ = $(I_{RES}/I_O) \ge 100$. To determine how well a particular pore can discriminate between single nucleobase changes, two additional criteria were used (Figure S2b-d): 1. The overall dispersion was measured (the difference between the most widely separated residual current levels in the histogram: $\Delta I_{RES\%}^{OVERALL}$; 2. The product of the sequential differences between each of the residual current levels (one level for each oligonucleotide) was calculated (δ). An α HL pore that is unable to discriminate between all nucleobases in an oligonucleotide set has $\delta = 0$ (i.e. the current levels of two or more oligonucleotides overlap)³.

Force encountered by the immobilized oligonucleotide. When the RNA•streptavidin complex is immobilized inside the α HL pore, the ssRNA is elongated compared with its conformation in solution, because of the force arising from the applied potential. The experimentally determined effective charge on each base is ~0.1e⁴⁻⁶. The ~15 nt present in the barrel⁷ have an overall charge of ~2.4 x 10⁻¹⁹ C. By assuming that

the applied potential of +200 mV drops over the 5-nm length of the barrel, the electric field is estimated to be 4.0 x 10^7 V m⁻¹. Therefore, the force (F = QE) on the RNA is estimated to be ~10 pN.

REFERENCES

1. Cheley, S.; Braha, O.; Lu, X.; Conlan, S.; Bayley, H. Protein Sci 1999, 8, (6), 1257-67.

2. Montal, M.; Mueller, P. P Natl Acad Sci USA 1972, 69, (12), 3561-3566.

Stoddart, D.; Heron, A. J.; Klingelhoefer, J.; Mikhailova, E.; Maglia, G.; Bayley,
H. *Nano Lett* 2010, 10, (9), 3633-7.

4. Sauer-Budge, A. F.; Nyamwanda, J. A.; Lubensky, D. K.; Branton, D. *Physical Review Letters* **2003**, 90, (23), 238101.

5. Mathé, J.; Visram, H.; Viasnoff, V.; Rabin, Y.; Meller, A. *Biophysical Journal* **2004**, 87, (5), 3205-3212.

6. Keyser, U. F.; Koeleman, B. N.; Van Dorp, S.; Krapf, D.; Smeets, R. M. M.; Lemay, S. G.; Dekker, N. H.; Dekker, C. *Nat Phys* **2006**, *2*, (7), 473-477.

7. Stoddart, D.; Heron, A. J.; Mikhailova, E.; Maglia, G.; Bayley, H. *Proc Natl Acad Sci U S A* **2009**, 106, (19), 7702-7.

Table S1. Sequences of the oligonucleotides used in this paper. Btn represents the 3' Biotin-TEG tag and linker (Figure S1), [d] represents a DNA background and [r] represents an RNA background. The substituted ribobases at position 9 are highlighted in red.

Oligonucleotide	Sequence $5' \rightarrow 3'$
oligo(rC) ₃₀ oligo(rA) ₃₀ oligo(rU) ₃₀	5'-[r]CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCBtn]-3' 5'-[r]AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA[Btn]-3' 5'-[r]UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
oligo $(dC)_{30}$ rG-oligo $(dC)_{30}$ rA-oligo $(dC)_{30}$ rC-oligo $(dC)_{30}$ rU-oligo $(dC)_{30}$ rI-oligo $(dC)_{30}$ m ⁶ A-oligo $(dC)_{30}$ m ⁵ C-oligo $(dC)_{30}$	5'-[d]cccccccccccccccccccccccc[Btn]-3' 5'-[d]cccccccccccccccccccccccccccccccccccc
oligo $(rA)_{30}$ rG-oligo $(rA)_{30}$ rA-oligo $(rA)_{30}$ rC-oligo $(rA)_{30}$ rU-oligo $(rA)_{30}$ rI-oligo $(rA)_{30}$ m ⁶ A-oligo $(rA)_{30}$ m ⁵ C-oligo $(rA)_{30}$	5'-[r]AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA[Btn]-3' 5'-[r]AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA[Btn]-3' 5'-[r]AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
$rC-het_{30}$ $rG-het_{30}$ $rA-het_{30}$ $rU-het_{30}$	5'-[r]UAGCUAAACCGAUAGCUUCAGrCCAUGUAAC[Btn]-3' 5'-[r]UAGCUAAACCGAUAGCUUCAGrGCAUGUAAC[Btn]-3' 5'-[r]UAGCUAAACCGAUAGCUUCAGrACAUGUAAC[Btn]-3' 5'-[r]UAGCUAAACCGAUAGCUUCAGrUCAUGUAAC[Btn]-3'

Table S2. Voltage dependencies of the residual currents ($I_{RES\%}$) for the WT, NN and NNY α HL pores threaded with $oligo(rA)_{30}$, $oligo(rC)_{30}$ or $oligo(rU)_{30}$. The I_O and $I_{RES\%}$ values are mean values (\pm S.D.) taken from Gaussian fits to event histograms at various applied potentials ($n \ge 3$ experiments). $I_{RES\%} = (I_{RES}/I_O) \times 100$. $\Delta I_{RES\%}^{OVERALL}$ is the difference in residual current between the two most widely separated current peaks. The δ value is the product of the successive differences between the peaks. If any two peaks overlap, then the δ value is zero. The $I_{RES\%}$ values versus the applied potential are plotted in Figure S4.

