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1. Synthetic Procedures 

Acronyms used for reagents:   

CDI: 1,1´-carbonyldiimidazole 
DMF: Dimethylformamide  
DCM: Dichloromethane  
MeOH: Methanol  
TEA: Triethanolamine 
TFA: Trifluoroacetic acid 

 

1.1. Synthetic procedures for building blocks 

The synthetic precursors [PtCl2(en)] (S11), cisplatin (S12), and rac-1,3-diaminopropan-2-ol 
(S13),[1] 9-phenoxyacridine (S1),[2] and building blocks N1-(acridin-9-yl)-N2-methylethane-1,2-
diamine (A1),[2] and N1-(acridin-9-yl)-N3-methylpropane-1,3-diamine (A2)[3] were synthesized 
according to the cited methods.   

 

Scheme 1.  Synthesis of precursor A3. 

 

A mixture of phenoxyacridine (S1) (2.71 g, 0.01 mol) and 2-(2-aminoethylamino)ethanol (S3) 
(1.14 g, 0.011 mol) in 15 mL of anhydrous THF was refluxed for 16 h. The solvent was 
evaporated off and the residue was dissolved in 30 mL of acetone. To this solution were added 5 
mL of concentrated HCl and the mixture was stirred at 4 C for 3 hours. A yellow precipitate 
formed which was recovered by filtration, resuspended in 50 mL of 2 M ammonium hydroxide, 
and stirred at room temperature for 30 min. The aqueous phase was extracted with CH2Cl2 and 
the organic phase was collected, dried over Na2SO4, and concentrated using rotary evaporation, 
affording 2.57 g of the free base as an yellow solid (Yield: 92%). 1H NMR ((CD3)2SO)  8.27 (d, 
J = 8.5 Hz, 2H), 7.69 (d, J = 7.6 Hz, 2H), 7.59 (t, J = 7.3 Hz, 1H), 7.26 (t, J = 7.5 Hz, 2H), 4.50 
(s, 1H),  3.88 (t, J = 6.2 Hz, 2H), 3.47 (t, J = 5.7 Hz, 1H), 2.90 (t, J = 6.2 Hz, 2H), 2.63 (t, J = 5.7 
Hz, 2H).  13C NMR ((CD3)2SO) δ 151.70, 129.74, 124.84, 121.30, 60.39, 51.27, 50.18, 40.90. 
MS (ESI, positive-ion mode): calculated for C17H20N3O ([M+H]+), 282.15; found: 282.3. 
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Scheme 2.  Synthesis of precursor A2. 

 

A2 was prepared using the procedure described for A3.  Yield: 94%. 1H NMR (300 MHz, CDCl3) 
 8.12 (d, J = 8.7，2H), 8.02 (d, J = 8.7, 2H), 7.61 (t, J = 6.7 Hz, 2H), 7.25 (t, J = 7.5 Hz，2H), 
4.01 (t, J = 5.9 Hz, 2H), 2.96 - 2.75 (m, 2H), 2.53 (s, 3H), 1.94-1.68 (p, J = 5.9 Hz , 2H). MS 
(ESI, positive-ion mode): calculated for C17H20N3 ([M+H]+), 266.36; found: 266.2. 

Scheme 3.  Synthesis of precursor A4. 

 

A4 was prepared using the procedure described for A3. Yield: 86%. 1H NMR (CDCl3) 8.11 (d, J 
= 8.5 Hz, 2H), 8.02 (d, J = 8.6 Hz, 2H), 7.72 - 7.54 (m, 2H), 7.35-7.29 (m, 2H), 3.87-3.82 (m, 
4H), 3.16 - 2.64 (m, 4H), 1.79 (p, J = 6.5 Hz, 2H). 13C-NMR (CDCl3) 151.97, 147.93, 130.25, 
127.65, 123.25, 122.70, 116.33, 62.15, 49.48, 48.91, 47.68, 31.98. MS (ESI, positive-ion mode): 
calculated for C18H22N3O ([M+H]+), 296.38; found: 296.3. 

