Table S1. Growth characteristics of *Rhodopseudomonas palustris* TIE-1 WT and $\Delta fixK$ during aerobic and anaerobic growth^a.

Generation time (h)									
Suce	cinate	Ace	etate	Ben	zoate	4-Hydrox	kybenzoate	Нус	lrogen
Aerobic	Anaerobic	Aerobic	Anaerobic	Aerobic	Anaerobic	Aerobic	Anaerobic	Aerobic	Anaerobic
3.8 ± 0.5	3.7 ± 0.2	4.7 ± 1.2	1.8 ± 0.1	4.8 ± 0.1	4.0 ± 0.6	4.9 ± 0.6	2.8 ± 0.1	ND	2.7 ± 0.3
6.1 ± 0.9	9.4 ± 0.1	3.0 ± 0.1	8.0 ± 0.3	8.2 ± 1.3	7.4 ± 0.5	5.7 ± 1.1	6.9 ± 0.5	ND	7.9 ± 0.4
				Lag time (h)				
15.6 ± 2.2	20.9 ± 1.4	16.6 ± 1.7	8.3 ± 0.1	19.6 ± 0.2	20.1 ± 3.1	12.1 ± 3.2	18.4 ± 0.8	ND	17.6 ± 1.8
16.3 ± 1.3	52.9 ± 0.8	19.3 ± 0.2	36.9 ± 1.5	19.6 ± 0.8	49.0 ± 3.6	13.6 ± 2.0	45.6 ± 3.5	ND	52.6 ± 2.3
	Aerobic 3.8 ± 0.5 6.1 ± 0.9 15.6 ± 2.2	3.8 ± 0.5 3.7 ± 0.2 6.1 ± 0.9 9.4 ± 0.1 15.6 ± 2.2 20.9 ± 1.4	AerobicAnaerobicAerobic 3.8 ± 0.5 3.7 ± 0.2 4.7 ± 1.2 6.1 ± 0.9 9.4 ± 0.1 3.0 ± 0.1 15.6 ± 2.2 20.9 ± 1.4 16.6 ± 1.7	Sucinate Accutate Aerobic Anaerobic Aerobic Anaerobic 3.8 ± 0.5 3.7 ± 0.2 4.7 ± 1.2 1.8 ± 0.1 6.1 ± 0.9 9.4 ± 0.1 3.0 ± 0.1 8.0 ± 0.3 15.6 ± 2.2 20.9 ± 1.4 16.6 ± 1.7 8.3 ± 0.1	Sucinate Acrobic Anaerobic Aerobic Anaerobic Anaerobic Anaerobic Anaerobic Aerobic Ae	Succinate Acetate Benzoate Aerobic Anaerobic Aerobic Anaerobic 3.8 ± 0.5 3.7 ± 0.2 4.7 ± 1.2 1.8 ± 0.1 4.8 ± 0.1 6.1 ± 0.9 9.4 ± 0.1 3.0 ± 0.1 8.0 ± 0.3 8.2 ± 1.3 7.4 ± 0.5 15.6 ± 2.2 20.9 ± 1.4 16.6 ± 1.7 8.3 ± 0.1 19.6 ± 0.2 20.1 ± 3.1	Succinate Acetate Benzoate 4-Hydrox Aerobic Anaerobic Aerobic Anaerobic Aerobic Anaerobic Aerobic Aerobic	SuccinateAcetateBenzoate4-HydroxybenzoateAerobicAnaerobicAerobicAnaerobicAerobicAnaerobic 3.8 ± 0.5 3.7 ± 0.2 4.7 ± 1.2 1.8 ± 0.1 4.8 ± 0.1 4.0 ± 0.6 4.9 ± 0.6 2.8 ± 0.1 6.1 ± 0.9 9.4 ± 0.1 3.0 ± 0.1 8.0 ± 0.3 8.2 ± 1.3 7.4 ± 0.5 5.7 ± 1.1 6.9 ± 0.5 Lag time (h)15.6 \pm 2.2 20.9 ± 1.4 16.6 ± 1.7 8.3 ± 0.1 19.6 ± 0.2 20.1 ± 3.1 12.1 ± 3.2 18.4 ± 0.8	SuctinateAcetateBenzoate4-HydroxybenzoateHydroxybenzoateAerobicAnaerobicAerobicAnaerobicAerobicAerobicAerobicAerobic 3.8 ± 0.5 3.7 ± 0.2 4.7 ± 1.2 1.8 ± 0.1 4.8 ± 0.1 4.0 ± 0.6 4.9 ± 0.6 2.8 ± 0.1 ND 6.1 ± 0.9 9.4 ± 0.1 3.0 ± 0.1 8.0 ± 0.3 8.2 ± 1.3 7.4 ± 0.5 5.7 ± 1.1 6.9 ± 0.5 NDLag time (h) 15.6 ± 2.2 20.9 ± 1.4 16.6 ± 1.7 8.3 ± 0.1 19.6 ± 0.2 20.1 ± 3.1 12.1 ± 3.2 18.4 ± 0.8 ND

a. Growth was measured as indicated in *Experimental procedures*; lag time represents the time required to reach 0.1 OD ₆₆₀. Values represent the average and standard deviation of triplicate measurements. ND – Not determined, as aerobic growth could not be performed with hydrogen.

Table S2. Strains and plasmids used in the study.	