			WT			
	т		Oligos		AT OVERALL	2
mV	$(n\Lambda)$	Oligo(rA) ₃₀	Oligo(rC) ₃₀	Oligo(rU) ₃₀	ΔI_{RES}	0 (9/2)
	(PA)	I_{RES} (%)	I_{RES} (%)	I_{RES} (%)	(70)	(70)
+100	98 ± 6.0	16.3 ± 0.4	13.1 ± 0.6	18.1 ± 0.4	4.9 ± 0.4	5.5 ± 0.2
+120	117 ± 4.0	18.5 ± 0.5	15.8 ± 0.3	19.3 ± 0.3	3.5 ± 0.4	2.2 ± 0.1
+140	139 ± 6.0	19.9 ± 1.0	17.6 ± 1.2	20.7 ± 1.0	3.1 ± 0.4	1.8 ± 0.2
+160	159 ± 7.0	20.8 ± 0.2	18.9 ± 0.4	22.0 ± 0.3	3.1 ± 0.4	2.2 ± 0.4
+180	181 ± 4.0	22.4 ± 0.7	21.3 ± 0.6	23.0 ± 0.7	1.7 ± 0.6	0.7 ± 0.2
+200	199 ± 6.0	22.8 ± 0.4	21.8 ± 0.2	23.7 ± 0.4	1.5 ± 0.4	0.6 ± 0.2

			NN			
	т		Oligos		AT OVERALL	2
mV	$(n\Lambda)$	Oligo(rA) ₃₀	Oligo(rC) ₃₀	Oligo(rU) ₃₀	ΔI_{RES}	0 (%)
	(PA)	I_{RES} (%)	I_{RES} (%)	I_{RES} (%)	(70)	(70)
+100	113 ± 7.0	13.4 ± 0.3	15.5 ± 0.6	16.9 ± 0.2	3.6 ± 0.4	3.1 ± 0.1
+120	129 ± 4.0	15.8 ± 0.5	17.0 ± 0.8	19.2 ± 0.5	3.4 ± 0.6	2.7 ± 0.2
+140	149 ± 8.0	18.1 ± 0.2	19.7 ± 0.3	21.9 ± 0.3	3.8 ± 0.4	3.5 ± 0.1
+160	171 ± 6.0	21.0 ± 0.6	23.1 ± 0.6	25.3 ± 0.8	4.3 ± 0.2	4.6 ± 0.2
+180	192 ± 9.0	24.5 ± 0.4	26.1 ± 0.4	27.5 ± 0.4	3.0 ± 0.4	2.2 ± 0.2
+200	214 ± 7.0	27.9 ± 0.3	28.5 ± 0.3	30.4 ± 0.2	2.4 ± 0.2	1.1 ± 0.1

			NNY			
	Т		Oligos		AT OVERALL	2
mV	I_0 (nA)	Oligo(rA) ₃₀	Oligo(rC) ₃₀	Oligo(rU) ₃₀	ΔI_{RES}	0 (0/)
	(PA)	I_{RES} (%)	I_{RES} (%)	I_{RES} (%)	(70)	(70)
+100	108 ± 4.0	17.3 ± 0.4	19.6 ± 0.4	21.7 ± 0.4	4.4 ± 0.4	4.8 ± 0.1
+120	127 ± 6.0	21.5 ± 0.4	22.8 ± 0.4	24.9 ± 0.3	3.4 ± 0.3	2.7 ± 0.2
+140	151 ± 5.0	25.8 ± 0.5	27.7 ± 0.6	29.3 ± 0.5	3.5 ± 0.2	3.0 ± 0.2
+160	167 ± 4.0	28.4 ± 0.3	29.9 ± 0.3	32.4 ± 0.2	4.0 ± 0.3	3.9 ± 0.1
+180	188 ± 6.0	31.3 ± 0.4	33.0 ± 0.2	34.7 ± 0.4	3.4 ± 0.3	2.8 ± 0.1
+200	210 ± 8.0	32.8 ± 0.4	33.7 ± 0.3	34.1 ± 0.3	2.8 ± 0.4	1.8 ± 0.2

Table S3. Voltage dependencies of residual currents, $I_{RES\%}$ and $\Delta I_{RES\%}$ for the WT, NN and NNY α HL pores threaded with $oligo(dC)_{30}$ with a single substitution (rG, rA rC or rU) at position 9. The I_O and $I_{RES\%}$ values are mean values (± S.D.) taken from Gaussian fits to event histograms at various applied potentials (n = 3 experiments). $I_{RES\%} = (I_{RES}/I_O) \times 100. \Delta I_{RES\%}$ is the difference in residual current between the two most widely separated current peaks. The δ value is the product of the successive differences between the peaks. If any two peaks overlap, then the δ value is zero. The values from these data are plotted in Figure S5a and S6. $\Delta I_{RES\%}$ values were determined for individual experiments and the mean value is used at each potential. ΔI_{RES} $rX-oligo(dC) = I_{RES\%}$ for the rX oligonucleotide - $I_{RES\%}$ of $oligo(dC)_{30}$. X = rG, rA, rC or rU.

