Supporting Information

Fumaroylamino-4,5-epoxymorphinans and related opioids with irreversible mu opioid receptor antagonist effects

Moynihan, Humphrey A.;¹ Derrick, Ian.;¹ Broadbear, Jillian H.;^{3*} Greedy, Benjamin M.;⁴ Aceto, Mario D.;² Harris, Louis S.;² Purington, Lauren C.S.;³ Thomas, Mark P.;⁴ Woods, James H.;³ Traynor, John R.;³ Husbands, Stephen M.;⁴ Lewis, John W.⁴

¹School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK; ²Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298; ³Department of Pharmacology, University of Michigan, MI 48109, USA; ⁴Department of Pharmacy and Pharmacology, University of Bath, BA2 7AY, UK

Contents:

- 1. S2-S4, Full experimental details
- 2. S5, Antagonist activity of 5a in the tail withdrawal assay

Experimental

Column chromatography was performed under gravity, over silica gel 60 (35-70 μ m) purchased from Merck. Analytical TLC was performed using aluminium-backed plates coated with Kieselgel 60 F₂₅₄, from Merck. The chromatograms were visualised using either UV light (UVGL-58, short wavelength), ninhydrin (acidic) or potassium permanganate (basic). Melting points were carried out using a Reichert-Jung Thermo Galen Kopfler block or a Gallenkamp MFB-595 melting point apparatus and are uncorrected. High and low resolution electron impact (EI) mass spectra were recorded using EI ionisation at 70eV, on a VG AutoSpec instrument, equipped with a Fisons autosampler. ¹H NMR and ¹³C NMR spectra were recorded using a JEOL 270 (operating at 270 MHz for ¹H and 67.8 MHz for ¹³C) spectrometer. Chemical shifts (δ) are measured in ppm. Spectra were referenced internally using TMS as the standard. Only diagnostic peaks have been quoted for proton NMR. Microanalysis was performed with a Perkin-Elmer 240C analyser. Infrared spectroscopy was performed on either a Perkin-Elmer 782 Instrument. Chemicals and solvents were purchased from Aldrich chemical company. Compounds were submitted for testing as their oxalate salts, formed by adding one equivalent of oxalic acid to an ethanolic solution of the ligand. Ligands were > 95% pure by microanalysis.

N-Cyclopropylmethyl-7,8-dihydro-14 β -[3'-(methoxycarbonyl)propenamido]normorphinone (2a)

A suspension of 14β-amino-N-cyclopropylmethyl-7,8-dihydronormorphinone (**8**) (1.19g, 3.48 mmol), methyl 3-(chlorocarbonyl)propanoate (681 mg, 4.59 mmol) and sodium carbonate (450 mg) in THF (27 mL) and water (3 mL) was stirred at r.t. for 2.5 h. Water (20 mL) was then added and the reaction mixture extracted with CH₂Cl₂ (2 x 50 mL). The extracts were combined, dried (MgSO₄), filtered and evaporated to dryness before column chromatography (silica gel, CH₂Cl₂:CH₃OH 19:1) to give the product as a white solid (1.27 g: 81%); m.p. 228-231°C; IR (CHCl3) 3564, 3311, 1722, 1678, 1644 cm⁻¹; ¹Hnmr δ 0.19 (2H, m, NCH₂CH(CHHCHH)), 0.59 (2H, m, NCH₂CH(CHHCHH)), 0.88 (1H, m, NCH₂CH(CH₂CH₂)), 3.82 (3H, s, CH3), 4.98 (1H, s, H-5), 6.60 (1H, d, J 8Hz, Aryl-H), 6.75 (1H, d, J 8Hz, Aryl-H), 6.87(1H, d, J 14Hz), 7.05 (1H, d, J 14Hz), 7.52 (1H, brs, NH); ¹³Cnmr δ 3.8, 4.1, 9.3, 21.5, 29.2, 29.9, 36.8, 44.1, 48.8, 52.2, 57.1, 59.2, 59.4, 89.7, 118.3, 119.8, 124.3, 128.0, 129.9, 137.5, 139.0, 143.5, 164.4, 166.2, 209.2; Anal. (oxalate salt) (C₂₇H₃₀N₂O₁₀.2H₂O) C, H, N.