Genotype and Use	Reference	
H10B F ⁻ endA1 recA1 galE15 galK16 nupG rpsL ΔlacX74 Φ80lacZΔM15 araD139 Δ (ara,leu)7697 mcrA Δ (mrr-hsdRMS-mcrBC) λ ⁻ . Used as standard cloning strain.		
λpir lysogen of strain S17-1 [<i>thi pro hdsR hdsM</i> + <i>recA</i> ; chromosomal insertion of RP4-2 (Tc::Mu Km::Tn7)]. Used as a conjugative donor strain.	(de Lorenzo <i>et al.</i> , 1993)	
Isolated as a phototrophic iron oxidizer from Woods Hole, MA. Served as WT strain.	(Jiao <i>et al</i> ., 2005)	
<i>R. palustris</i> TIE-1 with a Ppio-lacZ fusion inserted at the <i>gImUSX-recG</i> locus.	This study	
<i>∆fixK</i> derivative of AB8	This study	
AB10 complemented with WT <i>fixK</i> cloned into pSRKGm	This study	
AB10 complemented with WT NtermHis ₆ - <i>fixK</i> cloned into pSRKGm	This study	
Description and/or Construction	Reference	
Broad host range mobilizable plasmid; Gm ^r , lacZalpha, 4.8 kb	(Kovach <i>et al.</i> , 1995)	
Mobilizable suicide vector; <i>sacB</i> , Gm ^r	(Quandt & Hynes, 1993)	
Complementation plasmid modified from pBBR1MCS-5; Gm ^r	(Khan <i>et al.</i> , 2008)	
Commercial 3.9 kb TOPO-TA cloning vector; Km ^r , Ap ^r , lacZalpha	Invitrogen, Carlsbad, CA	
Commercial <i>E. coli</i> overexpression plasmid; Ap ^r	Novagen, Gibbstown, NJ	
Source of <i>lacZ</i> gene; Gm ^r	(Choi & Schweizer, 2006)	
	F endA1 recA1 galE15 galK16 nupG rpsL ΔlacX74 Φ80lacZΔM15 araD139 Δ (ara,leu)7697 mcrA Δ (mrr-hsdRMS-mcrBC) λ . Used as standard cloning strain. λ pir lysogen of strain S17-1 [<i>thi pro hdsR hdsM</i> + recA; chromosomal insertion of RP4- 2 (Tc::Mu Km::Tn7)]. Used as a conjugative donor strain. Isolated as a phototrophic iron oxidizer from Woods Hole, MA. Served as WT strain. <i>R. palustris</i> TIE-1 with a P <i>pio-lacZ</i> fusion inserted at the <i>glmUSX-recG</i> locus. Δ <i>fixK</i> derivative of AB8 AB10 complemented with WT <i>fixK</i> cloned into pSRKGm AB10 complemented with WT NtermHis ₆ - <i>fixK</i> cloned into pSRKGm Description and/or Construction Broad host range mobilizable plasmid; Gm ^r , lacZalpha, 4.8 kb Mobilizable suicide vector; <i>sacB</i> , Gm ^r Complementation plasmid modified from pBBR1MCS-5; Gm ^r Commercial 3.9 kb TOPO-TA cloning vector; Km ^r , Ap ^r , lacZalpha	

pAB300	Fusion PCR was used to remove an internal <i>Ndel</i> site in the <i>lacZ</i> gene from pUC18- mini-Tn7-Gm- <i>lacZ</i> using primers lacZfor and lacZNdel-rev for PCR1; lacZrev and lacZNdel-for were used for PCR2. <i>R. palustris</i> TIE-1 genomic DNA was used as template. PCR3 was performed using lacZfor and lacZrev with PCR1 and PCR2 as templates. This resulted in a lacZ gene without an internal <i>Ndel</i> site that was then cloned into <i>Ncol-EcoRI</i> digested pBBR1MCS-5. This <i>lacZ</i> gene however had a Phe to Leu mutation at position 1008.	This study
pAB301	Fusion PCR was used to remove the revert the Phe to Leu mutation at position 1008 of the <i>lacZ</i> gene in pAB300 using primers lacZmp(F)for and lacZrev for PCR1; lacZmp(F)rev and lacZfor were used for PCR2. pAB300 was used as template. PCR3 was performed using lacZfor and lacZrev with PCR1 and PCR2 as templates. This PCR was then cloned into the <i>Ncol-EcoRI</i> digested pAB300.	This study
pAB307	The promoter region of <i>pioABC</i> operon of <i>Rhodopseudomonas palustris</i> TIE-1 was amplified using primers PpioTIE1for and PpioTIE1rev and cloned into <i>Ascl-Ndel</i> digested pAB301.	This study
pAB314	Fusion PCR was used to amplify the 2 kb region surrounding the <i>glmUSX-recG</i> locus of <i>R. palustris</i> TIE-1 cloned into pJQ200KS. PCR1 was performed using TIE-1upfor and TIE-1fusionrev(new); PCR2 was performed using TIE-1dnrev and TIE-1fusionfor(new). <i>R. palustris</i> TIE-1 genomic DNA was used as template. PCR3 was performed using TIE-1upfor and TIE-1dnrev with PCR1 and PCR2 as templates. This PCR product has an internal <i>Ncol</i> site was then cloned into <i>SphI-SmaI</i> digested pJQ200KS.	This study
pAB322	The Ppio ^{TIE-1} - <i>lacZ</i> translational fusion was amplified from pAB307 using primers lacZforpartial(Ncol) and lacZrev(Ncol) and cloned into <i>Nco</i> l digested pAB314.	This study
pAB343	The putative first FixK binding site (BS1) was deleted using fusion PCR. PCR1 was performed using PpioTIE1for and PpioTIE1-FixK2BSrev. PCR2 was performed using PpioTIErev and PpioTIE1-FixK2BSfor. <i>R. palustris</i> TIE-1 genomic DNA was used as template. PCR3 was performed using PpioTIE1for and PpioTIE1rev with PCR1 and PCR2 as templates. This product was cloned into <i>Ascl-Ndel</i> digested pAB322.	This study

pAB404	The putative second FixK binding site (BS2) was deleted using fusion PCR. PCR1 was performed using PpioTIE1for and FixK2-BS2rev. PCR2 was performed using PpioTIErev and FixK2-BS2for. <i>R. palustris</i> TIE-1 genomic DNA was used as template. PCR3 was performed using PpioTIE1for and PpioTIE1rev with PCR1 and PCR2 as templates. This product was cloned into <i>Ascl-Ndel</i> digested pAB322.	This study
pAB337	Fusion PCR was used to fuse the 1 kb upstream and 1 kb downstream region of Rpal_4729 gene of <i>R. palustris</i> TIE-1 (FixK). PCR1 was performed using primers DRpal_4729for and DRpal_4729fusrev(new). PCR2 was performed using primers DRpal_4729rev2 and DRpal_4729fusfor(new). <i>R. palustris</i> TIE-1 genomic DNA was used as template. PCR3 was performed using primers DRpal_4729for and DRpal_4729rev2 with PCR1 and PCR2 as templates. This product was then cloned into <i>Spel-Not</i> l digested pJQ200KS.	This study
pAB363	For complementation of $\Delta fixK$ (AB10) with native $fixK$, Rpal_4729 was amplified using FixK2pSRKGmfor(NdeI) and FixK2(SpeI)rev with <i>R. palustris</i> TIE-1 genomic DNA as template. This PCR product was cloned into <i>NdeI-SpeI</i> digested pSRKGm.	This study
pAB368	For affinity purification using Ni-NTA affinity chromatography an N-terminal 6X- Histidine tagged version of <i>fixK</i> from <i>R. palustris</i> TIE-1 was amplified using primers and FixK2TIE1NtermHisfor(NdeI)and FixK2rev(BamHI) with <i>R. palustris</i> TIE-1 genomic DNA as template. This PCR product was then cloned into <i>NdeI-Bam</i> HI digested pET-11a.	This study
pAB408	N-terminal 6X-Histidine tagged version of <i>fixK</i> from <i>R. palustris</i> TIE-1 was reamplified from pAB368 using primers FixK2TIE1NtermHisfor(NdeI) and FixK2(SpeI)rev. This PCR product was then cloned into the NdeI-SpeI digested pSRKGm.	This study

