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S.1 Parameter estimation in MESSM by EM al-

gorithm

If the state variables xit and the random effects bi and ri were observed, the MESSM

(3)-(4) would be recognized as a system of linear regressions, and the MLE for the

fixed effects θ, and the covariance matrices D, Q and R would be easily derived.

These estimators are constructed as follows.

Notice that F i can be decomposed as F i = F̃ +F
(f)
i +F

(r)
i where F̃ is a matrix con-

taining known entries in F i; F
(f)
i and F

(r)
i is the fixed and random effect component

of F i, respectively. Gi is handled the same way. We first rewrite the MESSM (3)-(4)

as

xit − (F̃ + F i
(r))xi,t−1 = (x′

i,t−1 ⊗ Ip)U1θ + vit, (S.1)

yit − (G̃+Gi
(r))xit = (x′

it ⊗ Iq)U2θ +wit, (S.2)



where U1 and U2 are defined before. Let

x∗
it = xit − (F̃ + F

(r)
i )xi,t−1,

y∗
it = yit − (G̃+G

(r)
i )xit,

ỹi = (x∗
i1
′, . . . ,x∗

ini

′,y∗
i1
′, . . . ,y∗

ini

′)′,

Πi =

 Ip ⊗Q 0

0 Iq ⊗R

 , and

Mi =
(
M i

(1)′ M i
(2)′

)′
=

(
U1

′(xi0 ⊗ Ini), · · · ,U1
′(xi,ni−1 ⊗ Ini) U2

′(xi1 ⊗ Ip), · · · ,U2
′(xini ⊗ Ip)

)′
.

If the xit and bi were observed, the MLE of θ, Q, R, and D would satisfy

θ̂ =

[
m∑
i=1

Mi
′Π̂

−1

i Mi

]−1 [ m∑
i=1

Mi
′Π̂

−1

i ỹi

]
, (S.3)

Q̂ =
1

s

m∑
i=1

ni∑
t=1

v̂itv̂
′
it, (S.4)

R̂ =
1

s

m∑
i=1

ni∑
t=1

ŵitŵ
′
it, (S.5)

D̂ =
1

m

m∑
i=1

bib
′
i, (S.6)

where v̂it = x∗
it − (xi,t−1

′ ⊗ Ip)U1θ̂, ŵit = y∗
it − (xit

′ ⊗ Iq)U2θ̂. By iterating

(S.3)-(S.5) one could find the estimates of θ, Q and R that satisfy these equations.

Equations (S.3)- (S.6) define the M-step in the EM algorithm. To establish the E-

step we need to to find the sufficient statistics for the complete data. Note that we

could separate the E-step and the M-step because of the normality assumption on

the MESSM (Dempster, Laird and Rubin, 1977).
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The log-likelihood function of the complete data (x,y, b) can be written as

l(θ,D,Q,R|x,y, b) ∝ −1

2

m∑
i=1

(
|Πi|+ (ỹi −M iθ)

′Π−1
i (ỹi −M iθ) + |D|+ b′iD

−1bi
)

= −1

2

m∑
i=1

(
|Πi|+ (ỹ′

iΠ
−1
i ỹi − 2θ′M i

′Π−1
i ỹi + θ′M i

′Π−1
i M iθ)

)
−1

2

m∑
i=1

(|D|+ tr(bib
′
iD

−1)).

The term Mi
′Π̂

−1

i Mi in the log-likelihood function can be written explicitly as

U ′
1(x

−
i

′
x−
i ⊗ Q̂

−1
)U 1 +U ′

2(xi
′xi ⊗ R̂

−1
)U 2 (S.7)

with xi
′ = (xi1,xi2, . . . ,xini

), and x−
i

′
= (xi0,xi1, . . . ,xi,ni−1). Similarly,Mi

′Π̂
−1

i ỹi

can be written as

U ′
1(Ip ⊗ Q̂

−1
)vec(xi

∗′x−
i ) +U ′

2(Iq ⊗ R̂
−1
)vec(yi

∗′xi) (S.8)

with xi
∗′ = (x∗

i1,x
∗
i2, . . . ,x

∗
ini
) and yi

∗′ = (y∗
i1,y

∗
i2, . . . ,y

∗
ini
). Plugging (S.7) and

(S.8) into the log-likelihood function, it can be seen that we need to evaluate the

conditional expectations for the following matrices:

xi
′, x−

i

′
, xi

′xi, x−
i

′
x−
i ,xi

′x−
i ,

F
(r)
i x−

i

′
, F

(r)
i x−

i

′
x−
i , F

(r)
i x−

i

′
xi, F

(r)
i x−

i

′
x−
i F

(r)
i

′
,

G
(r)
i xi

′, G
(r)
i xi

′xi, G
(r)
i xi

′xiG
(r)
i

′
, and bibi

′. (S.9)

Unfortunately, unlike in the EM algorithm for the standard state space models (Wat-

son and Engle, 1983), the conditional expected values of the above matrices for

MESSM can not be computed using an efficient algorithm such as the Kalman fil-

ter. However, numerical methods can be used to estimate the conditional expec-
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tations. This approach is known as the stochastic EM algorithm (McLachlan and

Krishnan, 1997). Under mild conditions the stochastic EM algorithm converges to

the local maxima of the likelihood function (Delyon, Lavielle and Moulines, 1999).