 

Scheme 4.  Synthesis of precursor A5. 

 

A mixture of phenoxyacridine (S1) (2.71 g, 0.01 mol) and 2-((2-aminoethyl)glycine (S5) (1.3 g, 
0.011 mol) in 20 mL of dry MeOH was refluxed for 3 h. The yellow solid that precipitated 
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during the reaction was collected by filtration, washed with hot THF and ether, and dried in a 
vacuum, affording 2.55 g of the product as a yellow solid (Yield: 86 %).  1H NMR ((CD3)2SO) 
8.22 (m, 2H), 7.55 (t, J = 7.6 Hz, 2H), 7.43 (m, 2H), 7.15 (t, J = 7.6 Hz, 2H), 4.08 (d, J = 6.0 Hz, 
2H), 3.22 (s, 2H), 3.16 (t, J = 5.9 Hz, 2H). A 13C NMR spectrum of this compound was not 
obtained due to limited solubility of the compound. MS (ESI, positive-ion mode): calculated for 
C17H18N3O2 ([M+H]+), 296.34; found: 296.3.  

 

 

Scheme 5.  Synthesis of precursor A6. 

 

A6 was prepared using the procedure described for A5. Yield: 91%. 1H NMR ((CD3)2SO)  8.21 
(d, J = 8.4 Hz, 2H), 7.54 (m, 3H), 7.12-7.18 (m, 4H), 6.93-6.62 (m, 2H), 3.91 (t, J = 6.4 Hz, 2H), 
3.21 (s, 2H), 3.01 (t, J = 7.2 Hz, 2H), 2.03 (p, J = 6.5 Hz, 2H). 13C NMR ((CD3)2SO) δ 166.95, 
157.31, 152.15, 130.13, 129.21, 125.84, 120.79, 118.56, 115.13, 49.87, 48.74, 45.42, 27.92. MS 
(ESI, positive-ion mode): calculated for C18H20N3O2 ([M+H]+), 310.37; found: 310.2.  

 

 

Scheme 6.  Synthesis of precursor A7. 

 

A7 was prepared using the procedure described for A5.  Yield: 84%. 1H NMR (D2O)  8.04 (d, J 
= 8.7 Hz, 2H), 7.83 (dd, J = 8.4, 7.0 Hz, 2H), 7.58 - 7.34 (m, 4H), 4.33 (t, J = 6.1 Hz, 2H), 3.60 
(t, J = 5.8 Hz, 1H), 3.33 (t, J = 6.3 Hz, 2H), 3.33 (t, J = 6.3 Hz, 2H). 13C NMR (D2O) δ 166.95, 
157.31, 152.15, 130.13, 129.21, 125.84, 118.56, 115.13, 49.87, 48.80, 45.42, 27.92. MS (ESI, 
positive-ion mode): calculated for C18H20N3O2 ([M+H]+), 310.37; found: 310.3. 
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Scheme 7.  Synthesis of precursor A8. 

 

The Boc-protected acridine derivative (S8) (1.36 g, 4.6 mmol) was synthesized as follows.  A5 
was suspended in 30 mL of anhydrous methanol, to which was added Boc2O (1.3 g, 6 mmol) in 5 
mL of anhydrous MeOH at 0-5 ºC maintained with an ice bath. The mixture was then stirred at 
room temperature for 4 h. The solvent was removed by rotary evaporation and residue was 
dissolved in 10 mL of dichloromethane and precipitated with 200 mL of anhydrous diethyl ether. 
The solid was recovered by filtration and dried in a vacuum affording 1.79 g (99%) of the 
product as a yellow solid, which was used in the next step without further purification. 