 Table S3. Primers used in the study for plasmid construction.

Primer	Sequence
lacZfor	CTCGAGCCATGGTAAACCGATACAATTAAAGGCTCCTTTTGGAGCCCTTTTTTTGGAGGGCGCGCCCAAGCTTCATATGACCAT
	GATTACGGATTCACTG
lacZNdel-rev	CGCCACCAATCCCCATGTGGAAACCGTCGATATTC
lacZrev(Spel)	GGCGCGCCACTAGTAAAAAACCCCCTCAAGACCCGTTTAGAGGCCCCCAAGGGGTTATTATTTTTGACACCAGACCAACTG
lacZNdel-for	GAATATCGACGGTTTCCACATGGGGGATTGGTGGCG
lacZmp(F)for	GTCAGTATCGGCGGAGTTCCAGCTGAGCG
lacZmp(F)rev	CGCTCAGCTGGAACTCCGCCGATACTGAC
PpioTIE1for	GGCGCGCCAAGCTTGATTGCGAGTCGTCCTGTTGCACAACG
PpioTIE1rev	GGCGCGCCCATATGGTCCCCGCAAGTGCTCAAAGC
TIE-1upfor	GGCGCGCCGCATGCCACACCGGCAGGTTGTTGATGGCTG
TIE-1fusionrev(new)	CGGGTTAGTTACCACGCGTCATTACTAGTTCGCGACCATGGCTACCCGACCTTGTCCGGCGCCCTTTTC
TIE-1dnrev	ACTAGTCCCGGGCGAGATCGATTTTCTGGTCGGCAC
TIE-1fusionfor(new)	GAAAAGGCGCCGGACAAGGTCGGGTAGCCATGGTCGCGAACTAGTAATGACGCGTGGTAACTAAC
lacZforpartial(Ncol)	CTCGAGCCATGGTAAACCGATACAATTAAAGGCTC
lacZrev(Ncol)	GGCGCGCCCCATGGAAAAAACCCCCTCAAGACCCGTTTAGAG
PpioTIE-1-FixK2BSrev	GTGGTCGACTAACTCTTGATTGCCCTGTGCGCAATGCAGC

PpioTIE-1-FixK2BSfor	GCTGCATTGCGCACAGGGCAATCAAGAGTTAGTCGACCAC
FixK2-BS2rev	TCTGCTGCGTATGCTAACAGATGTGAATAAATACGCGTTTTAGTACGTTGTGTGAC
FixK2-BS2for	GTCACAACGTACTAAAACGCGTATTTATTCACATCTGTTAGCATACGCAGCAGA
DRpal_4729for	GGCGCGCCACTAGTTCGGACTTCGAGAAGCCATTCG
DRpal_4729fusrev(new)	CGATCCGATGAAAGAGATGCTCTCTAGATTACTGGCCATCTCCTTTGATC
DRpal_4729rev2	ACTAGTGCGGCCGCGATACTTGGTCGCCGAATACACCACGATC
DRpal_4729fusfor(new)	GATCAAAGGAGATGGCCAGTAATCTAGAGAGCATCTCTTTCATCGGATCG
FixK2pSRKGmfor(Ndel)	GGCGCGCCCATATGCTGAACCAGTCGCTCAGGACG
FixK2(Spel)rev	GGCGCGCCACTAGTTTAGGCGTCGAGATTGCGAAGC
FixK2TIE1NtermHisfor(NdeI)	GGCGCGCCCATATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGTGCCGCGCGGCAGCCACATGCTGAACCAGT
	CGCTCAGGAC
FixK2rev(BamHI)	ACTAGTGGATCCTTAGGCGTCGAGATTGCGAAGCTG
delFixK2upchkfor	GACACCGGCAGCGGTCTGC
delFixK2upchkrev	CAGAAGAGGCCACCATTGCTG
delFixK2dnchkfor	GATATGGAGCGAAATACCTCG
delFixK2dnchkrev	GCGAGGATGTCGTCGATG

Table S4. Primers used in the study for RACE.	

Primer	Purpose	Sequence
pioARACErev1	5'RLM-RACE	ACCAGCGCATTGACCGAC
pioARACErev2	5'RLM-RACE, cRACE	CAGCGACGAGATCCAGCTC
PpioTIE1rev	5'RLM-RACE	GGCGCGCCCATATGGTCCCCCGCAAGTGCTCAAAGC
5'RACEouter	5'RLM- RACE	GCTGATGGCGATGAATGAACACTG
WNp213	cRACE	GTCTCGTTAGCTCGCTGGATCCTA 3'Inverted T
WNp210	cRACE	TAGGATCCAGCGAGCTAACGAGAC
M13 Forward (-20)	Sequencing	GTAAAACGACGGCCAG
M13 Reverse	Sequencing	CAGGAAACAGCTATGAC