Let Λ = (θ,Q,R,D) be the collection of the parameters. The Gibbs sampler dis-

cussed in Section 4.1. can be modified to draw samples from the distributions of xit

and bi conditional on the observations y and the current estimate Λ̂
(k)
. Specifically,

one can derive the full conditional distributions p(xit|bi,y, Λ̂
(k)
) and p(bi|xit,y, Λ̂

(k)
),

and draw Gibbs samples x
(j)
it and b

(j)
i (j = 1, . . . , J). Then the conditional expec-

tations can be evaluated based on these samples. Taking the matrix bibi
′ in (S.9)

as an example, E(bibi
′|y, Λ̂

(k)
) ≈ 1

J

∑J
j=1 b

(j)
i b′i

(j)
. Note that at the final iteration of

the EM algorithm the Gibbs samples for bi generated in the E-step can be used to

estimate the random effects bi.

The EM algorithm for the mixed-effects state space models is now fully defined. In the

E-step the samples for xit and bi are drawn from the Gibbs sampler, and the condi-

tional expectations of the matrices in (S.9) are computed. In the M-step the estimates

of θ, Q and R are updated by solving Equations (S.3)-(S.5) and the estimate of D is

directly updated from the E-step outputs, i.e. D̂
(k+1)

= E( 1
m

∑m
i=1 bib

′
i|y, Λ̂

(k)
). As

suggested in Watson and Engle (1983) it is not necessary to iterate between (S.3)-

(S.5) during each M-step. Instead, one can use Q̂
(k)

and R̂
(k)

to construct θ̂
(k+1)

in

(S.3), and then use θ̂
(k+1)

to create Q̂
(k+1)

and R̂
(k+1)

. Upon convergence of the EM

algorithm, the final parameter estimates will satisfy (S.3)-(S.6) by construction.
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S.2 Simulation Study: Univariate Model

We carried out simulation studies using the two estimation methods discussed in

Section 4 for the following univariate MESSM

xit = θixi,t−1 + vit, vit ∼ i.i.d. N(0, Q), (S.10)

yit = xit + wit, wit ∼ i.i.d. N(0, R), (S.11)

θi = θ + bi, bi ∼ N(0, D), i = 1, . . . ,m. (S.12)

Note that model (S.10)-(S.12) can be recognized as a mixed-effects AR(1) model with

measurement errors. Formulation of the mixed-effects AR(p) models with measure-

ment errors is also straightforward under the framework of MESSM. These models

are a natural extension of the measurement error AR(p) models (Staudenmayer and

Buonaccorsi, 2004) in the context of longitudinal studies.

We set θ = 0.8057, D = 0.04, Q = 1.44 and R = 1 for the simulation studies.

θ was chosen based on the results of Wu and Ding (1999) for the late stage of HIV

dynamics. D was close to the between-subject variation in the real data example blow.

The variances Q and R were selected to make the Filter Input Signal to Noise Ratio

(FISNR) (Anderson and Moore, 1979) close to 3:2. Data yit were generated from the

model (S.10)-(S.12) with m = 20 or 60, and n = 10 or 30 (n1 = n2 = . . . = nm = n)

. We assumed the following priors for the Bayesian approach

θ ∼ N(η,∆), D−1 ∼ G(β0, β1), Q
−1 ∼ G(ν0, ν1), R

−1 ∼ G(ω0, ω1), xi0 ∼ N(τ, A).(S.13)

Here G(., .) stands for the Gamma distribution. The full conditional distributions
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can be derived as

p(θi|x,y, θ,D,Θ−i, Q,R) ∼ N

(
D

∑ni

t=1 xi,t−1xit + θQ

D
∑ni

t=1 X
2
i,t−1 +Q

,
QR

D
∑ni

t=1 X
2
i,t−1 +Q

)
,

p(θ|x,y, D,Θ, Q,R) ∼ N

(
∆
∑m

i=1 θi + ηD

D +m∆
,

D∆

D +m∆

)
,

p(xit|y,xi,k ̸=t, θ,D,Θ, Q,R) ∼ N

(
θiR(xi,t−1 + xi,t+1) +Qyit

(1 + θ2i )R +Q
,

QR

(1 + θ2i )R +Q

)
,

p(xi0|y,xi,k ̸=0, θ,D,Θ, Q,R) ∼ N

(
Qτ + Aθixi1

Q+ θ2iA
,

QA

Q+ θ2iA

)
,

p(xini
|y,xi,k ̸=ni

, θ,D,Θ, Q,R) ∼ N

(
θiRxi,ni−1 +Qyini

R +Q
,

QR

R +Q

)
,

p(D−1|x,y, θ,Θ, Q,R) ∼ G

(
β0 +

m

2
, β1 +

∑m
i=1(θi − θ)2

2

)
,

p(Q−1|x,y, θ,Θ, R,D) ∼ G

(
ν0 +

s

2
,
ν1 +

∑m
i=1

∑ni

t=1(xit − θixi,t−1)
2

2

)
,

p(R−1|x,y, θ,Θ, Q,D) ∼ G

(
ω0 +

s

2
,
ω1 +

∑m
i=1

∑ni

t=0(yit − xit)
2

2

)
.

