Supporting Information

Deciphering Structural Elements of Mucin Glycoprotein Recognition

Authors: Andrew Borgert,[†] Jamie Heimburg-Molinaro[‡] Xuezheng Song,[‡] Yi Lasanajak,[‡] Tongzhong Ju,[‡] Mian Liu,[#] Pamela Thompson,[#] Govind Ragupathi,[&] George Barany,[^] David F. Smith, [‡] Richard D. Cummings,^{‡,*} and David Live^{#,*}

[†]Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455

^{*}Department of Biochemistry, Emory University, Atlanta, GA 30322

[#]Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602

[&]Memorial Sloan-Kettering Cancer Center, New York, NY 10065

[^]Department of Chemistry, University of Minnesota, Minneapolis, MN 55455

Supporting Information: Results and Discussion

Figure S1. 800 MHz ¹H NMR of the peptide amide region of the glycopeptide constructs A through G in 90% H₂O/10% D₂O. Watergate solvent suppression¹ was used. Small peaks arise from the minor proline cis amide bond forms.

Table S1 Restraint Information, Deviationsfrom Ideal Geometry and Structural Statisticsrelated to Constructs A-G in Figure 2*

A Structural Information PDB ID 2LHV Distance Restraints

Peptide-Pe	eptide	
- 1	Intra-residue:	49
]	Inter-residue:	14
Peptide-Su	ıgar	
.]	Proximal:	5
]	Non-Proximal:	1
Sugar-Sug	ar	
(GalNAc-GalNAc	8
Total:		77
³ J Coupling Restrain	its:	5
Torsion Restraints:		7
Restraint Violations		
NOE Viol	ations (>.25 Å)	0
J-Coup Violations (>.5 Hz)		0
Torsion V	iolations (>5°)	0
Deviations From Ide	al Geometry	
Bond (Å):	0.00205 +/- 0.0000	6
Angle (°):	0.472 +/- 0.019	
Improper ((°) 0.355 +/- 0.009	
Average RMSD Ove	er 78 Structures	
Backbone	Heavy Atoms	
+Thr+Gall	NAc Heavy atoms	
	2.000 +/- 0.662	
All Heavy	Atoms	
5	2.545 +/- 0.616	

Figure S2 Overlay of all heavy atoms of T3, T4, and T5 core with associated GalNAcs for all accepted structures A-G. T3 to the right.

B Structural Information PDI	3 ID 2L12	
Distance Restraints		
Peptide-Peptide		
Intra-resi	due:	52
Inter-resi	due:	20
Peptide-Sugar		
Proximal	:	9
Non-Prox	kimal:	4
Sugar-Sugar		
GalNAc-	GalNAc	9
Total:		94
³ J Coupling Restraints:		5
Torsion Restraints:		7
Restraint Violations		
NOE Violations (>.25 Å)		0
J-Coup Violations (>.5 Hz)		0
Torsion Violations (>5°)		0
Deviations From Ideal Geom	etry	
Bond (Å):	0.00208 +/- 0.0001	2
Angle (°):	0.472 +/- 0.011	
Improper (°) 0.363 +/- 0.011		
Average RMSD Over 36 Stru	ictures	
Backbone Heavy A	toms	
+Thr+GalNAc Hea	vy atoms	
	2.049 +/- 0.617	
All Heavy Atoms		
	2.530 +/- 0.656	