Drimer neme	Segueree
Primer name	Sequence
Rpal_4713for	
Rpal_4713rev	AGGCTGACGGTTTTAGTGAC
Rpal_3436for	ACATCTTCGGCGTGCTG
Rpal_3436rev	GTACTTCACCGTCACCAGC
Rpal_4015for	GGCAGGACCAAATCGCAG
Rpal_4015rev	GTTGATCGAGCAGTTGATTGG
Rpal_2453or	GATGACATCACGCCGGAG
Rpal_2453rev	AACCCGAGCACGTTGAC
Rpal_1413for	CATCGTCGGCATCGTCAG
Rpal_1413rev	ATCAGCTCCAGTGTGATTGAG
Rpal_0922for	ACATCACAGGCAAGAACGAAG
Rpal_0922rev	TGGTGAAGATGAAGCCCG
Rpal_0020for	GCATCGTCCTCTACATCTCG
Rpal_0020rev	ACGCCACATCAGACCTTG
Rpal_4994for	TGACCAAGTTTCTGACCGC
Rpal_4994rev	ACACGAGGTTGAATGCCG
Rpal_4717for	CTGACCTCGTTGACTTACCAG
Rpal_4717rev	CAGCACCATGATCGGGATC
Rpal_1280for	GCAGCTTCGTGTTCAACG
Rpal_1280rev	CGCGACGTTTTGGATCAC
Rpal_1868for	TTCGATCCGAGCTTCAACAG
Rpal_1868rev	GGATCACTCTGTCGGTTTCG
Rpal_1869for	TCCACCGGCTGACCTATC
Rpal_1869rev	GTGCCCTCTTCCTTGTAGC
Rpal_2582for	CCGCAAACGATCACACTTATG
Rpal_2582rev	GATGCCGCAACCGAATC
Rpal_2583for	ACACCCTCAATCACTTCGC
Rpal_2583rev	AATAGGTCTTGCTGCCATCG
Rpal_1206for	TGCATTGGATTCCGATCGTC
Rpal_1206rev	GCGACCAGGAACGAGAC
Rpal_1207for	CGACGCTCACCTTTCTTGAAG
Rpal_1207rev	ACATAGAGCTTCTTGGCGC
Rpal_1691for	GCTGGGTTTGTTCCGATTG
Rpal_1691rev	GGATGTGTTTCTTGCGGATTC
Rpal_1692for	ATCGATAATCACCAGTCGCG
Rpal_1692rev	CCGTTGAGCACCCACAG
Rpal_1412for	GGTCCACTGCTGATACTCATG
Rpal_1412rev	GTCGAAGGTGAGATACGCTG
Rpal_4729for	GCCTCGGAATTCACCTACAAG
Rpal_4729rev	GATAGACGTATTCGGACGGC
Rpal_2130for	GAATTCGAGCGTGCGGT
Rpal_2130rev	GAGGCCGAGGAAGTAGC
pioAqRTPCRfor	AAATTTCGACGACACCATCGA
pioAqRTPCRrev	CTTGGCGGCGAGGATCT
pioBqRTPCRfor	TCGCGCCAGGGTTCTATG
pioBqRTPCRrev	TTCCAGTAGGTGCCGTCCTT
pioCqRTPCRfor	ACGCCCAGGTCACCAAGA
pioCqRTPCRrev	GTTGGGCGACTCCTGATAGC

Table S5. Primers used in the study for qRT-PCR.

Table S6. Primers used in the study for PCR to generate DNA substrates for EMSA.

Primer name	Sequence
FixK2BS1for	CCGCAGAGCGCCTCCATCCAG
FixK2BS1rev	GCAGAACTAACAGGTCTGCGGTG
FixK2BS2for	CACCGCAGACCTGTTAGTTCTGC
FixK2BS2rev	CCTGCATCGCGACGCTTGC

1 Detailed description of putative FixK upregulated during anaerobic growth. 2 The putative FixK targets that were upregulated during anaerobic growth 3 included genes involved in gene regulation, photosynthesis, respiration and 4 transport-related functions. The regulatory proteins are AadR (Rpal 4713), a 5 CRP/FNR family regulator that has been shown to be important for anaerobic 6 degradation of benzoate and 4-hydroxybenzoate in R. palustris CGA009 7 (Dispensa et al., 1992); predicted CRP/FNR family gene (Rpal 1280), an Irr 8 homolog (Rpal 2583) and a PadR family protein (Rpal 1207). Proteins 9 belonging to the PadR family are repressors of the padA gene that encodes a 10 detoxifying decarboxylase of phenolic acids such as p-coumarate (Barthelmebs 11 et al., 2000, Gury et al., 2004). Interestingly, such compounds can be utilized by 12 R. palustris CGA009 and likely by R. palustris TIE-1 (Pan et al., 2008). The 13 following genes important for photosynthesis were upregulated during 14 photosynthetic growth: hemO (Rpal 0922), bchD (Rpal 1692) and cycH. HemO 15 is predicted to be 5-aminolevulinate synthase, an important early enzyme in the porphyrin and bacteriochlorophyll biosynthetic pathway (Evans et al., 2008). 16 17 BchD is a protein important in porphyrin biosynthesis that precedes bacteriochlorophyll biosynthesis (Willows & Kriegel, 2008). CycH is important in 18 19 cytochrome C biogenesis, thus playing a key role in both photosynthesis and 20 respiration (Lang et al., 1996). Genes involved in respiration that were induced 21 include: *ccoN(OQP)*, encoding the *cbb3* cytochrome C terminal oxidase with high 22 affinity for O_2 (Pitcher et al., 2002), a small hypothetical gene near ccoG, and a 23 cytochrome C accessory protein (Preisig et al., 1996). The upregulated genes

1 encoding transport related proteins were: ompW, an outer membrane porin 2 homolog (Rpal 4994)(Lou et al., 2009); osmY, a putative periplasmic osmotic 3 shock gene (Rpal 1868)(Yim & Villarejo, 1992); and a predicted ORF in an 4 operon with a heavy metal transporter (Rpal 2582)(Sitthisak et al., 2007). In 5 addition, a small predicted ORF encoding a protein likely involved in siderophore 6 biosynthesis (Rpal 4015) and Rpal 1412, a signal peptide containing ORF with 7 transmembrane domains were also highly upregulated under anoxic 8 photosynthetic conditions. Overall these data show that R. palustris TIE-1 9 responds dramatically to a shift from aerobic chemoheterotrophic to anoxic 10 phototrophic growth changing expression of a number of potential FixK target 11 genes.

