
DYNAMICS OF THE PARTITION EQUATION

The equation of motion

In order to derive the equation of motion for the cochlear partition with two degrees of

freedom, we begin by considering the forces on the partition illustrated in the main text of

this paper. The vertical acceleration per unit length of the partition is equal to the forces

due to internal damping, stiffness, and the fluid pressure. Thus the general equation of

motion is

M
∂2

∂t2
~A(z, t) = −S ~A(z, t)−D

∂

∂t
~A(z, t) + ~Ff (1)

where M,D, and S are matrices representing the mass, damping and stiffness per unit length

as functions of z. ~A is a vector with the first component, At equal to the displacement of

the tectorial membrane (TM) and the second, Ab that of the basilar membrane (BM). ~Ff is

the force per unit length due to fluid pressure. This can be expressed as

W (z)

−P u(x, 0, z)

P l(x, 0, z)

 , (2)

where P is the pressure, u and l indicate expressions for the upper and lower fluid compart-

ments. The fluid on the top acts in the opposite direction from fluid on the bottom, thus

the different sign. To make a solvable problem, we need to relate this expression to ~A.

WKB expansion of the velocity potential

We begin by considering the equation for incompressible, irrotational fluid flow in the

upper chamber of the cochlea

∇2Φu(X, Y, Z, t) = 0 (3)

where Φ is the fluid velocity potential field (ie velocity = ∇Φ). WKB theory separates

“short” wavelengths from the “long” scale of the media they travel in, so that to O(1) waves

operate in a locally homogeneous environment. In the case of the cochlea the dimensions

of the cross section are relevant for determining wavelength, and are much smaller than the

length of the cochlea. Therefore the ratio of these scales, the small number ε, is used as the

expansion parameter. To elucidate this the width of the cochlea is expressed as a product of
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a constant W0 = W (0) and a normalized function, w(z), so ε = W0/L. We then normalize

X and Y by W0 and Z by L. For continuity these normalized coordinates (x, y and z) are

used throughout this derivation. However, we note that after separation the equations may

be presented without normalization as is done in the main text of the paper.

Continuing, we use ∇T to express the transverse gradient ( ∂
∂x
, ∂
∂y

). Thus Eq. 3 becomes

(
∇2
T + ε2

∂2

∂z2

)
Φu(x, y, z, t) = 0 (4)

The solution is assumed using the WKB expansion

Φu = ei(ωt−
1
ε

∫ z
0 k(η) dη)(Φu

0(x, y, z) + εΦu
1(x, y, z) + . . .),

where ω is the frequency in radians. At and P u are expanded likewise.

Solution of the O(1) Fluid and Partition Equations

Since the partition acts as one of the boundaries on the fluid chamber, solving the first

order fluid equation will give us the needed relation between ~P0(x, 0, z) and ~A0(z). Here we

will focus on deriving the solution in the upper half of the partition. The derivation for the

lower half is similar with appropriate adjustments to signs and boundaries.

Because the vertical velocity of the fluid at the partition must be equal to that of the TM,
∂Φu

0

∂y
= iωW0A

t
0 at y = 0, which is one of the first order boundary conditions (the factor W0 is

due to normalization). Furthermore, because they are impermeable and stationary, ∂Φ
∂nT

= 0

at the other boundaries. This can be expanded in orders of ε in the same manner as above

to find O(1) boundary conditions on these surfaces. The fluid and material properties are

considered constant across the width of the cross section, and there is no first order change

over the vertical walls, thus Φ0 has no first order x dependence and we will remove it from

most notation henceforward. Hence the O(1) equation and boundary conditions for Φ0 are

∂2Φu
0(y, z)

∂y2
− k(z)2Φu

0(y, z) = 0 (5)

∂Φu
0

∂y
=

iωW0A
t
0(z) at y = 0

0 at y = H/W0

(6)
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The solution to Eq. 5 when considering the second boundary is Φu
0(y, z) = C cosh(k(z)(y −

H/W0)). Using the first boundary condition to solve for the constant C, we have

Φu
0(y, z) = −iωW0A

t
0(z)

cosh(k(z)(y − H
W0

))

k(z) sinh(k(z) H
W0

)
. (7)

The relationship between P and Φ is well known for linearized incompressible fluid flow

to be P = −ρ∂Φ
∂t

so

P u
0 (y, z) = −iωρΦu

0(y, z) (8)

= −ω2ρW0

cosh(k(z)(y − H
W0

))

k(z) sinh(k(z) H
W0

)
At

0(z).