C Structural	l Information PDI	BID 2LII	
Distance Re	estraints		
Pe	eptide-Peptide		
	Intra-resi	due:	56
	Inter-resi	due:	20
Pe	eptide-Sugar		
	Proximal	:	8
	Non-Prox	kimal:	6
Su	ugar-Sugar		
	GalNAc-	GalNAc	9
Т	otal:		99
³ J Coupling	Restraints:		5
Torsion Res	straints:		7
Restraint Vi	iolations		
Ν	OE Violations (>	.25 Å)	0
J-	Coup Violations	(>5 Hz)	0
Ť	orsion Violations	(>5°)	Õ
Deviations	From Ideal Geom	etrv	Ũ
Bettations	ond (Å).	0.00206 ± 0.000	13
A	ngle (°):	0.472 ± 0.012	10
In	ngroner (°)	0.172 + 0.012 0.377 + 0.018	
Average RN	ISD Over 74 Stru	lotures	
Reference in Refer	ackhone Heavy A	toms	
ل بــــــــــــــــــــــــــــــــــــ	Thr⊥GalNAc Hea	vy atoms	
т		$1.632 \pm 1.0.220$	
٨	11 Heavy Atoms	1.032 +/- 0.220	
A	ii neavy Atoms	2 272 1/ 0 281	
		2.272 +/- 0.281	
D Structura	l Information PD	B ID 2LI0	
D Structural Distance Re	l Information PD	B ID 2LI0	
D Structural Distance Re	l Information PD estraints eptide-Peptide	B ID 2LI0	
D Structural Distance Re Pe	l Information PD estraints eptide-Peptide Intra-resi	B ID 2LI0 due:	50
D Structura Distance Re Pe	l Information PD estraints eptide-Peptide Intra-resi Inter-resi	B ID 2LI0 due:	50 21
D Structura Distance Re Po	l Information PD estraints eptide-Peptide Intra-resi Inter-resi eptide-Sugar	B ID 2LI0 due: due:	50 21
D Structural Distance Re Po	l Information PD estraints eptide-Peptide Intra-resi eptide-Sugar Proximal	B ID 2LI0 due: due:	50 21
D Structural Distance Re Po	l Information PD estraints eptide-Peptide Intra-resi Inter-resi eptide-Sugar Proximal Non Prox	B ID 2LI0 due: due: :	50 21 19
D Structural Distance Re Po Po	l Information PD estraints eptide-Peptide Intra-resi Inter-resi eptide-Sugar Proximal Non-Proy	B ID 2LI0 due: due: : : :	50 21 19 8
D Structural Distance Re Po Po St	l Information PD estraints eptide-Peptide Intra-resi eptide-Sugar Proximal Non-Proy ugar-Sugar	B ID 2LI0 due: due: : : : : : : : : : : : : : : : : : :	50 21 19 8
D Structural Distance Re Po Su	l Information PD estraints eptide-Peptide Intra-resi eptide-Sugar Proximal Non-Proy ugar-Sugar GalNAc-	B ID 2LI0 due: due: : : : : : : : : : : : : : : : : : :	50 21 19 8 10
D Structural Distance Re Po Su	l Information PD estraints eptide-Peptide Intra-resi eptide-Sugar Proximal Non-Proy ugar-Sugar GalNAc- otal:	B ID 2LI0 due: due: : : : : : : : : : : : : : : : : : :	50 21 19 8 10 108
D Structural Distance Re Pe Su ³ J Coupling	l Information PD estraints eptide-Peptide Intra-resi eptide-Sugar Proximal Non-Proy ugar-Sugar GalNAc- otal: Restraints:	B ID 2LI0 due: due: : : : simal: GalNAc	50 21 19 8 10 108 5
D Structural Distance Re Pe Su ³ J Coupling Torsion Res	l Information PD estraints eptide-Peptide Intra-resi eptide-Sugar Proximal Non-Proy ugar-Sugar GalNAc- otal: Restraints:	B ID 2LI0 due: due: : : simal: GalNAc	50 21 19 8 10 108 5 9
D Structural Distance Re Pe Su ³ J Coupling Torsion Res Restraint Vi	l Information PD estraints eptide-Peptide Intra-resi eptide-Sugar Proximal Non-Proy ugar-Sugar GalNAc- otal: Restraints: estraints:	B ID 2LI0 due: due: : : : : : : : : : : : : : : : : : :	50 21 19 8 10 108 5 9
D Structural Distance Re Pe Su ³ J Coupling Torsion Res Restraint Vi	l Information PD estraints eptide-Peptide Intra-resi eptide-Sugar Proximal Non-Proy ugar-Sugar GalNAc- otal: Restraints: etraints: iolations OE Violations (>	B ID 2LI0 due: due: : : : : : : : : : : : : : : : : : :	50 21 19 8 10 108 5 9 0