1 Detailed experimental procedures.

2 Construction of a single integration system for R. palustris TIE-1. The intergenic region of the operon Rpal 2933-2935 (glmUS homolog followed by a 3 4 ORF of unknown function called gene glmX here) and Rpal 2936 (recG 5 homolog) was chosen as a permissive locus based on the usage of this locus as 6 the insertion site for the Mini-Tn7 transposon in diverse bacteria (Koch et al., 7 2001). As R. palustris TIE-1 does not harbor this commonly found Tn7 insertion site, we devised a homologous recombination based single integration system 8 9 that was based on the pJQ200KS counter-selection plasmid used for 10 construction of mutants in R. palustris TIE-1 (Jiao & Newman, 2007). A 2 kb 11 region surrounding the *glmUSX-recG* intergenic region was cloned into 12 pJQ200KS giving rise to pAB314. A unique Ncol site was incorporated in the 13 middle of this 2kb region such that the DNA to be incorporated could be cloned into pAB314. This system was later adapted to integrate *lacZ* translational 14 15 fusions into the chromosome of R. palustris TIE-1 as described below. The pAB314-derived plasmids can be integrated on the R. palustris TIE-1 16 17 chromosome using selection on gentamicin to form a merodiploid. Counterselection using sucrose results in segregation of the merodiploid to give 18 rise to either strains that have the lacZ fusion on the chromosome or WT R. 19 20 *palustris* TIE-1. PCR screening was performed to confirm the correct strain was 21 constructed.

22

23

1 **Construction of a lacZ reporter system for** *R. palustris* **TIE-1**. The *lacZ* gene 2 that encodes β-galactosidase of *E. coli* was amplified from pUC18-mini-Tn7-Gm-3 *lacZ*, engineering the fd terminator in front and the T7 terminator at the end of the 4 gene. This PCR product was cloned into the Ncol and EcoRI sites of pBBR1-5 MCS5 such that an Ndel site was engineered to overlap with the ATG of lacZ. In 6 front of this Ndel site, the restriction site for a rare 8 bp cutter Ascl was 7 engineered resulting in pAB301 (Figure S6). The inherent Plac promoter in 8 pBBR1-MCS5 was deleted during this construction resulting in a promoter-less 9 *lacZ* plasmid. Ascl-Ndel sites can be used for cloning a desired promoter region 10 and will result in the formation of a translational fusion. As the pBBR1 plasmid 11 and its derivatives are broad host range plasmids, pAB301 can be used as a 12 plasmid of general use. The *lacZ* system was designed as a cassette system so 13 that it can be easily sub-cloned into other pBBR1 derivatives in case other 14 selectable markers are desired.

Determination of transcription start sites. 5'RLM-RACE. Total RNA was 15 16 isolated as described in the *Experimental procedures*. Reverse transcription (RT) 17 was performed using SuperScript III RNase H- reverse transcriptase (Invitrogen, 18 Carlsbad, CA), according to the manufacturer's protocol using gene specific 19 primers (Table S4). PCR amplification of the cDNA from the RT reaction was 20 performed with Tag DNA polymerase (New England Biolabs, Ipswich, MA) as 21 recommended. The PCR reactions were run on a 2% agarose gel stained with 5 22 µg/ml of ethidium bromide. Relevant bands were cut out and DNA from the bands was purified using the Wizard® SV Gel and PCR Clean-Up System 23

1 (Promega, Madison, WI). The bands that were specific to the TAP plus reaction 2 represented the transcription start site and the bands common to the TAP plus 3 and minus reactions represented processed sites. The PCR products were 4 reamplified using a nested primer using Tag DNA polymerase as recommended 5 (New England Biolabs, Ipswich, MA). The primers used for amplification are listed in Table S4. The products were then cloned into pCR[®]2.1-TOPO[®] using 6 7 the TOPO-TA cloning kit as per the manufacturer's guidelines (Invitrogen, 8 Carlsbad, CA). The PCR products were sequenced at the Biopolymers 9 Laboratory in the Massachusetts Institute of Technology Center for Cancer 10 Research.

cRACE. Total RNA was isolated as described in the Experimental procedures 11 12 and contaminating chromosomal DNA was digested with TURBO DNA-free 13 (Ambion, Austin, TX). Reverse transcription was performed using the Superscript 14 II RNase H- reverse transcriptase (Invitrogen, Carlsbad, CA) as follows: 5 µg of 15 the resulting RNA was combined with 20 pmols of the gene specific primer and 0.5 mM dNTPs. The resulting mixture was heated to 70°C for 10 min and 16 17 immediately frozen on ice for at least 1 min. The first strand synthesis buffer, 10 18 mM DTT, 4 U/ul Rnasin (Promega, Madison, WI) were added to the above 19 mixture as specified and heated to 42°C for 2 min. To this mixture Superscript II 20 RNase H- reverse transcriptase was added and the reverse transcription was 21 performed as specified. Following reverse transcription 0.1 U/µl Rnase H 22 (Invitrogen, Carlsbad, CA) was added and the reaction mixture was incubated at 37°C for 20 min. The reaction mixture was then purified using the Wizard[®] SV 23

1 Gel and PCR Clean-Up System (Promega, Madison, WI) and eluted in 32 µl of nuclease free water. This cDNA was ligated to 100 pmols of WNp213 (a primer 2 3 that has an inverted T on its 3' end to prevent self-ligation) using T4 RNA ligase 4 (Ambion, Austin, TX) in a 100 µl reaction. Ligations were performed in 25% 5 polyethylene glycol 8000, 1 mM hexaammine cobalt (III) chloride, 0.1 mg/ml BSA and T4 RNA ligase buffer at 22°C for 16 hrs (a brown precipitate forms). This 6 reaction was purified using the Wizard[®] SV Gel and PCR Clean-Up System 7 8 (Promega, Madison, WI) and eluted in 20 µl nuclease free water. This eluate was 9 used for PCR amplification using a nested gene specific primer, primer WNp210 and Tag DNA polymerase (New England Biolabs, Ipswich, MA). The resulting 10 11 bands were separated on a 2% agarose gel and the desired bands were geleluted using the Wizard[®] SV Gel and PCR Clean-Up System (Promega, 12 13 Madison, WI). The products were then cloned into pCR2.1-TOPO using the 14 TOPO-TA cloning kit as per the manufacturer's guidelines (Invitrogen, Carlsbad, 15 CA). The PCR products were sequenced at the Biopolymers Laboratory in the 16 Massachusetts Institute of Technology Center for Cancer Research.