Compound S8 (1 g, 2.52 mmol) and 1,1'-carbonyldiimidazole (CDI, 533 mg, 3.28 mmol) were 
combined in 20 mL of anhydrous DMF. The mixture was heated to 40-50 ºC and stirred for 6 h. 
Then the solution was cooled to 0-5 º C in an ice bath and 264 mg of 2-azidoethanamine 
dissolved in 3 mL of anhydrous DMF were added. The mixture was stirred at 0-5 º C for 4 h. 
DMF was removed by vacuum distillation at 35-40 ºC, and the residue was redissolved in 40 mL 
of dichloromethane and washed with 1 M HCl (3 × 20 mL). The organic phase was collected, 
dried with anhydrous Na2SO4, and concentrated to afford an orange oil. To remove the Boc 
group, the residue was dissolved in 6 mL of a 1:1 mixture of anhydrous dichloromethane and 
trifluoroacetic acid and stirred at room temperature for 3 h. The reaction was quenched by adding 
10 mL of 1 M NaOH solution. The crude product was extracted from NaOH solution with DCM, 
dried over anhydrous Na2SO4, and concentrated. The product was purified by flash 
chromatography (Al2O3, DCM:MeOH, 30:1). Yield: 0.59 g (64 %). 1H NMR (CDCl3) δ 8.10 (d, 
J = 8.7 Hz, 2H), 7.97 (d, J = 8.6 Hz, 2H), 7.60 (t, J = 8.3, 6.8 Hz, 2H), 7.40 - 7.14 (m, 3H), 3.89 
(t, J = 5.6 Hz, 2H), 3.50 - 3.23 (m, 6H), 2.99 (t, J = 5.6 Hz, 2H). 13C NMR (CDCl3) δ 172.56, 
152.98, 146.04, 131.21, 125.75, 123.56, 122.97, 115.48, 50.72, 48.69, 48.47, 44.85, 38.82, 36.22. 
MS (ESI, positive-ion mode): calculated for C19H22N7O ([M+H]+), 364.42; found: 364.3.  
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Scheme 8.  Synthesis of precursor A9. 
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A9 was prepared using the procedure described for A8. Yield: 64%. 1H NMR (CDCl3) δ 8.09 (d, 
J = 8.7 Hz, 2H), 8.02 (d, J = 8.7 Hz, 2H), 7.59 (t, J = 7.6 Hz, 2H), 7.41 (s, 1H), 7.27 (t, J = 7.5 
Hz, 2H), 4.95 (brs, 2H), 3.92 (t, J = 5.6 Hz, 2H), 3.44 (s, 4H), 2.91-3.14 (m, 4H), 2.53 (t, J = 6.0 
Hz, 2H). 13C NMR (CDCl3) δ 152.09, 149.60, 129.65, 129.23, 123.60, 121.91, 115.75, 51.37, 
51.32, 36.51, 29.15. MS (ESI, positive-ion mode): calculated for C20H24N7O ([M+H]+), 378.45; 
found: 378.3.  

 

Scheme 9.  Synthesis of precursor A10. 

 

 

The Boc-protected acridine derivative (S10) was prepared as described for S8 starting with 
compound A3. Compound S10 (1 g, 2.62 mmol), TEA (793 mg, 7.85 mmol) and 4-nitrobenzyl 
chloroformate (732 mg, 3.4 mmol) were dissolved in 20 mL of anhydrous DCM. The mixture 
was stirred at room temperature for 16 h. Then 271 mg of 2-azidoethanamine dissolved in 5 mL 
of anhydrous DCM was added and the reaction was stirred for another 8 h. The solvent was 
removed using vacuum distillation and the residue was redissolved in 40 mL of DCM and 
washed with 1 M HCl (3 × 20 mL). The organic phase was collected, dried with anhydrous 
Na2SO4, and concentrated to afford an orange oil. To remove the Boc group, the orange oil was 
dissolved in 6 mL of a 1:1 mixture of anhydrous dichloromethane and trifluoroacetic acid and 
stirred at room temperature for 3 h. The reaction was quenched by adding 10 mL of 1 M NaOH 
solution. The crude product was extracted from NaOH solution with DCM, dried over anhydrous 
Na2SO4, and concentrated. The product was further purified by flash chromatography (Al2O3, 
DCM:MeOH, 30:1). Yield: 0.73 g (71 %). 1H NMR (CDCl3) δ 8.12 - 7.96 (m, 4H), 7.59 (t, J = 
7.8 Hz, 2H), 7.23 (t, J = 7.6 Hz, 2H), 5.65 (brs, 1H), 4.27 (t, J = 4.8 Hz, 2H), 3.92 (t, J = 5.7 Hz, 
1H), 3.61 - 3.20 (m, 4H), 3.01 (t, J = 5.7 Hz, 2H), 2.96 (t, J = 4.9 Hz, 2H). 13C NMR (CDCl3) δ 
156.53, 152.69, 145.93, 131.22, 125.98, 123.3, 123.00, 115.07, 64.48, 50.97, 48.35, 48.17, 47.83, 
40.45. MS (ESI, positive-ion mode): calculated for C20H24N7O2 ([M+H]+), 394.45; found: 394.3.  
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Scheme 10.  Synthesis of precursor P1[4]. 