						WI	- -					
		oligo(dC)30	rA I_{RES} ΔI_{RES} I_{RES}			rC		rG		rU		
mV	I _O (pA)	I _{RES}	I _{RES}	$\Delta I_{RES}^{rX-}_{oligo(dC)}$	I _{RES}	$\Delta I_{RES}^{rX-}_{oligo(dC)}$	I _{RES}	$\Delta I_{RES}^{rX-}_{oligo(dC)}$	I _{RES}	$\Delta I_{RES}^{rX-}_{oligo(dC)}$	$\Delta I_{\text{RES}}^{\text{OVERALL}}$ (%)	δ (%)
		(70)	(70)	(%)	(70)	(%)	(70)	(%)	(70)	(%)		
+100	100	13.9	14.5	0.6	12.9	-1.0	15.9	2.0	15.1	1.2	3.0	0.8
100	± 2.0	± 0.4	± 1.0	± 0.2	±0.4	± 0.2	± 0.6	± 0.1	± 0.6	± 0.2	± 0.4	± 0.02
±120	123	14.5	16.1	1.6	14.8	0.3	17.8	3.3	17.2	2.7	3.0	0.9
+120	± 4.0	± 0.6	± 0.3	± 0.2	± 0.6	± 0.1	± 0.4	± 0.1	± 0.3	± 0.2	± 0.3	± 0.03
+140	145	17.1	17.8	0.7	16.9	-0.2	19.2	2.1	18.7	1.6	2.3	0.4
+140	± 6.0	± 0.4	± 0.6	± 0.3	± 0.6	± 0.1	± 0.4	± 0.2	± 0.4	± 0.1	± 0.3	± 0.02
⊥160	168	18.6	19.8	1.2	18.4	-0.2	20.9	2.3	20.5	1.9	2.5	0.4
+100	± 4.0	± 0.4	± 0.4	± 0.1	± 0.4	± 0.1	± 0.4	± 0.2	± 0.4	± 0.1	± 0.3	± 0.02
±190	191	20.5	21.5	1.0	20.7	0.2	23.3	2.8	22.3	1.8	2.6	0.6
+100	± 3.0	± 0.2	± 0.4	± 0.1	± 0.4	± 0.1	± 0.4	± 0.2	± 0.3	± 0.1	± 0.3	± 0.02
1200	202	23.1	23.4	0.3	23.0	-0.1	24.3	1.2	24.0	0.9	1.3	0.1
+200	± 6.0	± 0.3	± 0.6	± 0.2	± 0.3	± 0.1	± 0.4	± 0.1	± 0.3	± 0.2	± 0.4	± 0.01

						NN						
		oligo(dC)30		rA		rC		rG		rU		
mV	I ₀ (pA)	I _{RES} (%)	I _{RES}	ΔI_{RES}^{rX}	I _{RES}	ΔI_{RES}^{rX-}	I _{RES} (%)	ΔI_{RES}^{rX-}	I _{RES}	ΔI_{RES}^{rX}	$\Delta I_{\text{Res}}^{\text{OVERALL}}$ (%)	δ (%)
	100	(1)	()	(%)	(11)	(%)	()	(%)	()	(%)	• •	
+100	108	20.5	21.6	1.1	21.0	0.5	22.3	1.8	23.0	2.5	2.0	0.3
. 100	± 6.0	± 0.3	± 0.3	± 0.2	± 0.4	± 0.2	± 0.3	± 0.2	± 0.6	± 0.2	± 0.4	± 0.03
+120	129	22.5	23.6	1.1	22.7	0.2	24.1	1.6	24.6	2.1	1.9	0.2
+120	± 8.0	± 0.6	± 0.3	± 0.3	± 0.4	± 0.1	± 0.4	± 0.1	± 0.4	± 0.2	± 0.3	± 0.02
+140	151	23.9	24.8	0.9	24.4	0.5	25.1	1.2	25.4	1.5	1.0	0.0
+140	± 6.0	± 0.4	± 0.6	± 0.3	± 0.6	± 0.1	± 0.4	± 0.1	± 0.4	± 0.1	± 0.3	± 0.00
+160	173	24.9	25.5	0.6	25.1	0.2	25.9	1	26.4	1.5	1.3	0.1
+100	± 5.0	± 0.3	± 0.2	± 0.2	± 0.6	± 0.1	± 0.6	± 0.2	± 0.6	± 0.1	± 0.3	± 0.02
+190	195	25.5	26.4	0.9	25.8	0.3	26.8	1.3	27.2	1.7	1.4	0.1
+180	± 6.0	± 0.3	± 0.6	± 0.4	± 0.3	± 0.2	± 0.3	± 0.3	± 0.4	± 0.2	± 0.3	± 0.02
1200	214	26.7	27.9	1.2	26.8	0.1	28.6	1.9	28.9	2.2	2.1	0.2
+∠00	± 6.0	± 0.3	± 0.6	± 0.4	± 0.4	± 0.1	± 0.6	± 0.2	± 0.4	± 0.3	± 0.4	± 0.02