D Structural Distance Re Po Su ³ J Coupling Torsion Res Restraint Vi J-	l Information PD estraints eptide-Peptide Intra-resi eptide-Sugar Proximal Non-Proy ugar-Sugar GalNAc- otal: Restraints: etraints: iolations OE Violations (> Coup Violations (>	B ID 2LI0 due: due: : : simal: GalNAc (>.5 Hz)	50 21 19 8 10 108 5 9 0 0
D Structural Distance Re Po Su ³ J Coupling Torsion Res Restraint Vi J- To	l Information PD estraints eptide-Peptide Intra-resi eptide-Sugar Proximal Non-Proy ugar-Sugar GalNAc- otal: Restraints: etraints: iolations OE Violations (> Coup Violations (>	B ID 2LI0 due: due: : : : : : : : : : : : : : : : : : :	50 21 19 8 10 108 5 9 0 0 0
D Structural Distance Re Pe Su ³ J Coupling Torsion Res Restraint Vi J- To Deviations D	l Information PD estraints eptide-Peptide Intra-resi eptide-Sugar Proximal Non-Proy agar-Sugar GalNAc- otal: Restraints: etraints: iolations OE Violations (> Coup Violations (> prosion Violations From Ideal Geom	B ID 2LI0 due: due: : : : : : : : : : : : : :	50 21 19 8 10 108 5 9 0 0 0
D Structural Distance Re Po Su ³ J Coupling Torsion Res Restraint Vi J- To Deviations I B	l Information PD estraints eptide-Peptide Intra-resi eptide-Sugar Proximal Non-Proy ugar-Sugar GalNAc- otal: Restraints: iolations OE Violations (> Coup Violations (> coup Violations (> prom Ideal Geom on (Å):	B ID 2LI0 due: due: : : : : : : : : : : : : :	50 21 19 8 10 108 5 9 0 0 0 0
D Structural Distance Re Pe Su ³ J Coupling Torsion Res Restraint Vi J- To Deviations I Br A	l Information PD estraints eptide-Peptide Intra-resi eptide-Sugar Proximal Non-Proy agar-Sugar GalNAc- otal: Restraints: iolations OE Violations (> Coup Violations (> Coup Violations (> prom Ideal Geom ond (Å): ngle (°):	B ID 2LI0 due: due: : : : : : : : : : : : : :	50 21 19 8 10 108 5 9 0 0 0 0
D Structural Distance Re Pe Su ³ J Coupling Torsion Res Restraint Vi J- To Deviations I Br A	l Information PD estraints eptide-Peptide Intra-resi eptide-Sugar Proximal Non-Proy agar-Sugar GalNAc- otal: Restraints: iolations OE Violations (> Coup Violations (> Coup Violations (> corsion Violations From Ideal Geom ond (Å): ngle (°): nproper (°)	B ID 2LI0 due: due: : : : : : : : : : : : : :	50 21 19 8 10 108 5 9 0 0 0 0 13
D Structural Distance Re Po Su ³ J Coupling Torsion Res Restraint Vi J- To Deviations I B A A Average RM	l Information PD estraints eptide-Peptide Intra-resi eptide-Sugar Proximal Non-Proy agar-Sugar GalNAc- otal: Restraints: straints: iolations OE Violations (> Coup Violations (> Coup Violations (> corsion Violations From Ideal Geom ond (Å): ngle (°): nproper (°)	B ID 2LI0 due: due: : : : : : : : : : : : : :	50 21 19 8 10 108 5 9 0 0 0 0 13
D Structural Distance Re Po Su ³ J Coupling Torsion Res Restraint Vi J- To Deviations I B A A Average RM B	l Information PD estraints eptide-Peptide Intra-resi eptide-Sugar Proximal Non-Proy agar-Sugar GalNAc- otal: Restraints: straints: iolations OE Violations (> Coup Violations (> Coup Violations (> coup Violations (> from Ideal Geom ond (Å): ngle (°): nproper (°) ASD Over 49 Stru ackbone Heavy A	B ID 2LI0 due: due: : : : : : : : : : : : : :	50 21 19 8 10 108 5 9 0 0 0 0 13
D Structural Distance Re Po Su ³ J Coupling Torsion Res Restraint Vi J- To Deviations I B A A Average RM B +	l Information PD estraints eptide-Peptide Intra-resi eptide-Sugar Proximal Non-Proy agar-Sugar GalNAc- otal: Restraints: straints: iolations OE Violations (> Coup Violations (> Coup Violations (> coup Violations (> from Ideal Geom ond (Å): ngle (°): nproper (°) ASD Over 49 Stru ackbone Heavy A Thr+GalNAc Hea	B ID 2LI0 due: due: : : : : : : : : : : : : :	50 21 19 8 10 108 5 9 0 0 0 0 13