 

 

The complex [PtCl2(en)] (S11) (0.50 g, 1.54 mmol) was heated under reflux in 25 mL of dilute 
HCl (pH 4) with propionitrile (6.85 mL, 98.5 mmol) until the yellow suspension turned into a 
colorless solution (~2 h). Solvent was removed by rotary evaporation, and the pale-yellow 
residue was redissolved in 10 mL of dry methanol.  A small amount of an insoluble yellow solid 
was removed by membrane filtration and the colorless filtrate was added directly into 250 mL of 
vigorously stirred dry diethyl ether, affording P1 as an off-white, extremely hygroscopic 
microcrystalline precipitate. Yield: 0.48 g (83%). 1H NMR (D2O) δ 5.72, 5.64 (2 br s，0.7 H, 
HD exchange), 2.87(q, J=7.5 Hz, 2H), 2.48 - 2.75 (m, Pt satellites, 4 H), 1.3 (t, J=7.5 Hz, 3H,). 

 

Scheme 11.  Synthesis of precursor P2[5]. 

 

P2 was prepared using the similar procedure as described for P1 as the white solid with the yield 
89%.  1H NMR (D2O) δ 5.80, 5.65 (2 br s，1H, HD exchange), 2.87(q, J=7.5 Hz, 2H), 2.55 - 
2.65 (m, Pt satellites, 4 H), 2.53 (s, 3H). 
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Scheme 12.  Synthesis of precursor P3. 

 

P3 was prepared using the procedure described for P1.  Yield: 74%. 1H NMR (D2O) δ 2.89 (t, J 
= 7.6, 2H), 1.30 (t, J = 7.5, 3H). 

 

Scheme 13.  Synthesis of precursor P4. 

 

 

P4 was prepared using the procedure described for P1.  Yield: 63%. 1H NMR (D2O) δ 2.53 (3 H, 
m, Pt satellites), 4.35, 4.48 (4 H, HD exchange, 2 br s).   

 

Scheme 14.  Synthesis of precursor P5. 

 

P5 was prepared using the procedure described for P1. Yield: 91%. 1H NMR (D2O) δ 4.26 (m, 
1H), 2.99 - 2.54 (m, 6H), 1.39 - 0.96 (t, J = 7.5 Hz, 3H). 
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Scheme 15.  Synthesis of precursor P6. 