N-Cyclopropylmethyl-7,8-dihydro-14 β -[3'-(methoxycarbonyl)propanamido]normorphinone (6)

A suspension of N-cyclopropylmethyl-7,8-dihydro-14 β -[3'-methoxycarbonyl)propenamido]normorphinone oxalate (2a) (203 mg, 0.35 mmol) and 10% Pd/C (150 mg) in CH₃OH (30 mL) was hydrogenated at 15 psi until H₂ uptake ceased. The catalyst was removed by filtration through celite and the filtrate evaporated. The residue was purified by column chromatography (CH₂Cl₂:CH₃OH, 19:1) to give **6** as a clear oil (98 mg, 62%). IR (CHCl₃) 3562, 3325, 1726, 1672 cm⁻¹; ¹H nmr δ 0.20 (2H, m, NCH₂CH(CHHCHH)), 0.54 (2H, m, NCH₂CH(CHHCHH)), 0.85 (1H, m, NCH₂CH(CH₂CH₂)), 3.70 (3H, s, OCH₃), 4.85 (1H, s, H-5), 6.58 (1H, d, J 10Hz, Aryl-H), 6.72 (1H, d, J 10Hz, Aryl-H), 7.16 (1H, s, NH); ¹³C nmr δ 3.7, 4.1, 9.3, 21.6, 29.2, 29.7, 31.5, 34.5, 36.8, 44.3, 48.6, 51.9, 56.3, 59.3, 59.9, 89.7, 118.1, 119.6, 124.1, 128.3, 139.1, 143.6, 172.6, 173.6, 208.6; EIMS 454 (M+, 100%); Anal. (oxalate salt) (C₂₇H₃₂N₂O₁₀.1.5H₂O) C, H, N.

3-O-(tert-butyldimethylsilyl)-N-cyclopropylmethyl-7,8-dihydro-14 β -[3'-(methoxycarbonyl)propenoyloxy]normorphinone (10)

A solution of 3-O-(tert-butyldimethylsilyl)naltrexone (9)²⁵ (690 mg, 1.5 mmol) and monomethyl fumaroyl anhydride (630 mg, 2.60 mmol) in dry toluene (12 mL) was heated to reflux under N₂ for 3 h. After cooling the reaction mixture was washed with dilute NaHCO₃ (aq.) (2 x 5 mL) and water (5 mL), dried (MgSO₄), filtered and the solvent evaporated. The residue was purified by silica gel column chromatography (CH₂Cl₂:CH₃OH, 49:1) to yield () as a pale yellow solid (597 mg, 69%). IR (CHCl₃) 1715 cm⁻¹; ¹H nmr δ 0.03 (2H, m, NCH₂CH(CHHCHH)), 0.19 (3H, s, SiCH3), 0.29 (3H, s, SiCH3), 0.45 (2H, m, NCH₂CH(CHHCHH)), 0.68 (1H, m, NCH₂CH(CH₂CL₂)), 1.01 (9H, s, 3 x CH₃), 3.83 (3H, s, OCH₃), 4.72 (1H, s, H-5), 6.56 (1H, d, J 10 Hz, Aryl-H), 6.65 (1H, d, J 10Hz, Aryl-H), 6.90 (1H, d, J 16Hz); ¹³C nmr \mathbb{P} -4.7, -4.5, 3.8, 3.9, 9.5, 18.2, 23.2, 25.7, 26.9, 30.4, 35.5, 43.8, 51.0, 52.3, 55.2, 59.2, 84.1, 89.4, 119.3, 122.6, 126.0, 128.4, 133.0, 135.1, 138.0, 146.7, 163.6, 165.4, 206.4; EIMS 567 (M+, 99%); Anal. (oxalate salt) (C₃₁H₄₁NO₇Si) C, H, N.

N-Cyclopropylmethyl-7,8-dihydro-14 β -[3'-(methoxycarbonyl)propenoyloxy]normorphinone (3a)

A solution of 3-O-(tert-butyldimethylsilyl)-N-cyclopropylmethyl-7,8-dihydro-14 β -[3'-(methoxycarbonyl)propenoyloxy]normorphinone (**10**) (570 mg, 1.00 mmol) and 6M HCl (1.2 mL) in methanol (12 mL) was stirred at RT for 1 h, then neutralised (NaHCO₃) and all solvents then removed in vacuo. The residue was dissolved in CH₂Cl₂, filtered, dried (MgSO₄), filtered and the solvent again removed in vacuo. Silica gel chromatography (CH₂Cl₂:CH₃OH, 24:1) yielded **3a** as a clear oil (166 mg, 37%). IR (CHCl₃) 3567, 1723 cm⁻¹; ¹H nmr δ 0.05 (2H, m, NCH₂CH(CHHCHH)), 0.48 (2H, m, NCH₂CH(CHHCHH)), 0.72 (1H, m, NCH₂CH(CH₂CH₂)), 3.82 (3H, s, CH3), 4.98 (1H, s, H-5), 6.62 (1H, d, J 10Hz, Aryl-H), 6.76 (1H, d, J 10Hz, Aryl-H), 6.92(1H, d, J 16Hz), 7.02 (1H, d, J 16Hz); ¹³C nmr δ 3.7, 4.0, 9.27, 23.1, 25.7, 27.0, 30.0, 35.6, 43.9, 51.2, 55.3, 59.2, 84.1, 89.9, 118.5, 120.0, 124.5, 127.9, 133.0, 135.1, 139.2, 143.5, 163.7, 165.5, 208.5; EIMS 453 (M+, 100%); Anal. (oxalate salt) (C₂₇H₂₉NO₁₁.3H₂O) C, N, requires H 5.90, found H 5.32.