All Heavy Atoms

2.461 +/- 0.313

E Structural Information PDI	B ID 2LHZ	
Distance Restraints		
Peptide-Peptide		
Intra-resi	due:	44
Inter-resi	due:	22
Peptide-Sugar		
Proximal	:	22
Non-Proz	kimal:	17
Sugar-Sugar		
GalNAc-	GalNAc	25
Total:		130
³ J Coupling Restraints:		5
Torsion Restraints:		9
Restraint Violations		
NOE Violations (>.25 Å)		0
J-Coup Violations (>.5 Hz)		0
Torsion Violations (>5°)		0
Deviations From Ideal Geom	etry	
Bond (Å):	0.00193 +/- 0.0001	6
Angle (°):	0.447 +/- 0.016	
Improper (°) 0.365 +/- 0.020		
Average RMSD Over 29 Stru	ictures	
Backbone Heavy A	toms	
+Thr+GalNAc Hea	ivy atoms	
	1.262 +/- 0.296	
All Heavy Atoms		
	1.794 +/- 0.379	

F Structural Information PDB ID 2LHY **Distance Restraints** Peptide-Peptide Intra-residue: Inter-residue: Peptide-Sugar Proximal: Non-Proximal: Sugar-Sugar GalNAc-GalNAc Total: 122 ³J Coupling Restraints: Torsion Restraints: **Restraint Violations** NOE Violations (>.25 Å) J-Coup Violations (>.5 Hz) Torsion Violations (>5°) Deviations From Ideal Geometry Bond (Å): 0.00187 +/- 0.00006 Angle (°): 0.442 +/- 0.011 Improper (°) 0.665 +/- 0.014 Average RMSD Over 24 Structures Backbone Heavy Atoms +Thr+GalNAc Heavy atoms 1.173 +/- 0.237

All Heavy Atoms

51

22

21

13

15

5

9

0

0

0

1.787 +/- 0.408

G Structural Information P	DB 2LHX	
Distance Restraints		
Peptide-Peptide		
Intra-re	Intra-residue:	
Inter-residue:		14
Peptide-Sugar		
Proxim	al:	27
Non-Pr	oximal:	14
Sugar-Sugar		
GalNA	c-GalNAc	25
Total:		116
³ J Coupling Restraints:		5
Torsion Restraints:		11
Restraint Violations		
NOE Violations (>.25 Å)		0
J-Coup Violations (>.5 Hz)		0
Torsion Violations (>5°)		0
Deviations From Ideal Geo	metry	
Bond (Å): 0.00179 +/- 0.00010		10
Angle (°):	0.423 +/- 0.014	
Improper (°) 0.363 +/- 0.016		
Average RMSD Over 54 St	tructures	
Backbone Heavy	Atoms	
+Thr+GalNAc Heavy atoms		
	1.250 +/- 0.262	
All Heavy Atoms		
	1.664 +/- 0.417	

*Some of the sugar-sugar NOEs are between protons attached to members of the sugar 6 atom skeleton that was held fixed in the calculations

Table S2 RDC Values, accuracy +/- 0.2 Hz				
construct	D	Е	F	G
Ρ1 ΗαCα	-7.8	-4.9	-4.6	-5.3
Τ2 ΗαCα	-10.8*	-7.7*	-14.5	-10.0*
Τ3 ΗαCα	-10.6*	-9.0	-15.4*	-10.5*
Τ4 ΗαCα	-7.2	-8.0*	-9.5*	-6.6*
Ρ5 ΗαCα	-5.8	-0.7	-2.5	-3.2
L6 ΗαCα	-8.5	-7.2	-11.4	-7.9
Κ7 ΗαCα	-6.7	-4.9	-10.7	-7.2
Τ2 ΗβCβ	8.6*	5.2*	< -0.5	7.4*
Τ2 γ2ΜΕ	2.9*	2.2*	8.9	4.1*
Τ3 ΗβCβ	8.8*	4.3	15.2*	11.1*
Τ3 γ2ΜΕ	3.9*	3.6	4.9*	4.3*
Τ4 ΗβCβ	1.0	11.1*	13 9*	8.4*
Τ4 γ2ΜΕ	5.6	1.0*	2.6*	0.9*
G9 H1C1	6.4	5.3	N/A	7.1
GN10 H1C1	2.9	N/A	9.0	6.7
GN11 H1C1	N/A	4.4	0.5	2.0
T2 HN	-6.4*	-5.9*	-7.3	-5.2*
T3 HN	-8.8*	-7.3	-12.1*	-8.3*
T4 HN	-7.0	-8.5*	-13.1*	-9.2*
L6 HN	-4.2	-5.0	-7.0	-6.7
K7 HN	-6.1	-5.5	-7.8	-5.7
GN9 HN	6.0	3.9	N/A	4.4
GN10 HN	7.6	N/A	5.7	7.6
GN11 HN	N/A	3.9	7.8	7.8