 

P6 was prepared using the procedure described for P1. Yield: 77%. 1H NMR (D2O) δ 4.28 (m, 
1H), 2.85 - 2.53 (m, 4H), 2.53 (s, 3H). 
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1.2. Synthesis of Pt-Acridines  

Scheme 16.   Resynthesis of compound P4-A3. 
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P4-A3 was prepared using the same procedure as described for P1-A3 and was recovered with a 
yield of 87%. 1H NMR (MeOD) δ 8.40 (d, J = 8.8 Hz, 2H), 7.87 (t, J = 6.8, 2H), 7.72 (dd, J = 8.7, 
1.2 Hz, 1H), 7.49 (d, J = 8.4 Hz, 2H), 4.31 (t, J = 7.0 Hz, 2H), 4.10 (brs, 2H), 3.91 (t, J = 6.8 Hz, 
1H), 3.75 (s, 2H), 3.65 (t, J = 4.9 Hz, 2H), 3.49 (t, J = 4.9 Hz, 2H), 2.58 (s, 3H). 13C NMR 
(MeOD) δ 167.49, 160.02, 141.40, 136.55, 126.49, 125.30, 119.77, 114.14, 60.73, 49.86, 48.16, 
47.39, 23.02.  MS (ESI, positive-ion mode): for C19H28ClN6OPt ([M]+), 587.00; found: 585.2.  

 

Scheme 17.  Resynthesis of compound P6-A1. 

 

P6-A1 was prepared using the same procedure as described for P1-A3 and was recovered with a 
yield of 92%. 1H NMR (DMF-d7) δ 13.92 (s, 1H), 9.89 (s, 1H), 8.68 (d, J = 8.7 Hz, 2H), 7.9 -
8.11 (m, 4H), 7.62 (td, J = 6.4, 3.1 Hz, 2H), 6.21 (s, 1H), 5.65  (s, 1H), 5.60 (s, 1H), 5.13 (s, 2H), 
4.87 (s, 1H), 4.50 (s, 2H),4.12 (t, J = 6.3 Hz 2H),  4.06 (s, 1H), 3.50 (s, 4H), 3.18 (s, 3H), 2.59-
2.97 (m, 4H). 13C NMR (DMF) δ 165.94, 158.64, 139.96, 135.33, 125.29, 123.91, 118.98, 
112.80, 65.84, 48.38, 47.80, 33.79, 28.66. MS (ESI, positive-ion mode): for C21H30ClN6OPt 
([M]+), 613.04; found: 612.3. 
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Scheme 18.  Resynthesis of compound P1-A8. 

 

P1-A8 was prepared using the same procedure as described for P1-A3 and was recovered with a 
yield of 81%.1H NMR (DMF-d7) δ 13.90 (s, 1H), 9.99 (s, 1H), 8.83 - 8.52 (m, 3H), 8.28 - 7.92 
(m, 4H), 7.62 (td, J = 6.6, 1.5 Hz 2H), 6.73 (s, 1H), 5.84 (s, 2H), 5.51 (s, 2H), 4.54 (q, J = 5.7 Hz, 
2H), 4.44 (s, 2H), 4.15 (t, J = 5.9 Hz, 2H), 3.44 - 3.52 (m , 4H), 3.06 (q, J = 7.9 Hz, 2H), 2.67 (s, 
4H), 1.33 (t, J = 7.5 Hz, 3H). 13C NMR (DMF-d7) δ 170.37, 169.56, 158.62, 140.17, 135.27, 
125.92, 123.80, 118.90, 112.94, 50.32, 48.97, 48.79, 46.34, 38.78, 28.67, 11.00. MS (ESI, 
positive-ion mode): for C24H34ClN10OPt ([M]+), 709.13; found: 708.5.  

 

Scheme 19.  Resynthesis of compound P3-A7. 

 

Platinum complex P3 (354 mg, 1 mmol) was converted to its nitrate salt by reaction with AgNO3 