						NN	Y					
		oligo(dC)30		rA		rC		rG		rU		
mV	I ₀ (pA)	I _{RES}	I _{RES}	ΔI_{RES}^{rX-}	I _{RES}	$\Delta I_{RES}^{rX-}_{oligo(dC)}$	I _{RES}	$\Delta I_{RES}^{rX-}_{oligo(dC)}$	I _{RES}	$\Delta I_{RES}^{rX-}_{oligo(dC)}$	$\Delta I_{\text{RES}}^{\text{OVERALL}}$ (%)	δ (%)
		(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	~ /	
+100	108	33.7	33.4	-0.3	34.2	0.5	32.2	-1.5	35.3	1.6	3.1	1.1
+100	± 4.0	± 0.3	± 0.3	± 0.1	± 0.6	± 0.1	± 0.6	± 0.2	± 0.3	± 0.2	± 0.4	± 0.02
+120	126	34.6	34.5	-0.1	35.8	1.2	33.8	-0.8	36.6	2.0	2.8	0.7
+120	± 9.0	± 0.3	± 0.3	± 0.1	± 0.4	± 0.2	± 0.4	± 0.1	± 0.4	± 0.1	± 0.3	± 0.02
+140	143	38.3	36.8	-1.5	38.5	0.2	35.8	-2.5	39.3	1.0	3.5	1.4
+140	± 6.0	± 0.6	± 0.4	± 0.4	± 0.6	± 0.1	± 0.3	± 0.2	± 0.4	± 0.1	± 0.3	± 0.02
⊥160	168	38.4	39.1	0.7	40.1	1.7	37.9	-0.5	41.0	2.6	3.1	1.1
+100	± 4.0	± 0.3	± 0.4	± 0.2	± 0.6	± 0.2	± 0.3	± 0.2	± 0.3	± 0.2	± 0.3	± 0.02
+180	177	40.5	40.6	0.1	41.3	0.8	39.9	-0.6	42.7	2.2	2.8	0.7
+100	± 8.0	± 0.4	± 0.5	± 0.1	± 0.6	± 0.2	± 0.4	± 0.1	± 0.6	± 0.2	± 0.3	± 0.01
±200	210	42.6	41.9	-0.7	42.6	0.0	41.2	-1.4	44.0	1.4	2.8	0.7
+200	± 7.0	± 0.4	± 0.7	± 0.1	± 0.8	± 0.0	± 0.7	± 0.2	± 0.6	± 0.2	± 0.4	± 0.01

Table S4. Voltage dependencies of residual currents, $I_{RES\%}$ and $\Delta I_{RES\%}$ for the WT, NN and NNY α HL pores threaded with $oligo(rA)_{30}$ with a single substitution (rG, rA rC or rU) at position 9. The I_O and $I_{RES\%}$ values are mean values (\pm S.D.) taken from Gaussian fits to event histograms at various applied potentials (n = 3 experiments). $I_{RES\%} = (I_{RES}/I_O) \times 100. \Delta I_{RES\%}$ is the difference in residual current between the two most widely separated current peaks. The δ value is the product of the successive differences between the peaks overlap, then the δ value is zero. If any two peaks overlap, then the δ values were determined for individual experiments and the mean value is used at each potential. $\Delta I_{RES}^{rX-oligo(rA)} = I_{RES\%}$ for the rX oligonucleotide - $I_{RES\%}$ of oligo(rA)₃₀. X = rG, rA, rC or rU.

						WT						
		oligo(rA)30		rA		rC		rG		rU		
mV	I _O (pA)	I _{RES} (%)	I _{RES} (%)	$\Delta I_{\text{RES}}^{\text{rX-}}$	I _{RES} (%)	ΔI_{RES}^{rX} oligo(rA)	I _{RES} (%)	ΔI_{RES}^{rX-} oligo(rA)	I _{RES} (%)	ΔI_{RES}^{rX-} oligo(rA)	$\Delta I_{\text{RES}}^{\text{OVERALL}}$ (%)	δ (%)
100	97	11.2	11.2	0.0	10.4	-0.8	13.6	2.4	12.0	0.8	3.2	1.0
+100	± 4.0	± 0.3	± 0.3	± 0.0	± 0.2	± 0.2	± 0.4	± 0.2	± 0.4	± 0.1	± 0.3	± 0.02
+120	123	13.0	13.0	0.0	12.3	-0.7	15.2	2.2	13.8	0.8	2.9	0.8
+120	± 8.0	± 0.4	± 0.4	± 0.0	± 0.4	± 0.2	± 0.4	± 0.2	± 0.4	± 0.1	± 0.4	± 0.03
+140	142	15.3	15.3	0.0	14.6	-0.7	17.5	2.2	16.0	0.7	2.9	0.7
+140	± 7.0	± 0.4	± 0.4	± 0.0	± 0.4	± 0.1	± 0.3	± 0.2	± 0.5	± 0.1	± 0.4	± 0.03
+160	166	17.0	17.0	0.0	16.3	-0.7	19.5	2.5	18.0	1.0	3.2	1.1
+100	± 9.0	± 0.4	± 0.4	± 0.0	± 0.3	± 0.1	± 0.3	± 0.1	± 0.4	± 0.3	± 0.3	± 0.02
+ 190	185	20.1	20.1	0.0	19.7	-0.4	21.0	0.9	20.6	0.5	1.3	0.1
+180	± 6.0	± 0.3	± 0.3	± 0.0	± 0.3	± 0.2	± 0.4	± 0.1	± 0.4	± 0.1	± 0.4	± 0.02
+200	205	22.9	22.9	0.0	22.2	-0.7	23.9	1.0	23.2	0.3	1.7	0.1
+∠00	± 7.0	± 0.4	± 0.4	± 0.0	± 0.4	± 0.1	± 0.3	± 0.2	± 0.4	± 0.1	± 0.4	± 0.01