Supporting Information: Experimental Procedures

Glycopeptide Immobilization

The MUC2 and alpha-dystroglycan related constructs were immobilized through coupling of side chain amine of the C-terminal lysine residue to the NHS-functionalized slide. The Ac-T-(α -O-GalNAc)-NH-(CH₂)₃-NH₂ and Ac-[T-(α -O-GalNAc)]₃-NH-(CH₂)₃-NH₂ (Chart IDs 19 and 20) were attached through the propylamine linker, and the other structures were coupled through the peptide *N*-terminal amino group.

Vaccination Protocol

Patients were vaccinated subcutaneously three times at one week intervals, once four weeks later and then once or twice more at three month intervals as described earlier study.² The vaccines were well tolerated. Serum samples were drawn at regular intervals and tested for reactivity against MUC1 and Tn. Peak titer sera were utilized in the analyses.

Synthesis of Ac-PTTDSTTPAPTTK-NH₂, Ac-PTTDSTT(α-D-GalNAc)PAPTTK-NH₂, (EA2) TSAPDTRPAP-NH₂, and TSAPDT(α-D-GalNAc)RPAP-NH₂ (MUC1-1)

Starting with Fmoc-PAL-PEG-PS resin (250 mg, 0.20 mmol/g), the peptides were assembled on bench-top facility in a glass vessel (5 ml) containing porous polypropylene frits. Fmoc-amino acids (4 equiv) were coupled for 2 h in the presence of HCTU (4 equiv), HOBt (4 equiv) and DIEA (6 equiv) in DMF at 25°C. Fmoc-Thr(Ac₃-α-D-GalNAc)-OH (1.5 equiv) was double coupled for 4 h in the presence of HCTU (1.5 equiv), HOBt (1.5 equiv) and DIEA (2 equiv) in NMP at 25°C. The following Fmoc-Thr(^tBu)-OH (4 equiv) was double coupled. Fmoc removal was achieved with piperidine-DMF (1:4) for 20 min. Washings between reactions were carried out with DMF and CH₂Cl₂, and no intermediate capping steps were done. After complete chain assembly, N-acetylation was achieved by treatment with Ac₂O–DMF (1:4) for 20 min. Cleavage of the peptides was achieved by treatment with TFA-H₂O (19:1) and precipitated in cold ether (100 ml). Analytical RP-HPLC was performed on an Agilent system with detection at 220 nm. Samples were chromatographed at 1.0 mL/min using linear gradients of 0.1% aqueous TFA (buffer A) and 0.1% TFA in CH₃CN (buffer B), from 0 to 40% buffer B over 40 min. Crude peptides and glycopeptides were purified by semi-preparative RP-HPLC on a Agilent system, using gradients which varied according to the properties of the particular sequence, and detection at 220 nm. After purification, the glycopeptides were treated with NaOMe in MeOH (pH ~9, as detected by wet litmus paper) for 6 h as monitored by analytical RP-HPLC, followed by semi-preparative HPLC of the fully deprotected material. Fractions with the desired peptides or glycopeptides were combined and lyophilized. Yields of peptides: ~60%. Yields of glycopeptides: ~ 40%. Yields were calculated based on the loading of the resin used. ESI-MS: Ac-PTTDSTTPAPTTK-NH₂, 679.8 $[M+2H]^{2+}$, 690.8 $[M+H+Na]^{2+}$, $t_R = 16.0$ min; Ac-PTTDSTT(α -D-GalNAc)PAPTTK-NH₂, 800.3 [M+H+K]²⁺, 803.3 [M+2Na]²⁺, t_R = 13.9 min. MALDI-TOF: H-TSAPDTRPAP-NH₂, 1011.6 $[M+H]^+$, $t_R = 12.4$ min; H-TSAPDT(α -D-GalNAc)RPAP-NH₂, 1340.5 [M+H]⁺. t_R = 19.3 min.