(162 mg, 0.95 mmol) in 7 mL of anhydrous DMF. AgCl was removed by syringe filtration, and 
the filtrate was cooled to -10 °C. Acridine precursor A7 (310 mg, 0.1 mmol) was added to the 
solution, and the suspension was stirred at 4 °C for 5 days.  The mixture was poured into 300 mL 
of vigorously stirred diethyl ether, and the precipitate was recovered by membrane filtration and 
dried in a vacuum overnight. The product was further purified by recrystallization from hot 
methanol to give 461.7 mg of the product as a yellow solid (Yield: 67%). 1H NMR (MeOD) δ 
8.29 (d, J = 8.6 Hz, 2H), 7.92 - 7.58 (m, 4H), 7.41 (t, J = 7.7 Hz, 2H), 4.06 (t, J = 6.5 Hz, 2H), 
3.74 (t, J = 6.4 Hz, 2H), 3.63 (t, J = 6.5 Hz, 2H), 3.02 (t, J = 7.9 Hz, 2H), 2.35 (t, J = 6.4 Hz, 2H), 
1.23 (t, J = 8.0 Hz, 2H). MS (ESI, positive-ion mode): for C21H30ClN6O2Pt ([M]+), 629.04; 
found: 629.2. 

 

 



S12 
 

 

2. LC-ESMS analysis of reaction mixtures 

 

Abbreviations: 

en = ethylenediamine; HPDA = 2-hydroxy-1,3-propanediamine (pn2-OH) 
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Figure S1.1. LC-ESMS analysis of reaction P1 + A1. 
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Figure S1.2 LC-ESMS analysis of reaction P1 + A2. 



S15 
 

 

Figure S1.3 LC-ESMS analysis of reaction P1 + A3. 
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Figure S1.4 LC-ESMS analysis of reaction P1 + A4. 
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Figure S1.5 LC-ESMS analysis of reaction P1 + A5. 
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Figure S1.6 LC-ESMS analysis of reaction P1 + A6. 



S19 
 

 

Figure S1.7 LC-ESMS analysis of reaction P1 and A7. 
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Figure S1.8 LC-ESMS analysis of reaction P1 + A8. 
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Figure S1.9 LC-ESMS analysis of reaction P1 + A9. 
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Figure S1.10 LC-ESMS analysis of reaction P1 + A10.
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Figure S1.11. LC-ESMS analysis of reaction P2 + A1. 
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Figure S1.12. LC-ESMS analysis of reaction P2 + A2. 
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Figure S1.13. LC-ESMS analysis of reaction P2 + A3. 
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Figure S1.14. LC-ESMS analysis of reaction P2 + A4. 
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Figure S1.15. LC-ESMS analysis of reaction P2 + A5. 



S28 
 

 

Figure S1.16. LC-ESMS analysis of reaction P2 + A6. 
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Figure S1.17 LC-ESMS analysis of reaction P2 + A7. 
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Figure S1.18 LC-ESMS analysis of reaction P2 + A8. 
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Figure S1.19 LC-ESMS analysis of reaction P2 + A9. 
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Figure S1.20 LC-ESMS analysis of reaction P2 + A10. 
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Figure S1.21. LC-ESMS analysis of reaction P3 + A1. 
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Figure S1.22. LC-ESMS analysis of reaction P3 + A2. 
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Figure S1.23. LC-ESMS analysis of reaction P3 + A3. 
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Figure S1.24. LC-ESMS analysis of reaction P3 + A4. 
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Figure S1.25. LC-ESMS analysis of reaction P3 + A5. 
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Figure S1.26. LC-ESMS analysis of reaction P3 + A6. 
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Figure S1.27. LC-ESMS analysis of reaction P3 + A7. 
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Figure S1.28. LC-ESMS analysis of reaction P3 + A8. 
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Figure S1.29. LC-ESMS analysis of reaction P3 + A9. 



S42 
 

 

