The signal transducers STAT5 and STAT3 control expression of Id2 and E2-2 during dendritic cell development

Haiyan S. Li, Cliff Y. Yang, Kalyan Nallaparaju, Huiyuan Zhang, Yong-Jun Liu, Ananda W. Goldrath and Stephanie S. Watowich

Supplementary information

Figure S1. Sorting strategy for CDPs, pDCs, spleen and liver DC subsets.

CDPs (lin⁻ CD117^{lo} CD115⁺ Flt3⁺) and pDCs (CD11c⁺ CD11b⁻ B220⁺ PDCA-1⁺) were sorted from BM cells following MACS-mediated depletion of lineage marker- (Gr1, CD11b, CD3, CD19, F4/80 and Ter-119) positive cells, using the indicated strategy. CD8 α^+ (CD11c⁺ B220⁻ CD4⁻ CD8 α^+), CD4⁺ (CD11c⁺ B220⁻ CD4⁺ CD8 α^-), and CD4⁻ CD8 α^- (CD11c⁺ B220⁻ CD4⁻ CD8 α^-) DCs were isolated from splenocytes following MACSmediated depletion of lineage marker- (Gr1, CD3, CD19, F4/80 and Ter-119) positive cells. CD103⁺ (CD11c⁺ B220⁻ CD103⁺ MHCII⁺) DCs were isolated from 37%/70% Percoll-enriched liver mononuclear cells following collagenase digestion.

Figure S2. Characterization of hematopoietic-Stat5^{Δ/Δ} mice.

(A) Bone marrow cells were isolated from hematopoietic-*Stat5*^{Δ/Δ} and *Stat5*^{+/+} mice. Whole cell lysates were analyzed by immunoblotting, using antibodies specific for total STAT5 or tubulin. Results from 2 independent animals of each genotype are shown. (B) Hematologic parameters and WBC differential counts of hematopoietic-*Stat5*^{Δ/Δ} and *Stat5*^{+/+} mice, determined by automated counting.

Figure S3. Analysis of LN CD103⁺ DCs.

Peripheral (LN) and mesenteric (mLN) lymph nodes were isolated from hematopoietic-Stat5^{Δ/Δ} and Stat5^{+/+} mice. Single cell suspensions were stained with antibodies for DC surface markers and analyzed by flow cytometry. MHC II and CD103 expression was analyzed within the CD11c⁺ B220⁻ population, and is shown as a percentage of total LN cells. Data are representative of 2 mice per group.

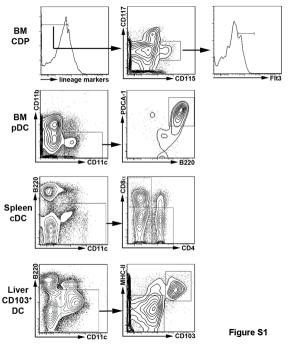
Figure S4. Characterization of DC marker expression.

(A) Hematopoietic-*Stat5*^{Δ/Δ} and *Stat5*^{+/+} mice were treated by HGT with GM-CSF plasmid or empty pORF vector, as indicated. At d 7, liver mononuclear cells were enriched as described in Figure S1, and CD103 expression was analyzed within the CD11c⁻ or CD11c⁺ B220⁻ populations, by flow cytometry, as shown. Data represent 2-6 mice/group. (B) Surface expression of CD24 and CD11b on CD103⁺ DCs isolated from mice treated by HGT with GM-CSF plasmid or empty pORF vector, as indicated. CD103⁺ DCs were defined as shown in Figure S1. (C) Liver CD103⁺ DCs were purified by FACS as described in Figure S1 and treated with GM-CSF ex vivo. Cells were collected at d 0, d 1 and d 2, as indicated, and analyzed for CD11b expression. Data are representative of 3 independent experiments.

Figure S5. Analysis of the murine *Id2* and *Tcf4* **promoter regions.** The sequences encoding 2kb immediately 5' of the transcription start sites (arrow) of the murine *Id2* and *Tcf4* genes were identified from the Ensemble database. Putative transcription factor binding sites (underlined) were predicted by analysis with AliBaba and TF search software programs. The location of primers used for H3 ChIPs (Figures 3C, 3D) are shown in orange (sense) and blue (antisense).