Measurement of β-galactosidase activity. For photoheterotrophic growth cultures were grown on YP medium and inoculated into FW medium at a 10^{-2} dilution supplemented with appropriate electron donors. For photoautotrophic growth on H₂, cultures were grown on YP medium and inoculated into FW medium at a 10^{-2} dilution with H₂/CO₂. For photoferrotrophic growth cultures were grown on FW medium at 10^{-2} dilution with H₂/CO₂ and inoculated into FW medium with Fe(II)/Fe(II)-NTA; at least two passages were performed on

1 Fe(II)/Fe(II)-NTA before β -galactosidase activity was determined. A 10 ml culture in the logarithmic phase of growth (OD₆₆₀ 0.2 for aerobic cultures grown on YP 2 3 alone or supplemented with 1 mM succinate, acetate, benzoate, 4-4 hydroxybenzoate; for photoheterotrophic growth in FW medium supplemented 5 with 1 mM succinate, acetate, benzoate, 4-hydroxybenzoate cells were 6 harvested at OD₆₆₀ 0.2; for photoautotrophic growth on H₂ cells were harvested 7 at OD₆₆₀ 0.2; for photoautotrophic growth on Fe(II)-NTA cells were harvested 8 OD_{660} 0.1; for photoautotrophic growth on Fe(II) cells were harvested when half 9 of the added Fe(II) was oxidized) were harvested and resuspended in 200 µl of 10 Z-buffer (0.06 M Na₂HPO₄.2H₂O, 0.04 M NaH₂PO₄, 0.01 M KCl, 0.001 M MgSO₄, 11 0.05 M β -mercaptoethanol, pH 7.0) and the cells were permeabilized by adding 12 20 µl chloroform and 10 µl 0.1% SDS and incubated at room-temperature for 5 13 min. The cells were then stored on ice and sonicated using a Fisher Scientific 14 Model 550 Sonic Dismembrator for a total of 2 min at the amplitude of 3 (3 s 15 pulses followed by 6 s rest). The extracts were then spun at 14,000 rpm in a 16 microcentrifuge at 4°C for 10 min. 20 -100 µl of cell extract was mixed with the Z-17 buffer to achieve 900 μ l volume. The reaction was started by adding 100 μ l of a 4 18 mg/ml solution of o-nitrophenylgalactopyranoside dissolved in phosphate buffer 19 (0.06 M Na₂HPO₄.2H₂O and 0.04 M NaH₂PO₄). The rate of increase in the A420 20 due to o-nitrophenol formation was measured spectrophotometrically using a 21 Beckman Coulter DU 800 Spectrophotometer. Activity was calculated with a molar extinction coefficient (ϵ) of 4500 liters.mol⁻¹.cm⁻¹ for *o*-nitrophenol at 420 22 23 nm. Protein estimation was routinely performed using the microtiter plate method

for the Biorad Protein Assay reagent (Biorad, Hercules, CA) using BSA as
standard (Thermo Scientific, Waltham, MA). Absorbance at 595 nm was
measured using the Biotek Synergy 4 microtiter plate reader. Reported values for
β-galactosidase activity represent mean and standard error of 9 independent
measurements.

6 Quantitative reverse-transcription PCR. 5-10 ml of appropriately grown 7 cultures were added to 2 volumes of RNAprotect Bacteria Reagent (Qiagen, 8 Valencia, CA), incubated for 5 min at room temperature, and centrifuged for 20 9 min at 5000 X g. RNA was isolated from the cell pellet using the RNeasy Mini Kit 10 (Qiagen, Valencia, CA) with proteinase K and lysozyme treatment as specified by 11 the manufacturer. RNA samples were treated with TURBO DNA-free DNase 12 (Ambion, Austin, TX) to remove genomic DNA contamination. All RNA samples 13 were stored at -80°C till further use. 400 ng of RNA was used in a 100 µl cDNA 14 synthesis reaction using the iScript cDNA Synthesis Kit (Biorad, Hercules, CA). 15 The cDNA (1 µl) was used as template for quantitative reverse-transcription-PCR (gRT-PCR) using the iTag SYBR Green Supermix with Rox (Biorad, Hercules, 16 17 CA) on the 7500 Fast Real-Time PCR System (Applied Biosystems, Foster City, 18 CA). Primer Express v2.0 (Applied Biosystems, Foster City, CA) was used to 19 design primers targeting the transcripts to be tested (Table S5). The final 20 concentration of primers used was 200 nM in a reaction volume of 20 µl. The 21 cycling parameters used were 95°C for 3 min, followed by 40 cycles of 95°C for 22 15 s and 60°C for 30 s. A final dissociation curve was performed for each 23 reaction to ensure that a single product was amplified each time. The clpX and

1 recA genes of R. palustris TIE-1 were used as an internal controls for normalization (Dietrich *et al.*, 2006). The $\Delta\Delta$ Ct method was used for calculating 2 mRNA abundance. ACt values for each sample were calculated by subtracting 3 4 the Ct value of the *clpX* gene from the Ct value of the target gene. The $\Delta\Delta$ Ct 5 value was calculated by subtracting the ΔCt value of a calibrator condition from 6 the ΔCt value of the test sample. The fold difference was then calculated using the formula 2^{-,,Ct} according to the Guide to Performing Relative Quantitation of 7 8 Gene Expression using Real-Time Quantitative PCR (Applied Biosystems, Foster 9 City, CA). All samples were assayed as three biological replicates measured in 10 triplicate and the cycle time determined automatically by the Real Time 7500 11 PCR software (Applied Biosystems, Foster City, CA).

12 Overexpression and purification of FixK from E. coli. The cell pellets of 500 13 ml cultures carrying overexpressed His₆-FixK protein was resuspended in 5 ml 14 ice-cold 50 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) (pH 7.0) buffer containing 0.5 M NaCl (1X Native binding buffer) with 1X Complete, 15 16 EDTA-free, Protease Inhibitor Cocktail (Roche, Indianapolis, IN). Cells were 17 broken 2X in a French pressure cell (20,000 psi) and centrifuged at 13,000 X g 18 for 30 min to pellet cell debris and the resultant supernatant was passed over a 19 Ni-NTA agarose (5 ml bed volume) (Qiagen, Valencia, CA) gravity flow column 20 pre-equilibrated with 10 bed volumes of 1X Native binding buffer. Contaminating 21 E. coli proteins were washed off the column in a stepwise fashion with buffers 22 identical to 1X Native binding buffer, but with varying concentrations of imidazole 23 (20, 50, and 100 mM; 10 bed volumes of each of the buffers was used for 1 washes). His₆-FixK protein was collected from the column after washing with 2.5 2 ml of buffer containing 500 mM imidazole. His₆-FixK after affinity chromatography 3 was purified to apparent homogeneity, as ascertained by SDS-PAGE followed by 4 Coomassie Brilliant Blue staining (Figure S5). High-purity His₆-FixK was desalted 5 using disposable PD-10 Desalting columns with a 10 kDa molecular weight cut-6 off as per the manufacturer's guidelines (GE Healthcare, Piscataway, NJ) and 7 the original buffer was exchanged with 50 mM HEPES (pH 7.0), 250 mM KCl, 8 50% mΜ dithiothreitol (DTT) and containing alvcerol. 1 0.1 mΜ 9 ethylenediaminetetraacetic acid (EDTA).