						NN						
		oligo(rA)30		rA		rC		rG		rU		
mV	I _O (pA)	I _{RES} (%)	I _{RES} (%)	ΔI_{RES}^{rX-} oligo(rA) (%)	I _{RES} (%)	ΔI_{RES}^{rX} oligo(rA) (%)	I _{RES} (%)	$\Delta I_{RES}^{rX-}_{oligo(rA)}$ (%)	I _{RES} (%)	$\Delta I_{RES}^{rX-}_{oligo(rA)}$ (%)	$\Delta I_{\text{RES}}^{\text{OVERALL}}$ (%)	δ (%)
+ 100	112	19.1	19.1	0.0	21.6	2.5	14.1	-5.0	16.1	-3.0	7.5	15.0
+100	± 8.0	± 0.2	± 0.2	± 0.0	± 0.4	± 0.1	± 0.2	± 0.4	± 0.4	± 0.2	± 0.3	± 0.3
+ 120	130	21.2	21.2	0.0	24.0	2.8	17.2	-4.0	19.0	-2.2	6.8	11.1
+120	± 7.0	± 0.3	± 0.3	± 0.0	± 0.2	± 0.2	± 0.2	± 0.2	± 0.3	± 0.2	± 0.2	± 0.2
+140	145	24.0	24.0	0.0	25.9	1.9	21.0	-3.0	22.7	-1.3	4.9	4.2
+140	± 4.0	± 0.3	± 0.3	± 0.0	± 0.2	± 0.1	± 0.4	± 0.2	± 0.3	± 0.1	± 0.3	± 0.2
+160	171	26.9	26.9	0.0	27.9	1.0	23.5	-3.4	25.0	-1.9	4.4	2.9
+100	± 6.0	± 0.4	± 0.4	± 0.0	± 0.4	± 0.1	± 0.5	± 0.2	± 0.2	± 0.1	± 0.5	± 0.02
+ 190	189	29.9	29.9	0.0	31.1	1.2	27.5	-2.4	29.1	-0.8	3.6	1.5
+180	± 7.0	± 0.3	± 0.3	± 0.0	± 0.2	± 0.1	± 0.4	± 0.2	± 0.4	± 0.2	± 0.3	± 0.02
1200	209	33.8	33.8	0.0	34.6	0.8	31.7	-2.1	32.2	-1.6	2.9	0.6
+200	± 8.0	± 0.3	± 0.3	± 0.0	± 0.6	± 0.1	± 0.4	± 0.2	± 0.4	± 0.1	± 0.5	± 0.02

						NNY	7					
		oligo(rA)30		rA		rC		rG		rU		
mV	Io (pA)	I _{RES}	I _{RES}	ΔI_{RES}^{rX}	I _{RES}	ΔI_{RES}^{rX-}	I _{RES}	ΔI_{RES}^{rX}	I _{RES}	ΔI_{RES}^{rX-}	$\Delta I_{\text{RES}}^{\text{OVERALL}}$ (%)	δ (%)
		(,,,)	(, 0)	(%)	(, , ,	(%)	(/0)	(%)	(, 0)	(%)		
+100	99	25.6	25.6	0.0	27.4	1.8	24.3	-1.3	29.4	3.8	5.1	4.7
100	± 7.0	± 0.4	± 0.4	± 0.0	± 0.3	± 0.1	± 0.3	± 0.1	± 0.3	± 0.2	± 0.3	± 0.2
±120	114	27.1	27.1	0.0	28.9	1.8	25.8	-1.3	30.7	3.6	4.9	4.2
+120	± 4.0	± 0.4	± 0.4	± 0.0	± 0.3	± 0.1	± 0.3	± 0.2	± 0.2	± 0.1	± 0.3	± 0.2
+140	139	29.1	29.1	0.0	30.7	1.6	27.4	-1.7	31.6	2.5	4.2	2.4
+140	± 3.0	± 0.3	± 0.3	± 0.0	± 0.3	± 0.2	± 0.2	± 0.2	± 0.4	± 0.1	± 0.3	± 0.2
±160	157	30.4	30.4	0.0	31.8	1.4	29.3	-1.1	33.0	2.6	3.7	1.8
+100	± 6.0	± 0.4	± 0.4	± 0.0	± 0.4	± 0.2	± 0.4	± 0.2	± 0.6	± 0.1	± 0.5	± 0.02
+ 190	176	32.3	32.3	0.0	33.4	1.1	31.2	-1.1	34.5	2.2	3.3	1.3
+160	± 7.0	± 0.3	± 0.3	± 0.0	± 0.3	± 0.1	± 0.3	± 0.1	± 0.4	± 0.1	± 0.4	± 0.02
+200	206	34.8	34.8	0.0	35.6	0.8	34.2	-0.6	36.3	1.5	2.1	0.3
+200	± 8.0	± 0.3	± 0.3	± 0.0	± 0.4	± 0.2	± 0.2	± 0.1	± 0.3	± 0.2	± 0.3	± 0.02

Table S5. Reproducibility experiments at +200 mV for the WT, NN and NNY α HL pores threaded with oligo(dC)₃₀ with a single substitution at position 9 (rG, rA rC, rU, inosine (rI), N⁶-methyladenine (m⁶A) or 5-methylcytosine (m⁵C)). The $\Delta I_{RES\%}$ values are plotted in Figure 4a. Standard deviations are given for three experiments (n = 3). ΔI_{RES} ^{rX-oligo(dC)} = $I_{RES\%}$ for the rX oligonucleotide - $I_{RES\%}$ of oligo(dC)₃₀. X = rG, rA, rC, rU, rI, m⁶A or m⁵C.

