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Appendix: Local mean field theory for selective adaptation

Here we discuss a formalism to understand the dynamics of global infection level and links for selective
adaptation. We define the ‘spin variable’ σn = {0, 1} to denote the susceptibles (0) and infected (1) indi-
viduals of node n (= 1, 2 . . . , N). The fraction of infected individuals for any configuration is

∑
n σn/N .

In the mean field approach, only its average is kept, so we simply replace 1
N 〈
∑
n σn〉 → φ.

Meanwhile, a network is uniquely specified by the adjacency matrix amn = {0, 1}, representing the
absence or presence of the (undirected) link between nodes m and n. The degree of node n is then given
by kn = Σmanm so that the familiar degree distribution is given by ρ (k) = Σnδ(kn − k)/N . As we have
two kinds of nodes, let us define two separate degree distributions, for the S’s and the I’s:

ρS(k) =
1

N (1− φ)

∑
n

(1− σn)δ(kn − k)

ρI(k) =
1

Nφ

∑
n

σnδ(kn − k). (A1)

Note that each is normalized, so that ρ (k) = (1− φ) ρS (k) + φρI (k). Observe that the average of∑
m,n amn/2N is 〈k〉/2, which is, in a network with preferred degree, just κ/2.
Let lSI , lSS , lII denote these averages per node, respectively:

lSI =
1

2N

∑
m,n

[(1− σm)amnσn + σmamn(1− σn)]

lSS =
1

2N

∑
m,n

σmamnσn

lII =
1

2N

∑
m,n

(1− σm)amn(1− σn). (A2)

Thus, we should have
lSI + lSS + lII = 〈k〉/2. (A3)

Turning to dynamics, the equation for φ is given, in the mean field approximation, by:

dφ

dt
= −µφ+ λlSI . (A4)

The dynamical equations for these links are more involved. For ease of understanding, we split the
link equations into three parts, separating effects of node dynamics (infection, recovery) and network
adaptations [1].

Node Dynamics: When the network topology is fixed, but the state of nodes are changing due to
infection and recovery process, equations for the links can be written as:

dlSI
dt

= λ

[
2
lSSlSI
1− φ

− l2SI
1− φ

− lSI
]
− µ [lSI + 2lII ] (A5a)

dlSS
dt

= −2λ
lSSlSI
1− φ

+ µlIS (A5b)

dlII
dt

= λ

[
l2SI

1− φ
+ lSI

]
− 2µlII . (A5c)

Here we have used the standard moment closure approximation for triplets labc = lablbc/lb, with a, b, c
being S or I. [2,3]. The term lSSI ≈ lSI lSS

1−φ in Eq. A5a (b) corresponds increase (decrease) SI (SS) links
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due to [SSI] triplet. lISI ≈ l2SI

1−φ corresponds to decrease in SI (increase in II) link. In both infection
and recovery process, the total number of links is conserved.

Network Adaptations: But, our links are also being created and cut, at a rate ra relative to the node
dynamics, according to the rules of selective adaptation described in section III.C. Thus, we must add
such terms to the dl/dt equations. Within the spirit of mean field theory, these are given by

1

ra

dlSI
dt

=
∑
k

(1− φ)ρS(k) [Θ(κ− k)p̃SI −Θ(k − κ)pSI ] +
∑
k

φρI(k) [Θ(κ− k)p̃IS −Θ(k − κ)pIS ]

1

ra

dlSS
dt

=
∑
k

(1− φ)ρS(k) [Θ(κ− k)p̃SS −Θ(k − κ)pSS ]

1

ra

dlII
dt

=
∑
k

φρI(k) [Θ(κ− k)p̃II −Θ(k − κ)pII ] . (A6)

To simplify, we absorb the sums of k into simplified expressions:

Σ−
S ≡

∑
k

ρS(k)Θ(k − κ)(−1),

Σ+
S ≡

∑
k

ρS(k)Θ(κ− k)(+1),

ΣS ≡ Σ+
S + Σ−

S =
∑
k

ρS(k)sgn(κ− k),

ΣI ≡
∑
k

ρI(k)sgn(κ− k). (A7)

To continue, we approximate the local degrees of the susceptibles by the global averages. For the suscepti-
bles we replace (kS , kI)→ (lSS , lSI) so that the probabilities in Eq. 7, 8 of main text become independent
of k

pSI = 1− pSS →
γlSI

γlSI + lSS
; p̃SS = 1− p̃SI →

γlSS
γlSS + lSI

. (A8)

Similarly, for the infected, we use kS → lIS(= lSI), kI → lII so that

pIS = 1− pII = p̃IS = 1− p̃II →
lSI

lSI + lII
(A9)

Since the degree distributions also vary with time, the sums in Eq. A7 cannot be expressed in terms
of the mean field variables (φ, lSI , lSS , lII) on which we have chosen to focus. To proceed, we make a
further (drastic) assumption, that each ρ can be approximated by the Laplacian distribution of Section
II.A, around the instantaneous κ (φ). Technically, this assumption gives rise to an unphysical constraint,
namely, symmetric degree distributions conserves the total number of links. But, this contradicts Eqn.
(A3), since κ(φ(t)) cannot be a constant. To ensure that, during adaptations, lSI + lSS + lII = κ(φ)/2 is
satisfied, we introduce an auxiliary ‘damping’ field:

η = −ra(lSI + lSS + lII − κ(φ)/2) (A10)

into the evolution equations of the l’s. With these modifications, the final set of mean field equations for
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the links (including recovery, infection and network adaptation process) read:

dlSI
dt

= αη + ra
[
(1− φ)

(
p̃SIΣ

+
S + pSIΣ

−
S

)
+ φpISΣI

]
− µlSI + 2µlII + 2λ

lSSlSI
1− φ

− λ l2SI
1− φ

− λlSI

dlSS
dt

= (1− α− β)η + ra(1− φ)
(
p̃SSΣ+

S + pSSΣ−
S

)
+ µlSI − 2λ

lSSlSI
1− φ

dlII
dt

= βη + raφpIIΣI − 2µlII + λ
l2SI

1− φ
+ λlSI , (A11)

where the ‘damping coefficients’ α, β are somewhat arbitrary. They must be chosen to model the fact
that, as the infection rages, SI and II links should decrease while SS links should increase. Thus, we
impose α, β > 0 and α+β > 1. The link equations in A11 along with the node Eqn.A4 and fear function
Eq. 5 in main text forms the set of mean field equations for selective adaptations.

We evolve the mean field equations numerically and obtain the stationary state infection and links.
The time of evolution varied from 500-1000 units for reaching steady state. We chose α = 1.0, β = 0.5,
λ/µ ∈ [0, 2] and a range of initial infections so as to find the various stable fixed points shown in the text.
The remaining parameters are the same as those used for Monte-Carlo simulations.
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