Figure S6. Regulation of histone H3 modifications at *Tcf4* **and** *Id2* **promoters.** (A) pDCs and CD11c⁺ CD11b⁺ DCs were isolated from mice that were unmanipulated (no HGT) or from animals following Flt3L or GM-CSF HGT, as indicated. Histone H3

modifications at the Id2 and Tcf4 proximal promoters in the vicinity of the STATconsensus sites were determined by ChIPs using antibodies against H3K9ac, H3K4me3 and H3K27me3. Results were normalized to ChIPs for total H3 and presented as mean + SEM. n=10-15. (B) pDCs were purified by FACS from BM cells cultured with Flt3L for 7 d, then stimulated with 5 µM CpGA for 0, 4, 8 and 16 h. *Id2* mRNA was analyzed by gPCR. (C, D) pDCs and CD11c⁺ CD11b⁺ DCs were isolated by FACS from HGT-treated hematopoietic-Stat5^{Δ/Δ} mice, hematopoietic-Stat3^{Δ/Δ} animals or appropriate controls, as indicated. Histone H3 modifications at the *Tcf4* and *Id2* proximal promoters in the vicinity of the STAT-consensus sites were determined by ChIPs using antibodies against H3K9ac, H3K4me3 and H3K27me3. Results were normalized to ChIPs for total H3 and presented as mean + SEM. n=10-15. (E) Whole cell lysates were generated from total BM cells isolated from hematopoietic-Stat5^{Δ/Δ} mice, hematopoietic-Stat3^{Δ/Δ} animals or appropriate controls. Expression of H3K4me3 and total H3 was determined by immunoblotting. (F) Hematopoietic-Stat5^{Δ/Δ} mice, hematopoietic-Stat3^{Δ/Δ} animals or appropriate controls were treated with GM-CSF or Flt3L HGT for 7 d, as indicated. The abundance of H3K4me3 at the Flt3, Gata-1, Irf8 and Gapdh promoters was analyzed in pDCs and cDCs as described in (C and D).


Figure S7. GM-CSF- and Flt3L-responsive expression of *Id2* and *Tcf4*.

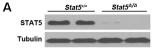
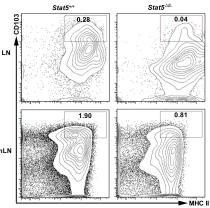

(A, B) CDPs from hematopoietic-*Stat3*^{Δ/Δ}, hematopoietic-*Stat5*^{Δ/Δ} mice and respective *Stat*^{+/+} controls were purified and cultured in vitro in the presence of Flt3L or GM-CSF, as indicated. *Id2* and *Tcf4* mRNA was determined by qPCR. (C) Hematopoietic-*Stat5*^{Δ/Δ} and *Stat5*^{+/+} mice were treated by HGT with GM-CSF or pORF vector, as indicated. After 2 d, *Tcf4* mRNA was measured in CDPs by qPCR.

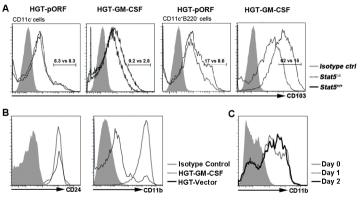
Figure S8. Characterization of D2SC/1 and D2SC/mFIt3 signaling responses to GM-CSF or FIt3L. (A) Expression of RFP and FIt3 in D2SC/1 or D2SC/mFIt3 cells was analyzed by flow cytometry. (B) *Id2* mRNA abundance was determined in D2SC/1 cells cultured with GM-CSF for 0, 2, 4 and 8 h; *Tcf4* expression was analyzed in D2SC/mFIt3 cells treated with FIt3L for 0, 2, 4 and 8 h. (C, D) STAT1, STAT3 and STAT5 activation was analyzed by immunoblotting to detect tyrosine-phosphorylated isoforms, using whole cell extracts from D2SC/1 and D2SC/mFIt3 cells stimulated with GM-CSF or FIt3L for 0.5, 2, 4 or 8 h, or left untreated, as indicated. IFN- γ , IL-6 or GM-CSF-stimulated whole cell extracts were used as positive controls for phosphorylated STAT1, STAT3 and STAT5, respectively. (E) ChIP assays were performed in D2SC/1 cells treated ± FIt3L for 1 h, using anti-STAT3 or IgG control antibody. Results are representative of 3 independent experiments.