N-Cyclopropylmethyl-6,14-endoethano-7 α -(methoxyfumaroylamino)tetrahydronororipavine (4a)

To a solution of 7α -amino-N-cyclopropylmethyl-6,14-endoethanotetrahydronororipavine (**11a**) (0.43 g, 1.1 mmol) in dry CH₂Cl₂ (100 mL) was added triethylamine (0.45 g, 4.5 mmol). To this mixture, under N₂, was added a solution of methyl-(3-chloroformyl)acrylate (0.16 g, 1.1 mmol) in CH₂Cl₂ (10 mL) dropwise over 45 min, stirring was continued for 1 h before removal of the solvent in vacuo. Purification by column chromatography (CH₂Cl₂:CH₃OH:NH₃(conc.), 94:5:1) gave **4a** (0.35 g, 63%); IR (CHCl₃) 3410, 1723 cm⁻¹; ¹H nmr δ 0.08 (2H, m, NCH₂CH(CHHCHH)), 0.45 (2H, m, NCH₂CH(CHHCHH)), 3.33 (3H, s, CO₂CH₃), 3.82 (3H, s, 6-OCH₃), 4.60 (1H, s, H-5), 6.52 (1H, d, J 8Hz, 1-H), 6.70 (1H, d, J 8Hz, 2-H), 6.89 (1H, d, J 16Hz, C=CH), 7.11 (1H, d, J 16Hz, C=CH); ¹³C nmr δ 3.6, 3.7, 9.3, 19.8, 22.8, 28.6, 35.0, 35.4, 37.1, 43.4, 45.6, 45.9, 49.8, 52.3, 58.4, 59.9, 76.3, 76.9, 87.9, 117.1, 119.8, 127.4, 129.7, 132.0, 137.0, 137.8, 145.6, 163.8, 166.7; EIMS 494 (M+, 100%); EI-HRMS calc. for C₂₈H₃₄N₂O₆ 494.24169, found 494.24081; Anal. (oxalate salt) (C₃₀H₃₆N₂O₁₀.2.5H₂O) C, H, N.

N-Cyclopropylmethyl-6,14-endoethano-7α-(methoxyfumaroylaminomethyl)tetrahydronororipavine (5a)

A solution of 7 α -aminomethyl-N-cyclopropylmethyl-6,14-endoethano-tetrahydronororipavine (**11b**)⁴ (0.22g, 0.55 mmol) was treated as described for **4a** (above) to yield, after column chromatography (CH₂Cl₂:CH₃OH:NH₃(conc.), 94:5:1) **5a** (0.13 g, 48%); IR (CHCl₃) 3578, 3387, 1725, 1672 cm⁻¹; ¹H nmr δ 0.14 (2H, m, NCH₂CH(CHHCHH)), 0.50 (2H, m, NCH₂CH(CHHCHH)), 3.57 (3H, s, 6-OCH₃), 3.82 (3H, s,

CH₃), 4.46 (1H, s, H-5), 6.50 (1H, d, J 8Hz, 1-H), 6.69 (1H, d, J 8Hz, 2-H), 6.96 (3H, m, CH=CH and CONH); EIMS 467 (M+, 100%); EI-HRMS calc. for $C_{29}H_{36}N_2O_6$ 508.25734, found 508.25657; Anal. (oxalate salt) ($C_{31}H_{38}N_2O_{10}.1.5H_2O$) C, H, N.

Microanalysis data

	С		Н		N	
Compound	Calc'	Found	Calc'	Found	Calc'	Found
2a .oxalate.2H ₂ O	56.1	56.3	5.92	5.83	4.84	4.70
3a .oxalate.3H ₂ O	54.3	54.0	5.90	5.32	2.34	2.33
4a .oxalate.2.5H ₂ O	57.2	57.2	6.52	6.16	4.45	4.47
5a.oxalate.1.5H ₂ O	59.5	59.2	6.56	6.29	4.48	4.42
6 .oxalate.1.5H ₂ O	56.7	56.7	6.17	6.28	4.90	4.42

Antagonist activity of 32 mg/kg 5a after 24 h and 30 min pretreatment on morphine antinociceptive activity in the mouse warm water tail withdrawal assay (55°C)

