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Figure S1. Light-induced increase in whole-plant stomatal conductance is reduced in slac1 mutants.
Stomatal conductance patterns of wild type, slac1-1, and slac1-3 plants kept in darkness at normal air humidity (65 %) 
for two hours and then exposed to 130 μmol m-2 s-1 light as indicated in upper panel are shown. Values normalized to 
stomatal conductance at time 0 (a) as well as absolute values (b) are presented. Error bars indicate ±SEM, n=7-8.

Supporting Information Figs S1-S5 and Table S1
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Figure S2. CO2-induced stomatal closure in slac1 mutants occurs at below-ambient CO2 concentrations. 
 (a, b) Stomatal closure was induced by increasing CO2 from 100 μmol mol-1 to 400 μmol mol-1 for 60 min, at air relative 
humidity of 56% (±SEM, n = 4). Patterns of average stomatal conductance in absolute values (a) and normalized to 
time 0 (b) are shown.
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Figure S3. CO2-induced changes in stomatal conductance of wild type and slac1-3 plants. After acclimatization of 
plants at normal air humidity (65 %) and CO2 concentration of 400 μmol mol-1, CO2 was stepwise decreased to 0 μmol 
mol-1 as shown by solid (wild type) and dashed line (slac1-3). Patterns of average stomatal conductance in absolute 
values (a) and normalized to time 0 (b) are shown. Experiment was repeated three times with similar results.
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Figure S4. Whole-cell patch clamp recordings of wild-type Arabidopsis guard cells showing that S-type anion channels 
do not mediate large malate efflux currents (-13 pA at -155 mV) activity comparing to chloride efflux currents (-94 pA at 
-145 mV) (Vahisalu et al., 2008). (a) Whole-cell recordings in response to voltage steps from -145 mV to +35 mV. (b) 
Average current voltage curve of guard cells recorded as in (a). Pipette solution contained 150 mM Cs-malate and bath 
solution contained 30 mM Cs-malate. Error bars indicate ±SEM, n=6.
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Figure S5

Figure S5. Whole-plant abscisic acid (ABA) concentrations of slac1-1 and slac1-3. The concentrations of ABA were 
determined according to Forcat et al. (2008, Plant Methods, 4:16) in 25 d old plants of wild type, slac1-1 and slac1-3 
plants. Experiment was carried out in three different sets of plants (n=5). Error bars indicate ±SEM, n=3.



Supplementary Table 1. Primers used for Real-Time PCR  

Protein Primer efficiency Primers

at4g34270
(control) 0.86 Forward 5'-GTGAAAACTGTTGGAGAGAAGCAA-3'

Reverse 5'-TCAACTGGATACCCTTTCGCA-3'

AHA1 0.88 Forward 5'-CTGGGAGGCTACCAAGCCA-3'
Reverse 5'-CTCACACCGAACTTGTCCGA-3'

AHA2 0.82 Forward 5'-CCGGAGTCTTCCCAGAGC-3'
Reverse 5'-TTTAGAGCAGGGGCATCATT-3'

AHA5 0.97 Forward 5'-GGCTGTTGCAAGACAGGAA-3'
Reverse 5'-CGGAGGATCAAAAAGAGGTAAA-3'

KAT1 0.93 Forward 5'-AGCATGGGATGGGAAGAGTGGAG-3'
Reverse 5'-AGAGCAGTGTCGGAAGTCGGAT-3'

KAT2 0.82 Forward 5'-TAGCTCGCTGTTTGCAAGG-3'
Reverse 5'-CAAACAGTGTCACCGAAATGA-3'

AtABCB14 0.85 Forward 5'-TTCTCGCGTTTCACAGAATG-3'
Reverse 5'-CTGTTTGCATCCAACAAGCA-3'

GORK 0.87 Forward 5'-GCATCAATCCGCGCCAAGATT-3'
Reverse 5'-GTGGAGCAGCCTTTGAAGAGA-3'

TPC1 0.84 Forward 5'-CGCTTGATATCGAAGAAAGCTC-3'
Reverse 5'-TCTCCAACACATATATCCAACCA-3'

AtALMT12 0.93 Forward 5'-TCGCTCTATAGAAGCATGTGTGGATGA-3'
Reverse 5'-AATCCAAAACAGCTTGATACCCTTCGT-3'

AKT2 0.83 Forward 5'-GCTGCTTTCGACTTCTATCAGT-3'
Reverse 5'-ATCAGTCCATGTCTTTCCTTGGT-3'

AKT1 0.73 Forward 5’-ACA TCCTTG TGAACGGAACC-3’
Reverse 5’-CCTCTCTCACAATGCTTTCTGTT-3’

AtKC1 0.83 Forward 5'-CTCAAGACATGAAAATGGACAGAT-3'
Reverse 5'-GAATCACCATTGTTTTTGTTATCTTG-3'
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