								WT								
		oligo(dC)30		rA		rC		rG		rU		rI	1	n ⁶ A	r	n ⁵ C
Exp	I ₀ (pA)	I _{RES}	I _{RES}	$\Delta I_{RES}^{rX-}_{oligo(dC)}$												
	u ,	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
1	214.0	23.3	23.6	0.3	23.3	0.0	25.1	1.8	24.1	0.8	23.8	0.5	23.0	-0.3	21.7	-1.6
2	205.0	22.7	23.1	0.4	22.8	0.1	24.6	1.9	23.9	1.2	23.4	0.7	22.4	-0.3	21.6	-1.1
3	198.0	22.1	22.4	0.3	22.0	-0.1	24.1	2.0	23.8	1.7	22.7	0.6	22.0	-0.1	21.0	-1.1
Mean	206.0	22.7	23.0	0.3	22.7	0.0	24.6	1.9	23.9	1.2	23.3	0.6	22.5	-0.2	21.7	-1.3
SD	8.0	0.6	0.6	0.1	0.7	0.1	0.5	0.1	0.2	0.5	0.6	0.1	0.5	0.1	0.2	0.3

								NN								
		oligo(dC)30		rA		rC		rG		rU		rI	1	n ⁶ A	r	n ⁵ C
Exp	I_0 (pA)	I _{RES}	I _{RES}	$\Delta I_{RES}^{rX-}_{oligo(dC)}$												
	U)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
1	200.0	27.4	27.6	0.2	27.3	-0.1	27.9	0.5	28.2	0.8	27.7	0.3	27.3	-0.1	27	-0.4
2	211.0	26.8	27.1	0.3	26.8	0.0	27.6	0.8	27.7	0.9	27.3	0.5	26.9	0.1	26.4	-0.4
3	201.0	25.3	25.8	0.5	25.2	-0.1	26.1	0.8	26.2	0.9	25.9	0.6	25.6	0.3	24.8	-0.5
Mean	204.0	26.5	26.8	0.3	26.4	-0.1	27.2	0.7	27.4	0.9	27.0	0.5	26.6	0.1	26.1	-0.4
SD	6.0	1.1	0.9	0.2	1.1	0.1	1.0	0.2	1.0	0.1	0.9	0.2	0.9	0.2	1.1	0.1

	NNY															
Exp		oligo(dC)30		rA		rC		rG		rU		rI		m ⁶ A		n ⁵ C
	I _O (pA)	I _{RES}	I _{RES}	ΔI_{RES}^{rX-} oligo(dC)	I _{RES}	$\Delta I_{RES}^{rX-}_{oligo(dC)}$	I _{RES}	ΔI_{RES}^{rX-}	I _{RES}	ΔI_{RES}^{rX-}	I _{RES}	ΔI_{RES}^{rX-} oligo(dC)	I _{RES}	ΔI_{RES}^{rX-} oligo(dC)	I _{RES}	ΔI_{RES}^{rX-}
	u ,	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
1	210.0	43.1	41	-2.1	43.1	0	39.6	-3.5	45.4	2.3	42.7	-0.4	41.4	-1.7	43.6	0.5
2	204.0	42.6	40.8	-1.8	42.5	-0.1	39.5	-3.1	45.1	2.5	42.6	0	41.2	-1.4	43	0.4
3	209.0	42.4	40.3	-2.1	42.4	0	38.8	-3.6	44.4	2	42.1	-0.3	40.9	-1.5	42.9	0.5
Mean	207.0	42.7	40.7	-2.0	42.7	0.0	39.3	-3.4	45.0	2.3	42.5	-0.2	41.2	-1.5	43.2	0.5
SD	3.0	0.4	0.4	0.2	0.4	0.1	0.4	0.3	0.5	0.3	0.3	0.2	0.3	0.2	0.4	0.1

Table S6. Reproducibility experiments at +200 mV for the WT, NN and NNY α HL pores threaded with oligo(rA)₃₀ with a single substitution at position 9 (rG, rA rC, rU, inosine (rI), N⁶-methyladenine (m⁶A) or 5-methylcytosine (m⁵C)). The $\Delta I_{RES\%}$ values are plotted in Figure 4b. Standard deviations are given for three experiments (n = 3). ΔI_{RES} ^{rX-oligo(rA)} = $I_{RES\%}$ for the rX oligonucleotide - $I_{RES\%}$ of oligo(rA)₃₀. X = rG, rA, rC, rU, rI, m⁶A or m⁵C.