Figure S1.30. LC-ESMS analysis of reaction P3 + A10. 
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Figure S1.31. LC-ESMS analysis of reaction P4 + A1. 
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Figure S1.32. LC-ESMS analysis of reaction P4 + A2. 
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Figure S1.33. LC-ESMS analysis of reaction P4 + A3. 
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Figure S1.34. LC-ESMS analysis of reaction P4 + A4. 
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Figure S1.35. LC-ESMS analysis of reaction P4 + A5. 
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Figure S1.36. LC-ESMS analysis of reaction P4 + A6. 
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Figure S1.37. LC-ESMS analysis of reaction P4 + A7. 
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Figure S1.38. LC-ESMS analysis of reaction P4 + A8. 
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Figure S1.39. LC-ESMS analysis of reaction P4 + A9. 
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Figure S1.40. LC-ESMS analysis of reaction P4 + A10. 
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Figure S1.41. LC-ESMS analysis of reaction P5 + A1. 
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Figure S1.42. LC-ESMS analysis of reaction P5 + A2. 
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Figure S1.43. LC-ESMS analysis of reaction P5 + A3. 
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Figure S1.44. LC-ESMS analysis of reaction P5 + A4. 
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Figure S1.45. LC-ESMS analysis of reaction P5 + A5. 
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Figure S1.46. LC-ESMS analysis of reaction P5 + A6. 
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Figure S1.47. LC-ESMS analysis of reaction P5 + A7. 
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Figure S1.48. LC-ESMS analysis of reaction P5 + A8. 
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Figure S1.49. LC-ESMS analysis of reaction P5 + A9. 
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Figure S1.50. LC-ESMS analysis of reaction P5 + A10. 
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Figure S1.51. LC-ESMS analysis of reaction P6 + A1. 
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Figure S1.52. LC-ESMS analysis of reaction P6 + A2. 
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Figure S1.53. LC-ESMS analysis of reaction P6 + A3. 
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Figure S1.54. LC-ESMS analysis of reaction P6 + A4. 
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Figure S1.55. LC-ESMS analysis of reaction P6 + A5. 
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Figure S1.56. LC-ESMS analysis of reaction P6 + A6. 
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Figure S1.57. LC-ESMS analysis of reaction P6 + A7. 



S70 
 

 

Figure S1.58. LC-ESMS analysis of reaction P6 + A8. 
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Figure S1.59. LC-ESMS analysis of reaction P6 + A9. 
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Figure S1.60. LC-ESMS analysis of reaction P6 + A10. 
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Figure S1.61. Percent conversion in ‘click’ reactions for platinum-acridines. Compounds are 
sorted and color-coded by common acridine moieties.   
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3. NMR spectra for purified compounds        

 

                                                                 

 

Figure S2.1.  1H NMR spectrum of compound A2. 
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 Figure S2.2.  1H NMR spectrum of compound A3. 
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 Figure S2.3.  1H NMR spectrum of compound A4. 
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 Figure S2.4.  1H NMR spectrum of compound A5. 
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 Figure S2.5.  1H NMR spectrum of compound A6. 
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Figure S2.6.  1H NMR spectrum of compound A7. 
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Figure S2.7.  1H NMR spectrum of compound A8. 
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 Figure S2.8.  1H NMR spectrum of compound A9. 
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Figure S2.9.  1H NMR spectrum of compound A10. 
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 Figure S2.10.  1H NMR spectrum of compound P1. 



S84 
 

0.51.01.52.02.53.03.54.04.55.05.56.06.57.0
f1 (ppm)

-100

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

050112 En-Pt-Me
wfu_PROTON D2O /opt/topspin1.3 dins0 39

3.
00

3.
78

1.
04

2.
53

2.
62

2.
66

5.
65

5.
80

 Figure S2.11.  1H NMR spectrum of compound P2. 



S85 
 

-0.20.00.20.40.60.81.01.21.41.61.82.02.22.42.62.83.03.23.43.63.84.04.24.44.64.85.05.25.45.65.8
f1 (ppm)

-100

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000Song-4-48
DIAMINE-Pt-Et
wfu_PROTON D2O /opt/topspin1.3 dins0 24