Figure S9. Role for *Tcf4* in cytokine-driven DC development.

BM cells from $Tcf4^{+/-}$ or $Tcf4^{+/+}$ mice were cultured with Flt3L for 6 d. pDC and CD11c⁺ CD11b⁺ cDC generation was assessed within the CD11c⁺ population. n=8.



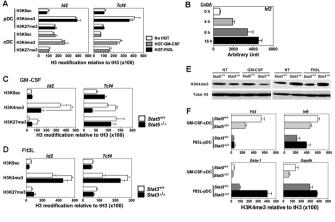
В


Hematologic parameters and WBC differential counts of hematopoietic Stat5^{4/4} mice

	Stat5 ^{+/+}	Stat5 ^{∆/∆}
Hematologic Parameters		
Hemoglobin (g/L)	152.7 <u>+</u> 6.5	147.3 <u>+</u> 1.7
Hematocrit (%)	53.8 <u>+</u> 2.4	50.0 <u>+</u> 2.4
WBC count (10 ⁹ /L)	3.91 <u>+</u> 0.73	4.66 <u>+</u> 0.69
RBC count (10 ¹² /L)	10.9 <u>+</u> 1.7	9.74 <u>+</u> 0.94
Platelet count (10 ⁹ /L)	1413 <u>+</u> 202.5	1233 <u>+</u> 64.3
WBC Differential Count		
Neutrophil (10 ⁹ /L)	0.92 <u>+</u> 0.15	1.19 <u>+</u> 0.20
Monocyte (10 ⁹ /L)	0.07 <u>+</u> 0.005	0.08 <u>+</u> 0.03
Basophil (10 ⁹ /L)	0.02 <u>+</u> 0.004	0.04 <u>+</u> 0.02
Lymphocyte (10 ⁹ /L)	3.14 <u>+</u> 0.97	3.32 <u>+</u> 0.61
Eosinophil (10 ⁹ /L)	0.07 <u>+</u> 0.02	0.09 <u>+</u> 0.04

Results represent Mean \pm SD of peripheral blood analysis of 4 hematopoietic Stat5^{4/a} mice and their littermate control (*Stat5^{*/+}*). WBC = white blood cell, RBC = red blood cell.

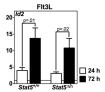
mLN



A /d2 promoter (mouse chr. 12; 25,782,957 - 25,780,957)