10 **Electrophoretic mobility shift assay (EMSA).** DNA probes were designed as 11 indicated in the *Experimental procedures*. The labeling efficiency of the probes 12 was then determined as specified and 20 μ l gel shift reactions were set up with 13 30 fmol of DIG labeled probe, desired amount of protein, 1 μ g of poly [d(I-C)], 1 µg of poly L-lysine in binding buffer [20 mM HEPES, pH 7.6, 1 mM EDTA, 10 mM 14 15 (NH₄)₂SO₄, 1 mM DTT, Tween 20 0.2% (w/v), 30 mM KCI]. The reactions were 16 incubated at room temperature for 15 min and loaded immediately on a pre-run 17 8% 0.5 X Tris-Borate-EDTA (TBE) polyacrylamide gel run at 80 V at room 18 temperature till the bromophenol blue dye reached ³/₄ of the gel. The gels were 19 then electro-blotted onto positively charged nylon membranes (Roche, 20 Indianapolis, IN) using a Biorad Mini Trans-Blot Electrophoretic Transfer Cell at 21 400 A for 30 min in 0.5 X TBE. Following electro-transfer the DNA probes were 22 detected by immunoassay as specified by the manufacturer followed by 23 chemiluminescence using Amersham Hyperfilm ECL films (GE Healthcare,

- 1 Piscataway, NJ). The exposed films were developed and fixed using a Kodak
- 2 (CareStream) M35A X-Omat film processor.

Figure S1. *pioABC* genetic locus organization in A: *R. palustris* TIE-1; B: *R. palustris* CGA009; C: *R. palustris* BisB18 and D: *R. palustris* BisA53. The genes depicted in grey are conserved in location in *R. palustris* TIE-1 and CGA009. The genes depicted in white are not conserved in location. The other genes are conserved in location and are color coded according to location.

2 Figure S2. Nested PCR results for cRACE and 5'RLAM-RACE. Panel A. A 3 representative 2% agarose gel with a 100 bp DNA marker and the 213 bp nested PCR product using primers PpioTIE-1rev and WNp210 (black arrow). Panel B. A 4 5 representative 2% agarose gel with a 100 bp DNA marker and the 234 bp Tap+ 6 (black arrow) and 209 bp TAP- (white arrow) nested PCR product using primers 7 PpioTIE-1rev and 5'RACE outer primer. The 209 bp processed product can be seen as the lower band in the TAP+ lane. The relevant bands of the marker are 8 9 These experiments were performed using RNA isolated from shown. 10 photoferrotrophically grown cultures. Larger reactions of these PCRs were separated, gel eluted and cloned into pCR[®]2.1-TOPO[®] using the TOPO-TA 11 12 cloning kit as per the manufacturer's guidelines (Invitrogen, Carlsbad, CA). The 13 PCR products were sequenced at the Biopolymers Laboratory in the 14 Massachusetts Institute of Technology Center for Cancer Research.

2 Figure S3. PCR to confirm the *∆fixK* mutant of *R. palustris* TIE-1. Five independent PCR reactions were performed. The first PCR was used to confirm 3 4 that the upstream and downstream regions of *fixK* cloned in to pJQ200KS was 5 on the chromosome of the deletion strain. In the $\Delta fixK$ strain the product is be 6 1963 bp; the WT band is 2644 bp. The second PCR was to confirm the 7 upstream locus of $\Delta fixK$; mutant product is 1581 bp; WT product is 2271 bp. The 8 third PCR was to confirm the downstream locus of $\Delta fixK$: mutant product 1664 is 9 bp; WT product is 2354 bp. The fourth PCR was to confirm that the strain had a 10 *lacZ* gene; the mutant gives product 1102 bp long while WT does not yield any 11 product. The fifth PCR was to confirm that $\Delta fixK$ did not yield a product for fixK; mutant does not give a product while WT gives a 702 bp product. Relevant 12 13 bands in the DNA markers are indicated.

B. Fold-change in mRNA abundance during anaerobic growth on Fe vs. aerobic growth on succinate in WT, $\Delta fixK$ and complemented strains.

Strain	pioA	pioB	pioC	fixK
WT	1186.2±244.4	215.2±26.2	426.0±28.7	12.2±2.4
∆fixK	11.4±2.4	5.8±1.0	2.2±0.2	ND
∆fixK fixK-pSRKGm	79.8±9.9	34.4±1.5	4.6±0.6	7.2±0.6
∆fixK NtermHis ₆ fixK-pSRKGm	30.8±3.8	19.5±0.9	6.8±0.9	11.8±1.1

2 Figure S4. Complementation of $\Delta fixK$ using WT gene and NtermHis₆-tagged

gene. A. WT *R. palustris* TIE-1 growing on FW succinate produces ample pigmentation under photoheterotrophic conditions while $\Delta fixK$ does not. $\Delta fixK$ complemented with native *fixK* had WT levels of pigmentation. **B.** qRT-PCR analysis comparing expression of *pioABC* and *fixK* in WT is compared to $\Delta fixK$ and strains complemented with the native *fixK* gene or the NtermHis₆-tagged version resulted in partial restoration of *pioABC* expression and full restoration of *fixK* expression.

- 1
- 2 Figure S5. Purified His₆-FixK from *E. coli.* M Broad range marker (Biorad,
- 3 Hercules, CA). U uniduced E. coli extract. I induced E. coli extract. P -
- 4 purified protein (27.6 kDa).