We specified the priors by setting η = 0.5, ∆ = 4, β0 = 0.5, β1 = 0.0001, ν0 = 0.5,

ν1 = 0.5, ω0 = 0.5, ω1 = 0.5, τ = 20, and A = 100. Under this set-up the prior

distributions for D, Q and R were improper priors.

The simulation studies were performed on a Dell Dimension 4600 with 3.0G Hz CPU

and 1GB memory. All programs were written in C++. We simulated 100 replicates,

and for each replicate 20000 Gibbs samples were generated for both the Bayesian

approach and the EM algorithm. With 60 subjects and 30 observations the Bayesian

approach required about 24 seconds for each replicate. The EM algorithm was much

slower: for each replicate, around 60 iterations were required for convergence with

each iteration consuming about 38 seconds. Thus the overall computational cost of

the EM algorithm was about 95 times as much as the Bayesian approach for this

example.
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Table S1. Parameter estimation for the univariate model using the Bayesian
approach and the EM algorithm. 100 replicates were simulated. m = 20, 60 and

n = 10, 30.
m 20 60
n 10 30 10 30

B EM B EM B EM B EM

θ̂ Mean 0.8023 0.7908 0.8051 0.7893 0.8067 0.7923 0.8044 0.79
Bias -0.0034 -0.0149 -0.0006 -0.0164 0.001 -0.0134 -0.0013 -0.0157
MSE 0.0016 0.0004 0.0014 0.0003 0.0004 0.0002 0.0005 0.0002
RE 0.0496 0.0236 0.0464 0.0217 0.0248 0.0174 0.0278 0.0195

D̂ Mean 0.0512 0.0387 0.045 0.0376 0.0476 0.0354 0.0443 0.0345
Bias 0.0112 -0.0013 0.005 -0.0024 0.0076 -0.0046 0.0043 -0.0055
MSE 0.0009 0.0002 0.0007 0.0001 0.0004 0.00005 0.0001 0.00006
RE 0.75 0.3381 0.6614 0.2817 0.5 0.1739 0.25 0.1937

Q̂ Mean 1.4456 0.0801 1.4819 1.1278 1.4513 0.019 1.4553 1.1245
Bias 0.0056 -1.3599 0.0419 -0.3122 0.0113 -1.421 0.0153 -0.3155
MSE 0.2172 1.8913 0.0592 0.1321 0.0758 2.0197 0.0376 0.1139
RE 0.3236 0.955 0.1689 0.2524 0.1912 0.9869 0.1347 0.2343

R̂ Mean 1.0474 2.273 0.9871 1.1425 1.0148 2.3428 0.9914 1.1845
Bias 0.0474 1.273 -0.0129 0.1425 0.0148 1.3428 -0.0086 0.1845
MSE 0.1832 1.733 0.0583 0.0478 0.0695 1.8329 0.0185 0.0474
RE 0.428 1.3164 0.2415 0.2186 0.2636 1.3538 0.136 0.2177

Table S1 shows the results of parameter estimation by the Bayesian approach and

the EM algorithm. In this table RE =
√
MSE/(True Parameter) represents the

relative error. The Bayesian estimates of θ, D, Q and R were very good in all cases.

For a fixed number of subjects, increasing the number of observations from 10 to 30

improves the estimation of D in the Bayesian approach: for m = 20, the relative

errors of D̂ for n = 10 and n = 30 were relatively close at 0.75 and 0.66 respectively;

for m = 60 the relative errors were significantly reduced by larger n (0.5 and 0.25

for n = 10 and n = 30 respectively). Furthermore, the relative error of D̂ improved

noticeably as the number of subjects increased from 20 to 60. On the other hand, the

EM algorithm gave good estimates for θ and D in all cases, but the estimates for Q

and R were not as good as their Bayesian counterparts. The estimates for Q and R

were especially poor for n = 10, and were significantly improved as n was increased to

30: for example, for m = 60 the relative errors for R̂ were 1.35 and 0.218 for n = 10
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and n = 30, respectively.
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Figure S1. Model checking plots for the HIV dynamic application study. The plots
of fitted value vs data, QQ plots of residual and density plots of individual estimates
from the Bayes method (left panel) and the EM algorithm (right panel) are given,

respectively.
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