2.
94

2.
00

1.
27

1.
28

1.
30

1.
30

1.
32

1.
33

2.
88

2.
88

2.
90

2.
91

 Figure S2.12.  1H NMR spectrum of compound P3. 
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 Figure S2.13.  1H NMR spectrum of compound P4. 
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 Figure S2.14.  1H NMR spectrum of compound P5. 
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Figure S2.15.  1H NMR spectrum of compound P6. 
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 Figure S2.16.  1H NMR spectrum of compound P1-A3. 
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 Figure S2.17.  1H NMR spectrum of compound P4-A3. 
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 Figure S2.18.  1H NMR spectrum of compound P6-A1. 
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 Figure S2.19.  1H NMR spectrum of compound P1-A8. 
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 Figure S2.20.  1H NMR spectrum of compound P3-A7. 
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Figure S3.1.  13C NMR spectrum of compound A3. 
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 Figure S3.2.  13C NMR spectrum of compound A4. 
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 Figure S3.3.  13C NMR spectrum of compound A6. 
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 Figure S3.4.  13C NMR spectrum of compound A7. 
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Figure S3.5.  13C NMR spectrum of compound A8. 
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 Figure S3.6.  13C NMR spectrum of compound A9. 
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 Figure S3.7.  13C NMR spectrum of compound A10. 
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 Figure S3.8.  13C NMR spectrum of compound P1-A3. 
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Figure S3.9.  13C NMR spectrum of compound P4-A3. 
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 Figure S3.10.  13C NMR spectrum of compound P6-A1. 
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 Figure S3.11.  13C NMR spectrum of compound P1-A8. 
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4. LC-MS analysis of purified compounds                                                                

 

 

Figure S4.1.   LC-MS analysis of compound A1. 
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 Figure S4.2.   LC-MS analysis of compound A2. 
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Figure S4.3.   LC-MS analysis of compound A3. 
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Figure S4.4.   LC-MS analysis of compound A4. 
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Figure S4.5.   LC-MS analysis of compound A5. 
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Figure S4.6.   LC-MS analysis of compound A6. 
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Figure S4.7.   LC-MS analysis of compound A7. 
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Figure S4.8.   LC-MS analysis of compound A8. 
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Figure S4.9.   LC-MS analysis of compound A9. 
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Figure S4.10.   LC-MS analysis of compound A10. 
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Figure S4.11.   LC-MS analysis of compound P1-A3. 
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Figure S4.12.   LC-MS analysis of compound P4-A3. 
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Figure S4.13.   LC-MS analysis of compound P6-A1. 
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Figure S4.14.   LC-MS analysis of compound P1-A8. 

1

02091211.D: UV Chromatogram, 363-463 nm

0.0

2.5

5.0

7.5

10.0

12.5

Intens.
mAU

0 5 10 15 20 25 Time [min]

195.1 221.1 279.2

333.4

354.8

391.3

419.4
708.5

+MS, 16.6min #949

0.0

0.2

0.4

0.6

0.8

1.0

1.2

7x10
Intens.

200 300 400 500 600 700 800 900 m/z



S119 
 

 

 

Figure S4.15.   LC-MS analysis of compound P3-A7. 
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5. Cell proliferation assays 

Cell culture. The human non-small cell lung cancer cell line, NCI-H460, was obtained from the 
American Type Culture Collection (Rockville, MD, USA) and was cultured in RPMI-1640 
media (HyClone) containing 4.5 g/L glucose, 1.5 g/L sodium bicarbonate, 10 mM HEPES, and 
110 mg/L sodium pyruvate supplemented with 10% fetal bovine serum (FBS), 10% penstrep 
(P&S), and 10% L-glutamine. Cells were incubated at a constant temperature at 37 °C in a 
humidified atmosphere containing 5% CO2 and were subcultured every 2 to 3 days in order to 
maintain cells in logarithmic growth. 

 

 

 

Figure S5.1. Drug-response curves for cell proliferation assays in NCI-H460 cells treated with 
selected compounds. Error bars indicate ± standard deviations from the mean for two 
independent experiments performed in triplicate. 

 

Figure S5.2. Drug-response curves for cell proliferation assays in NCI-H460 cells treated with 
P3-A7 and the corresponding acridine ligand A7. Error bars indicate ± standard deviations from 
the mean for two independent experiments performed in triplicate. 
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