The fluid pressure in the lower compartment is,

P l
0(y, z) = ω2ρW0

cosh(k(z)(y + H
W0

))

k(z) sinh(k(z) H
W0

)
Ab

0(z). (9)

The fluid loading W0P
l
0(0, z) can be expressed as ω2mfA

t
0 where

mf (z) = ρW 2
0w(z)/k(z) coth(k(z)H/W0), (10)

the normalized version of mf in the paper, leading to the first order homogeneous equation

of motion

[−ω2(M +mf (z)I) + iωD + S] ~A0(z) = 0. (11)

Solution of O(ε) fluid equation

Scaling the eigenvectors at z = 0 can be done using boundary conditions at the base of

the cochlea, as is explained in the main text. However, to find the amplitudes for all other

z, we must take a less local approach and connect the values in subsequent position. This

can be done with the O(ε) problem for each eigenvector. We begin by considering the upper

chamber and collecting O(ε) terms from Eq. 4, arriving at

∂2Φu
1(y, z)

∂y2
− k2(z)Φu

1(y, z) = 2ikΦ′u0 (y, z) + ik′Φu
0(y, z) (12)

for each mode, where ′ denotes derivatives in z. Furthermore on the boundary of the cross

section

∂Φu
1

∂nT

=


−iωW0A

t
1 at y = 0

0 at y = H/W0

−ikΦu
0w
′(z)/2 at x = ±w(z)/2

(13)
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We can solve for Φu
1 on the partition using Green’s formula along with Eqs. 12 and 13∫∫

A

(Φu
0∇2

TΦu
1 − Φu

1∇2
TΦu

0) dA =

∮ (
Φu

0

∂Φu
1

∂nT
− Φu

1

∂Φu
0

∂nT

)
dS

iw(z)

∫ H/W0

0

(kΦu2

0 (y, z))′ dy = −w(z)Φu
0(0, z)At

1 − iw′(z)

∫ H/W0

0

kΦu2

0 (y, z) dy

+w(z)Φu
1(0, z)At

0

i
[
w(z)

∫ H/W0

0

(kΦu2

0 (y, z)) dy
]′

= −w(z)Φu
0(0, z)At

1 + w(z)Φu
1(0, z)At

0 (14)

The integral can be evaluated, and for convenience we will express part of the solution as

G0 =
W0w(z)[2Hk(z)

W0
+ sinh(2Hk(z)

W0
)]

4k2(z) sinh(Hk(z)
W0

)
. (15)

By solving Eq. 14 for Φu
0(0, z) and following a similar derivation to get Φl

0(0, z) one arrives

at the O(ε) partition equation

(Γ−mfI) ~A1 = ~F0 (16)

The nonhomogeneous term in the upper chamber is

F u
0 =
−iρω2

At
0(z)

[
At2

0 (z)G0(z)
]′
. (17)

and F l
0 can be obtained by replacing At

0 with Ab
0 in the above expression. The O(1) equation

is the homogeneous version of this equation, so the determinant of (Γ − mfI) is 0. The

solvability condition for this case is

~F0 · ~̄η0 = 0 (18)

where ~η0 is the eigenvector of the adjoint matrix (Γ−mfI)†. Since (Γ−mfI)† ~η0 = 0 then

(Γ − mfI)T ~̄η0 = 0, and because (Γ − mfI) is symmetric, ~̄η0 = ~A0. At this point it is

convenient to separate the scaling of the eigenvectors from the relative contributions of the

components by adopting the notation

~A(z) = β(z)

α(z)

1

 . (19)

Thus substituting ~A0 into Eq. 18 and integrating we get

(α2
0(z) + 1)β2

0(z)G(z) = C0 (20)
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where C0 is the energy for each mode, which is constant in z. C±0 can be established with

boundary conditions at z = 0, and β(z) can then be determined for nonzero z.

The terms in Eq. 20 are equal to
∫∫

V PdA for the upper and lower chambers, or the power

flow. This derivation can be followed for both eigenmodes of the problem independently.

Thus under most circumstances, energy is conserved within a mode across the entire cross

section. However, if α0(z)→ −i, the value of β(z) becomes undetermined. This corresponds

to a point where the wavenumbers of both modes are similar, and the possibility of mode

conversion exits. This phenomena is further discussed in the main text.
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