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Supplement 1 
 

 
S1. Methods of computer simulation 
 

We assume that the thalamic output can be described by a single variable, the bursting 

rate of relay cells (in particular in nucleus reuniens). We know that NMDAR antagonist 

stimulates burst output of relay cells (1). However, there are no recordings yet of single-unit 

activity from nucleus reuniens in the presence of NMDAR blocker. We assume that this activity 

is the same as that of nRT cells, from which recordings have been made in the slice preparation 

(2). We model nRT cells as not bursting if the resting potential is above a critical threshold 

voltage. Both dopamine and NMDAR antagonists produce hyperpolarization (these influences 

sum linearly); once a critical hyperpolarization is reached, bursting is proportional to the 

additional hyperpolarization. We assume that bursts in relay cells are driven by bursts from nRT 

(relay cells will fire at the cessation of inhibitory input). The excitation of the hippocampus is 

proportional to the excitation from the thalamus and the feedback inhibition from hippocampal 

interneurons. The VTA fires in proportion to the sum of hippocampal input and a term that 

represents the effect of stress. The overall simulation involves coupling these equations to reveal 

the dynamics of the system as a whole.  

 

The hippocampal activity is described as a firing rate model (3). 

(1)  baselineIFHH
dt
d

H ++−= )(τ   

in which H represents the activity of the hippocampal principal cells, baseline is the basal 

activity, τr is a relaxation time constant, and F(I) is   

(2)  F(1) = Excitation + Inhibition   

The hippocampus receives excitatory inputs from the thalamus, which has activity R,  
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 (3)  Excitation = k1R  

We assume R is the bursting of the relay cells, which is triggered by hyperpolarization of 

membrane potential (V) (which deinactivate T-type Ca2+ channels; see 2.1 in the text). Bursting 

occurs when the membrane potential is hyperpolarized below a critical threshold level (Vth). 

      

(4)  )(3 VVkR th −= ,    when Vth >V   

      0= ,   otherwise 

V is hyperpolarized by dopamine (D) that is released from VTA and NMDAR antagonist 

(NMDARantagonist).   

(5)  )( 24
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in which KV and KA are half-maximum concentrations of dopamine and NMDAR antagonist, 

respectively.  

The hippocampal activity and the level of stress increase the amount of dopamine release.  

(6)  stresskHkD s+= 5
 

k1, k2, k3, k4, k5, ks, and kNR are unit conversion factors.       

Inhibitory input to the hippocampus (inhibition) is provided from inhibitory interneurons in the 

hippocampus that are excited by the principle cells. Inhibition keeps the level of hippocampal 

activity to the control level (C=0.045). 

(7)  
)(

)(
max CHGK

CHGIInhibition
I −+

−
−=                  

in which Imax is the maximum inhibition, G is a gain, and KI is a half-maximum activity of the 

controlled hippocampal activity. 

 

Parameters of the model are listed in Table S1. The numerical simulations were done 

with the fourth-order Runge-Kutta method using MATLAB (version 7.0, The MathWorks Inc.). 
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Table S1. Simulation parameters 

k1 14 

k2 1 

k3 1 

k4 -2 

k5 10 

kS 0.1 

kNR 0.05 

Imax 7 

G 100 

τr 1 

KI 5 

Kv 5 

KH 1 

KA 1 

baseline 0.05 

Vth -0.15 

C 0.045 

stress 0 (normal condition) 

NMDARantagonist 0 (normal condition) 
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Figure S1. Diagram of loop interactions in the computational model. Equations describe the 

factors that control firing in the region.  
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S2. Dopaminergic innervation of thalamus 

 

It was originally thought that the dopaminergic innervation of the thalamus is negligible, 

but later anatomical work provided strong evidence for such innervation (reviewed in (4)). As 

judged by dopamine and DAT immunoreactivity, the most dopamine-reach thalamic nuclei in 

primates are the mediodorsal and midline nuclei. Also strongly innervated is the nRT (5-7). The 

presence of D2-type DA receptors in some nuclei was reported in primates (8). Tracing studies 

suggest that the mediodorsal nucleus gets dopamine from meso-cortical system (VTA and dorsal 

portion of substantia nigra) (9). Other work suggests that virtually all dopaminergic nuclei 

project to the primate thalamus (7).  

 

 Dopaminergic innervation is also present in rats. Thalamic D1- and D2-type ligand 

binding was reported in multiple studies (10-13). Also, D1 (14), D5 (15), and D4 (16) protein 

immunoreactivity in thalamus was demonstrated. The strongest dopaminergic markers are 

present in the reticular nucleus (5). VTA supplies dopamine to a number of nuclei in the rat 

thalamus (anterodorsal, mediodorsal, centromedial, reuniens; reviewed in (4)). Later studies 

confirmed that nucleus reuniens (17) and mediodorsal nucleus (18) get afferents from VTA. The 

reticular nucleus gets dopamine mostly from substantia nigra compacta (19), but axons from 

VTA were also reported (20).  
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