TACTOGTARCECCOTCTCTCACTCACTCACTTARCACTTCACAATCCCCCTTARAAATGACCTTTARAATGAATGCAAAAACTGG07A01
ARATGAATGCAARAACTGGGTAGTGTGCCARCAGAATCGGATTCAGCGCAGCTGGCAGACTGGACTG
ACTTTCACCATAITTAGCAAFTTTACTATATCAGGGTACAGGAATGGTCTTGGGAGAAGGGCGCCCATGCCGGGGCGCCGCCGGCGGGGGGGAGGGA
ACAGCGCTCATTATCATCCAGCCCAGGGCCTTTCTGTTGGGATAATGAGGCTGGCACGGGTGCTAACATACGOTGTCCTTGGAAAAAGCTAAGAATGCGTC
MUTA-1/MILA-1 MOTACCOCAGAGATGCAATGTCCAAGAATCATAAGTAATAATTGAGAATCCCAGAGATGTTTGTT
ACATCATGAACCAAAAOTGTCAAAACAAAATCTGTTCCGCTGTGGCACGTATGTGACAGAAACACATGCACACAAAGTACATCAAGAGGCTCGAACTGTTG
GOGGGGGGGGGGGCCTCAGATAGTAAATCACTTCCAGGCTTAATAACAGAGGCGAGTCGTCAATCGAACACTGTCGCTGAGTCGCAGGGGCATTGCAAGCC
TTGCCFTGCGCAGATTTTCCTGCAGGCCAGAGTCCTTCTCCAGTCTCCAAACTGAGATGGACGGATTTTACCGCCTCTACATCACCGGACTCTGCCTCCTT
AGAGAGAAGCCCTGGGGGCACATGGCTGTCACGAGGTCAGAGACCGCCCGGCCCACCAGCTGAGGAATTAATCATTAATTGAAGGGAAAATACTGTTT
TCCACACAGAGCITTGCCTGGAFTCTGCATCTTCCTCTTTATTGCATTCAGAGGGGGGGGGG
TATTTTTTTTCCTTTAATACACGACTAATATATGGTAGTCTTCAGCAAAACAAGAATTCAGAATTAAAGCATTGGAGTCAAGAGCTCTAAACTTTTTCAAA
ATOTOGCTGCATCTAGGAAGGGTGCTGAAAGATTCCAAACCTCGTACGTA
CACCTACCTGACAAAGAGCTTCCCAAGAGCTCTAAG7GTTGGAATGTGACACCAGAAATCACGGATTTGTGCATAATTAAT
CTGARGOGCACAGACCARGGCAGTGTATGTAATGTAGTTCCAGTGTGCARACCCCACTARTGACCTTCGATTAATGGAGTCATTATAGTAACCCTGCCT
CATTCTTGGGGGGGGGGGGGGGGGGGTCCCCGGGGTCCCTCGGGGCTCCGGGGCGGGGGG
GTTTCC0AGAAGGCCTCCCGCGTTGCTCCAAGTTGCAAAGCTTCACGCTAAACCTGTCGTGGACGTGTATGTGGGTAGGTTCCCCCCCC
CTTCCTTTATCTTAAAAGAAGGAACACTACAAAATGTGACTTCCCAAAAGCGCGCGC
CCTOTGACTTCCCOTCTGCTGCGGAGAGAGAGGGGGGGGGCGGGGGGGGGG
CAGCTCTG669AAT7669AATAA66C6666CACAATT6CACACTCA66CCCCCT666CGCCCC66C6CACACT6TACTCAATT6CCACCCCA6CT666CTCTC6
CCCGCTCCTCCCACCCTACAGGCATTGGCTGCGAACGCGGAAGAACCGAGAGCTCATACTCACCAATGGGAGAATTCGCCTGGTATGATGGACGGGAGCCC
TTCCACCAATGGCAATTCAGGGATGCCCGATTGAGCGGCCGAGGGCGAGTGCACATAAAAGACGCCCCGGCCCGGGCTGCGCGCTTCATTCTGAA

B Tcf4 promoter (mouse chr. 18; 69,502,146 - 69,504,146)