	WT																
Exp		oligo(rA)30		rA		rC		rG		rU		rI		m ⁶ A		m ⁵ C	
	I ₀ (pA)	I _{RES}	I _{RES}	$\Delta I_{RES}^{rX-}_{oligo(rA)}$													
	u)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	
1	203.0	22.7	22.7	0.0	21.9	-0.8	23.9	1.2	23.6	-0.9	22.5	-0.2	22.2	-0.5	21.7	-1.0	
2	196.0	22.1	22.1	0.0	21.2	-0.9	23.4	1.3	23.1	-1.0	21.9	-0.2	21.6	-0.5	21.0	-1.1	
3	194.0	21.8	21.8	0.0	21.0	-0.8	23.0	1.2	22.9	-1.1	21.7	-0.1	21.4	-0.4	20.8	-1.0	
Mean	198.0	22.2	22.2	0.0	21.4	-0.8	23.4	1.2	23.2	-1.0	22.0	-0.2	21.7	-0.5	21.2	-1.0	
SD	5.0	0.5	0.5	0.0	0.5	0.1	0.5	0.1	0.4	0.1	0.4	0.1	0.4	0.1	0.5	0.1	

	NN															
Exp		oligo(rA)30		rA	rC		rG		rU		rI		m ⁶ A		m ⁵ C	
	I_0 (pA)	I _{RES}	$I_{RES} \stackrel{\Delta I_{RES}}{\stackrel{rX-}{_{oligo(rA)}}}$	I _{RES}	$\Delta I_{RES}^{rX-}_{oligo(rA)}$											
	u ,	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
1	209.0	33.8	33.8	0.0	34.6	0.8	31.7	-2.1	32.2	-1.6	34.1	0.3	33.6	-0.2	34.3	0.5
2	206.0	34.2	34.2	0.0	35.2	1.0	32.0	-2.2	33.0	-1.2	34.6	0.4	34.0	-0.2	35.0	0.8
3	212.0	34.8	34.8	0.0	35.7	0.9	32.6	-2.2	33.6	-1.2	34.9	0.1	34.4	-0.4	35.3	0.5
Mean	209.0	34.3	34.3	0.0	35.2	0.9	32.1	-2.2	32.9	-1.3	34.5	0.3	34.0	-0.3	34.9	0.6
SD	3.0	0.5	0.5	0.0	0.6	0.1	0.5	0.1	0.7	0.2	0.4	0.2	0.4	0.1	0.5	0.2

	NNY																
Exp		oligo(rA)30		rA		rC		rG		rU		rI		m ⁶ A		m ⁵ C	
	I_0 (pA)	I _{RES}	I _{RES}	$\Delta I_{RES}^{rX-}_{oligo(rA)}$													
	(1)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	
1	208.0	34.4	34.4	0.0	35.2	0.8	33.3	-1.1	35.8	1.4	35.3	0.9	33.9	-0.5	36.0	1.6	
2	201.0	34.9	34.9	0.0	35.7	0.8	33.6	-1.3	36.8	1.9	35.8	0.9	34.2	-0.7	36.3	1.4	
3	206.0	34.8	34.8	0.0	36.2	1.4	34.4	-0.4	37.0	2.2	35.6	0.8	34.2	-0.6	36.2	1.4	
Mean	205.0	34.7	34.7	0.0	35.7	1.0	33.8	-0.9	36.5	1.8	35.6	0.9	34.1	-0.6	36.2	1.5	
SD	4.0	0.3	0.3	0.0	0.5	0.3	0.6	0.5	0.6	0.4	0.3	0.1	0.2	0.1	0.2	0.1	

Table S7. Voltage dependencies of residual currents, $I_{RES\%}$, for NNY α HL pores threaded with a heteropolymeric strand substituted at position 9 with rA, rC, rG and rU. The I_O and $I_{RES\%}$ values are mean values (\pm S.D.) taken from Gaussian fits to event histograms at various applied potentials (n = 3 experiments). $I_{RES\%} = (I_{RES}/I_O) \times 100. \Delta I_{RES\%}^{OVERALL}$ is the difference in residual current between the two most widely separated current peaks. The δ value is the product of the successive differences between the peaks. If any two peaks overlap, then the δ value is zero. If any two peaks overlap, then the δ value is zero. $\Delta I_{RES\%}$ values were determined for individual experiments and the mean value is used at each potential. $\Delta I_{RES} {}^{rX-rA} = I_{RES\%}$ for the rX oligonucleotide - $I_{RES\%}$ for rA-het₃₀ oligonucleotide. X = rG, rA, rC or rU. The $I_{RES\%}$ and $\Delta I_{RES\%}$ data from the table are plotted in Figure 5b and c.