Figure S6. *lacZ* cassette made for use as translational fusion. The *lacZ* gene was flanked by fd terminator in front and T7 terminator at the end of the gene. An *Ascl* and *Ndel* site were engineered in the beginning of the *lacZ* gene to clone in any promoter region of interest in frame with the ATG start codon of *lacZ*.

1 References

2	Barthelmebs, L., B. Lecomte, C. Divies & J. F. Cavin, (2000) Inducible
3	metabolism of phenolic acids in Pediococcus pentosaceus is encoded by
4	an autoregulated operon which involves a new class of negative
5	transcriptional regulator. J Bacteriol 182: 6724-6731.
6	Casadaban, M. J. & S. N. Cohen, (1980) Analysis of gene control signals by DNA
7	fusion and cloning in Escherichia coli. J Mol Biol 138: 179-207.
8	Choi, K. H. & H. P. Schweizer, (2006) mini-Tn7 insertion in bacteria with single
9	attTn7 sites: example Pseudomonas aeruginosa. Nat Protoc 1: 153-161.
10	de Lorenzo, V., I. Cases, M. Herrero & K. N. Timmis, (1993) Early and late
11	responses of TOL promoters to pathway inducers: identification of
12	postexponential promoters in Pseudomonas putida with lacZ-tet bicistronic
13	reporters. <i>J Bacteriol</i> 175 : 6902-6907.
14	Dietrich, L. E. P., A. Price-Whelan, A. Petersen, M. Whiteley & D. K. Newman,
15	(2006) The phenazine pyocyanin is a terminal signalling factor in the
16	quorum sensing network of <i>Pseudomonas aeruginosa. Mol Microbiol</i> 61:
17	1308-1321.
18	Dispensa, M., C. T. Thomas, M. K. Kim, J. A. Perrotta, J. Gibson & C. S.
19	Harwood, (1992) Anaerobic growth of Rhodopseudomonas palustris on 4-
20	hydroxybenzoate is dependent on AadR, a member of the cyclic AMP
21	receptor protein family of transcriptional regulators. J Bacteriol 174: 5803-
22	5813.

1	Evans, K., T. Georgiou, T. Hillon, A. Fordham-Skelton & M. Papiz, (2008)
2	Bacteriophytochromes control photosynthesis in Rhodopseudomonas
3	palustris. In: The Purple Phototrophic Bacteria. pp. 799-809.
4	Gury, J., L. Barthelmebs, N. P. Tran, C. Divies & J. F. Cavin, (2004) Cloning,
5	deletion, and characterization of PadR, the transcriptional repressor of the
6	phenolic acid decarboxylase-encoding padA gene of Lactobacillus
7	plantarum. Appl Environ Microbiol 70 : 2146-2153.
8	Jiao, Y. & D. K. Newman, (2007) The pio operon is essential for phototrophic
9	Fe(II) oxidation in <i>Rhodopseudomonas palustris</i> TIE-1. J Bacteriol 189:
10	1765-1773.
11	Jiao, Y. Y. Q., A. Kappler, L. R. Croal & D. K. Newman, (2005) Isolation and
12	characterization of a genetically tractable photoautotrophic Fe(II)-oxidizing
13	bacterium, Rhodopseudomonas palustris strain TIE-1. Appl Environ
14	<i>Microbiol</i> 71 : 4487-4496.
15	Khan, S. R., J. Gaines, R. M. Roop & S. K. Farrand, (2008) Broad-host-range
16	expression vectors with tightly regulated promoters and their use to
17	examine the influence of TraR and TraM expression on Ti plasmid quorum
18	sensing. Appl Environ Microbiol 74: 5053-5062.
19	Koch, B., L. E. Jensen & O. Nybroe, (2001) A panel of Tn7-based vectors for
20	insertion of the gfp marker gene or for delivery of cloned DNA into Gram-
21	negative bacteria at a neutral chromosomal site. J Microbiol Methods 45:
22	187-195.

1	Kovach, M. E., P. H. Elzer, D. S. Hill, G. T. Robertson, M. A. Farris, R. M. Roop,
2	2nd & K. M. Peterson, (1995) Four new derivatives of the broad-host-
3	range cloning vector pBBR1MCS, carrying different antibiotic-resistance
4	cassettes. Gene 166: 175-176.
5	Lang, S. E., F. E. Jenney, Jr. & F. Daldal, (1996) Rhodobacter capsulatus CycH:
6	a bipartite gene product with pleiotropic effects on the biogenesis of
7	structurally different c-type cytochromes. J Bacteriol 178 : 5279-5290.
8	Lou, H., K. Beis, J. H. Naismith & D. Larry, (2009) Bacterial membrane proteins:
9	the new soluble proteins? In: Current Topics in Membranes. Academic
10	Press, pp. 269-297.
11	Pan, C., Y. Oda, P. K. Lankford, B. Zhang, N. F. Samatova, D. A. Pelletier, C. S.
12	Harwood & R. L. Hettich, (2008) Characterization of anaerobic catabolism
13	of p-coumarate in Rhodopseudomonas palustris by integrating
14	transcriptomics and quantitative proteomics. Mol Cell Proteomics 7: 938-
15	948.
16	Pitcher, R. S., T. Brittain & N. J. Watmough, (2002) Cytochrome cbb(3) oxidase
17	and bacterial microaerobic metabolism. <i>Biochem Soc Trans</i> 30 : 653-658.
18	Preisig, O., R. Zufferey & H. Hennecke, (1996) The Bradyrhizobium japonicum
19	fixGHIS genes are required for the formation of the high-affinity cbb3-type
20	cytochrome oxidase. Arch Microbiol 165: 297-305.
21	Quandt, J. & M. F. Hynes, (1993) Versatile suicide vectors which allow direct
22	selection for gene replacement in gram-negative bacteria. Gene 127: 15-
23	21.

1	Sitthisak, S., L. Knutsson, J. W. Webb & R. K. Jayaswal, (2007) Molecular
2	characterization of the copper transport system in Staphylococcus aureus.
3	Microbiology 153 : 4274-4283.
4	Willows, R. D. & A. M. Kriegel, (2008) Biosynthesis of bacteriochlorophylls in
5	purple bacteria. In: The Purple Phototrophic Bacteria. pp. 57-79.
6	Yim, H. H. & M. Villarejo, (1992) osmY, a new hyperosmotically inducible gene,
7	encodes a periplasmic protein in Escherichia coli. J Bacteriol 174: 3637-
8	3644.
9	
10	
11	