CACTCAGGAGGCTGAGGCAGGTGGATTTCTGTGTGAGTCAAAG
CCAGCCAGGTCTACTGAGCAAGTTCCAGGACAGCTGGGGCTCAACAGTAAATCCTGTCTCCGAACTGCCTCCTACCTGCAAGGGATAGCTGGAAAGCGGC
CATCTCCAAGCCACGAAAAGGAAGAGTCCTAGCAGAACCTGACCATGTTTGCACCCTAATCTCAGACTTTAGACTCTGGAACTGTGAAAAGTGAATGCCTT
TTOTOCAAGCCACCTOOTCTOTCTCCCCTOTOTTACAOTGOCCAGAOTTGACTAAGACACACACTCTOTATCAAGATACATAGOTTCTGGGGGGAATGTGTGAG
CCAAGGAAGCACCAAAGACTCACCCATTACACTAACTCTTTTATCTTTAAGCTTTACAGTGTCCTCTCAAACACCCCTTTTCTAAGGTGCTTCCAATTTCCA
AAAOTATAATTAGAAAGTACTTATCCTCTGACAGTTCAGGAAAAAACAAAGACGAACAACGACGCCCCCCCC
ACATTICCTTTTCTGATCAAAAAGGGGCCAGGAGAAAACGAAAAAGGGCACTAGACGGGGTGTTTCGATCCCAAACTTGATCAAACGGGGCCAGGAGAAAACGAGGCACTAGACGAGGGGTGTTTCGATCCCAAACTTGATCAACGGGGCCAGGAGAAAACGAGGCACTAGACGAGGGGTGTTTCGATCCCAAACTTGATCAACGGGGCCAGGAGAAAACGAGGCACTAGACGAGGGGGTGTTTCGATCCCAAACTTGATCAACGGGCACTAGACGAGGGCACTAGACGAGGGGGCGTGTTTCGATCCCAAACTTGATCAACGGGCACTAGACGAGGGCACTAGACGAGGGGCGGTGTTTCGATCCCAAACTTGATCAACGGGCACTAGACGAGGGCACTAGACGGGCGGTGTTTCGATCCCAAACTTGATCAACGGCACTAGACGAGGGCACTAGAGGGCACTAGACGAGGGGCGGTGTTTCGATCCCAAACTTGATCAACGGCACTAGACGAGGCACTAGACGAGGGCACTAGAGGGCACTAGACGAGGCACTAGACGAGGCACTAGACGAGGCACTAGACGAGGCACTAGACGAGGCACTAGACGAGGCACTAGACGAGGCACTAGACGAGGCACTAGAGGGCACTAGACGAGGCACTAGACGAGGCACTAGACGAGGCACTAGGAGGCACTAGGAGGCACTAGGAGGCACTAGGACGAGGGCACTAGGAGGAGGAGGAGGAGGAGGGCACTAGGAGGGCACTAGGAGGCACTAGGAGGCACTAGGGCACTAGGGCACTAGGAGGCACTAGGGCACTAGGGCACTAGGAGGCACTAGGGCACTAGGAGGCACTAGGGCACTAGGGCACTAGGGCACTAGGGCACTAGGGCACTAGGGCACTAGGAGGCACTAGGGAGGCACTAGGGCACTAGGAGGCACTAGGGGCACTAGGAGGCACTAGGGCACTAGGGGCACTAGGAGGCACTAGGGGCACTAGGAGGCACTAGGGCACTAGGGCACTAGGAGGAGGAGGAGGCACTAGGGGCACTAGGAGGAGGCACTAGGGGCACTAGGGGCACTAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGGCACTAGGGCACTAGGGCACTAGGGCACTAGGGGCACTAGGGGCACTAGGGCACTAGGGCACTAGGGCACTAGGGCACTAGGGCACTAGGGCACTAGGGCACTAGGGGCACTAGGGGCACTAGGGGCACTAGGGGGGGG
CTGGACAGATCATTTGCTCCCCCTGAATTCAGGAGGGGGAATCTTACAAACCTAAAAGGCATTTTTATGGGATTATCTAATCTAGCCTCTGCAT
NY 00 TTTATOGCAAAGOTCACTOGCATGGAOTCTGAGOTCACAOTOCTGATTGGAGGTAGAGCCAATGGAATATTTTTTCCTACGCCAATGCTTOTGATCTTTT
ATTACAGTGATTTTTTTCCCCCCCAGAGCCCTGTCGAGGGCCTTACTCTGAGAACCCAGAGATAATGTCTGTGATAATGCACTATAAAAGAGGTGGCTAAATGTAA
ORTA-1 UAXA-1/VAXA-2 AATATTATTTTAGGATGAAAAATGTGGGATGGAATGGGGGG
ACTCTCAAGTAAAACATCTCCAATGCGCCACGAOTTAAAATCAGAAGAATGAGACGTCTCCACTGCCAGATGGCTTGGGAACATGGGT GATA-2 GATA-1 GATA-1 GATA-2
GATA-2 GATA-1 GATA-1 GATA-1 GATA-2 GATA-1 GATA-2 GA
ggctgtggggtcaggatctgtgatatttcacttctgtgccggtgtaggtcaagtaaggatgtgaatggtactctaccttcaaggccagcatcaatat
GCCTACATTTGTGAAATTCTTAGAACACTGTCTGGATCAGAATAAGCTTTCTGTTGGGGGGACCCGGACACTATTTTTTGGATACGTGAGTTATCTACAATT
GARA-1 GCAAAFGTCTAGGGTTAGGGGTATCAGTAGGAGTCAGTAAGAAAATTAGGGATGGAAGCGGTATATTTCTATAGTAGTAGCCCTCACCTGATGCGGATCCATATAG GATA-2 GATA-2 GATA-2
GTATCTCAAAOTCCCATTGCTATTTGTTGAGGGGGGGGAAAAACAGGTTTTGAAAAGGTAATTGTTTGGCCCCAAATTGGAAGTTCCTGGTTTTTGGTCAAAGG GTAT-1/GATA-2
GATA-1/GATA-2 CATACGAGTCTTACATCAATAAAGGTAGACTTTGCACTAACCAAGTTCTCACACTCCCGGGAGCTTATAAAAGAAGGGGTGGGACCGAGAGGGGAGGGGGGGG
GGGACCCTCCTACTCTTCCAGCTCAGGGTCACGCTTGGCTTGGCGTGGCCTTTCCCCACACCGCCCCAAGCCGGCCTGAAAACTCTGCATCCACACGGCGGCCTGAAAACTCTGCATCCACACGGCCTGACAGGG
ACACTGCTGCATTGAGGCCCTCACGGCATCTTCCGGGCCTCCCGGCGAGGTCTTTCACGCTGCGGGAACAACGCTTTTGAGTCAGAGATCAAGGCCGGCC
GGGAACGGGGCGCCAAGCGCGCCCCGAAGCGGCCACCGACCGGCGG
CGCCATCTT06C66CCTCTCTA66C6CTCT0TTTACCACTCTAT66TC6C676CTCCC6CCCCCCCCCAGTCATT9TCT66T66A6CA6CC6C66C
GATA-2 CO-360C075TCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