	NNY													
	т		rA		rC		rG		rU	I OVERALL	2			
mV	(pA)	I _{RES} (%)	ΔI_{RES}	1 _{RES} (%)	0 (%)									
+100	99.0	26.4	0.0	27.4	1.0	25.9	-0.5	28.1	1.7	2.2	0.4			
+100	± 4.0	± 0.3	± 0.0	± 0.3	± 0.3	± 0.3	± 0.3	± 0.3	± 0.3	± 0.3	± 0.02			
+120	114.0	28.3	0.0	29.0	0.7	27.6	-0.7	29.7	1.4	2.1	0.3			
	± 6.0	± 0.3	± 0.0	± 0.3	± 0.3	± 0.3	± 0.3	± 0.4	± 0.3	± 0.3	± 0.01			
+140	132.0	29.3	0.0	30.0	0.7	28.6	-0.7	30.5	1.2	1.9	0.2			
+140	± 8.0	± 0.4	± 0.0	± 0.3	± 0.3	± 0.4	± 0.2	± 0.3	± 0.3	± 0.4	± 0.01			
+160	158.0	30.2	0.0	30.9	0.7	29.4	-0.8	31.4	1.2	2.0	0.3			
+100	± 6.0	± 0.4	± 0.0	± 0.5	± 0.3	± 0.5	± 0.2	± 0.3	± 0.3	± 0.4	± 0.02			
120	179.0	30.5	0.0	31.0	0.5	30.0	-0.5	31.8	1.3	1.8	0.2			
+180	± 9.0	± 0.2	± 0.0	± 0.3	± 0.1	± 0.2	± 0.2	± 0.2	± 0.2	± 0.2	± 0.01			
1200	204.0	31.0	0.0	31.7	0.7	30.6	-0.4	32.4	1.4	1.8	0.2			
+∠00	± 7.0	± 0.2	± 0.0	± 0.2	± 0.1	± 0.2	± 0.2	± 0.3	± 0.3	± 0.3	± 0.01			

Figure S1. Chemical structure of the Biotin-TEG linker used to biotinylate the 3' terminus of the oligonucleotides (Table S1). Structure produced with ChemBioDraw Ultra software (version 12.02). TEG: triethylene glycol.

Figure S2. (a) The voltage protocol used to immobilize oligonucleotides inside the α HL pore and the corresponding current trace. I₀ is the open pore current; I_{RES} is the remaining current when the oligonucleotide is immobilized inside the pore; SA-Btn is the streptavidin-biotin complex. (b-d) Histogram showing the I_{RES%} levels observed when an NNY pore is probed with four oligo(rA)₃₀ oligonucleotides that contain a single substituted nucleotide at position 9 (relative to the 3' biotin-tag). The parameters used to determine the discrimination of single nucleobase substitutions are shown. The I_{RES%} value of each oligonucleotide sequence, in this case, rX-oligo(rA)₃₀ and oligo(rA)₃₀ were taken from Gaussian fits to the blockade events, and the Δ I_{RES%} value is calculated as the difference between them: Δ I_{RES%} $^{rX-oligo(rA)} =$ I_{RES%} for the rX oligonucleotide - I_{RES%} for oligo(rA)₃₀. X = rG, rA, rC or rU³. Δ I_{RES%} OVERALL is the difference in residual current between the two most widely separated current peaks. The δ value is the product of the successive differences between the peaks, $\delta = \delta_1 \times \delta_2 \times \delta_3$. If any two peaks overlap, then the δ value is equal to zero^{3, 7}.

15

Figure S3. Typical current-voltage (I-V) traces for WT (*black*), E111N/K147N (NN, *blue*) and E111N/K147N/M113Y (NNY, *red*) αHL pores, in 1 M KCl, 25 mM Tris-HCl, pH 7.5, containing 100 μM EDTA.

Figure S4. Plot of $I_{RES\%}$ versus the applied potential (+100 to +200 mV) for the homopolymers (oligo(rA)₃₀, oligo(rC)₃₀ and oligo(rU)₃₀) immobilized in WT, NN and NNY α HL pores. Lines are for guidance only. Data are compiled in Table S2.

Figure S5. Plots of $I_{RES\%}$ versus the applied potential (+100 to +200 mV) for WT, NN and NNY α HL pores in the presence of (a) ssDNA or (b) ssRNA strands with a single base substitution at position 9 (X= rG, rA, rC or rU). The data for the graphs were obtained by taking mean values from Gaussian fits to peaks of histograms of residual current levels (I_{RES}) for multiple blockades by each oligonucleotide, at various applied potentials (Tables S3 and S4). I_{RES%} is calculated by using the mean value from at least three experiments. I_{RES%} = (I_{RES}/I_O) x 100.

Figure S6. Plots of residual current differences, $\Delta I_{RES\%}$, between blockades by substituted oligonucleotides and oligo(dC)₃₀ for (a) WT (b) NN and (c) NNY α HL pores. The data were obtained by taking mean values from Gaussian fits to histograms of residual current levels (I_{RES}) for multiple blockades by each oligonucleotide, at various applied potentials, Table S3. I_{RES} is calculated by using the mean value from at least three experiments. I_{RES%} = (I_{RES}/I_O) x 100. ΔI_{RES} ^{rX-oligo(dC)} = I_{RES%} for the rX oligonucleotide - I_{RES%} for oligo(dC)₃₀. X = rG, rA, rC or rU.

Figure S7. Plots of residual current differences, $\Delta I_{RES\%}$, between blockades by substituted oligonucleotides and oligo(rA)₃₀ for (a) WT (b) NN and (c) NNY α HL pores. The data were obtained by taking mean values from Gaussian fits to histograms of residual current levels (I_{RES}) for multiple blockades by each oligonucleotide, at various applied potentials, Table S4. I_{RES} is calculated by using the mean value from at least three experiments. I_{RES%} = (I_{RES}/I_O x 100. ΔI_{RES} ^{rX-oligo(rA)} = I_{RES%} for the rX oligonucleotide - I_{RES%} for oligo(rA)₃₀. X = rG, rA, rC or rU.