Synthesis of APGSTAPP-NH₂ and APGS(α-D-GalNAc)T(α-D-GalNAc)APP-NH₂ (MUC1-2)

Starting with Rink Amide AM (180 mg, 0.36 mmol/g), the first three amino-acid derivatives were assembled on an ABI 433A peptide synthesizer, by sequential couplings of Fmoc-amino acid derivatives (4 equiv) using standard protocol in the presence of HCTU (4 equiv), HOBt (4 equiv) and DIEA (8 equiv). Then, the peptide APP-resin (50 mg) was elongated by double couplings of Fmoc-Thr(Ac₃- α -D-GalNAc)-OH (1.5 equiv) and Fmoc-Ser(Ac₃-a-D-GalNAc)-OH (1.5 equiv) manually for 12 h in the presence of HATU (1.5 equiv), HOBt (1.5 equiv) and DIEA (2 equiv) in DMF at 25°C respectively. The remaining three amino-acid derivatives (4 equiv) were coupled manually. The peptide was cleaved from resin by TFA-H2O (19:1, 2 ml) and precipitated in cold ether (100 ml). After purification, the peptide APGS(Ac₄- α -D-GalNAc)T(Ac₄- α -D-GalNAc)APP-NH₂ was treated with NaOMe in MeOH (pH ~9, as detected by wet litmus paper) for 6 h as monitored by analytical RP-HPLC. The target product was obtained by purification on semi-preparative RP-HPLC. The structure was confirmed by MALDI-TOF. After synthesis on ABI 433A peptide synthesizer, peptide APGSTAPP was cleaved from the resin by TFA/H₂O/triisopropylsilane (38:1:1), followed by purification on semipreparative RP-HPLC.

Structure Calculation Protocol

Starting from an extended structure, peptide backbone and glycosidic linkage torsion angles were randomized and the structure was then subjected to an initial minimization consisting of four iterations of 2000 steps each. The first iteration included only bond length and angle terms, the second iteration added torsion terms, the third added improper torsion terms and the fourth iteration added a repulsive van der Waals term. After initial minimization, the van der Waals term was turned off, and NMR derived distance and torsion restraints were activated. The system was then warmed to 50,000 K over 2 ps, which was followed by 30ps of dynamics and 32ps of dynamics with ramped repulsive van der Waals. This was followed by 16ps of slow cooling to 0 K and 2000 steps of final Cartesian minimization. Electrostatic terms were turned off for the duration of the

calculations. All simulated annealing dynamics stages utilized a time-step of 2 fs. An ensemble of 100 structures was generated for each variant, which were then evaluated for restraint violations and deviations from ideal geometry based on the following criteria: no distance restraint violations greater than 0.25Å, no backbone torsion restraint violations greater than 5.0°, no bond length constraint violations greater than 0.05Å and no angle or improper torsion constraint violations greater than 5.0°. All structure determination calculations utilized Torsion Angle Dynamics³ along with the Internal Variable Module⁴. Throughout the calculations, proline and GalNAc rings were held rigid, with the GalNAc rings held in the chair conformation.

Supporting Information References

(1) Piotto M, Saudek V, Sklenar V. (1992) Gradient-Tailored Excitation for Single-Quantum NMR-Spectroscopy of Aqueous-Solutions. *J Biomol NMR* 2, 661-665.

(2) T., Ragapathi, G., Bhuta, S., Clausen, H., Norton, L., Houghton, A. N., and Livingston, P. O. (2001) Preliminary data: Vaccination with glycosylated mucin1keyhole limpet hemocyanin conjugate plus the immunological adjuvant qs-21 in breast cancer patients, *Proceedings of the American Society of Clinical Oncology* 20, 271a.

(3) Stein, E.G., Rice, L.M. and Brunger, A.T. (1997) Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. *J. Magn. Reson*, *124*, 154-164.

(4) Schwieters, C.D. and Clore, G.M. (2001) Internal coordinates for molecular dynamics and minimization in structure determination and refinement. *J. Magn. Reson.*, *152*, 288-302.