A in vitro

B in vitro

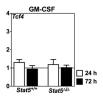
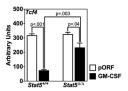
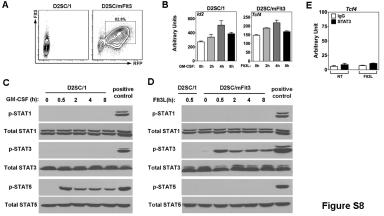




Figure S7

C in vivo

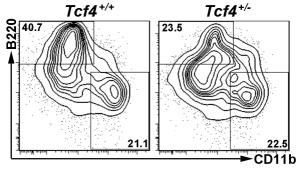


Table S1. Oligonucleotides used in this study.

Real-time PCR primers		
Tcf4 sense	AGACCAAGCTCCTGATTCTC	
Tcf4 antisense	AGGCTCTGAGGACACCTTCT	
ld2 sense	AAAACAGCCTGTCGGACCAC	
Id2 antisense	CTGGGCACCAGTTCCTTGAG	
<i>Tcf4</i> and <i>Id2</i> promoter cloning primers		
Tcf4 sense (Xhol)	ATCTCGAGTGAAGGTGGACTCTG	
Tcf4 antisense (HindIII)	ACAAGCTTGGCACTGCGGCTTAT	
Id2 sense (Xhol)	ATCTCGAGTGGCTGCATCTAGGAAG	
Id2 antisense (HindIII)	GCAAGCTTGCTTTCATGCTGCTCGT	
EMSA oligonucleotides		
Tcf4 sense	CCCTGGTTCCCGGAGGAGGCG	
Tcf4 antisense	CGCCTCCTCCGGGAACCAGGG	
<i>Id2</i> sense (distal)	CTGAGTTTCCGAGAAGGCCTC	
Id2 antisense (distal)	GAGGCCTTCTCGGAAACTCAG	
<i>Id2</i> sense (proximal)	TGTGACTTCCCAAAAGCGCGC	
Id2 antisense (proximal)	GCGCGCTTTTGGGAAGTCACA	
ChIP primers ¹		
Tcf4 sense	CTCTTCCAGCTCAGGGTCAC	
Tcf4 antisense	CTGCTCCACCAGACAATGAC	
ld2 sense	TGTGCAAACCCCACTAATGA	
Id2 antisense	CGCTTTTGGGAAGTCACATT	

¹ Primer sequences for the ChIP assays performed in Figures 3C and 3D are indicated in Figure S5.