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Supplementary Modeling 

 

Model construction using the expectation-maximization (EM) algorithm 

 

We model the activity of each neuron under any given sequence as an inhomogeneous Poisson 

process whose likelihood function (using the theory of point processes) is given by49, 50   

 1:
1

( | ) ) exp( ( | )( | ) ( 1:12)
c
k

K
c
K

k

N
i c i c ik Sp N k iSS  



    , (1)  

where is the time increment taken to be small enough to contain at most one spike, c
kN is the 

binary spike event of the c ’th neuron in the time interval [( 1) , ]kk    , ( | )c ik S is its 

instantaneous firing rate in that interval, iS  is the i ’th sequence, and K is the total number of 

bins in a duration K .  

 

For each sequence and neuron, we need to estimate the firing rate ( | )c ik S using the neuronal 

data observed. One way to do so is to bin the data into non-overlapping windows of fixed length 

during which the firing rate is assumed to be constant and estimated using maximum likelihood 

techniques. This method is equivalent to finding the peristimulus time histogram (PSTH) that 

simply averages the number of spikes over any given window. The main drawback of this 

technique is that unless there are a large number of training trials under each sequence, to get a 

good estimate one has to pick relatively large windows. This in turn masks the fine-scaled 

evolution of the firing rate. Also, there is no principled way for selecting a window size, which 

the analysis is dependent on.   
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One way to avoid these problems in estimating the spike rate function is to use a state-space 

approach42, 51 (See also alternative methods using Gaussian processes in prior work54). This 

approach is used in many applications to estimate an unobservable state process and consists of 

two models: A prior or state model that in general enforces any prior information available about 

the unobservable states—such as a simple continuity condition—and an observation model that 

relates the neuronal observations to these states. In the case of estimating the spike rate function, 

and since it is a non-negative quantity, similar to previous work42, 51 we take the state at time 

increment k , kx , to be the logarithm of the firing rate, i.e., lo ( | )g( )k c ikx S , or equivalently 

 ( | ) exp( )c i kk S x  , (2)  

and enforce a continuity condition on it by assuming that it evolves according to a linear first-

order Gaussian model42, 51, 

 1k kkxx    ,  

where k is the zero-mean white Gaussian noise with variance 2 . The observation model is in 

turn given by substituting (2) in (1). Here, 2   is an unknown parameter of the model and 

should be estimated jointly with the state. Hence we use the expectation-maximization (EM) 

iterative algorithm to find the maximum likelihood estimate of  and in turn estimate the firing 

rate42, 51, 52. Denoting the estimate of  in the i ’th iteration by ( )i , its estimate in the 1i  ’th 

iteration after the maximization step is given by 
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fixed-interval smoothing, and covariance recursive algorithms in the expectation step as follows. 

Assuming that there are J total trials and denoting the causal filter state estimate by 

1
( )

| :[ | ; ]c
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i
k k kx E x N  and its variance by |k kw , and the smoothed state estimate by 

1
( )

| :[ | ; ]c
K

i
k K kx E x N  and its variance by |k Kw , the recursions in the E-step are given by the 

forward filter recursions42, 51, 55,  
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for , ,1k K  , where ( )c
kN j  is the spike event in trial j , and by the fixed interval smoothing 

recursions42, 51, 56, 
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for 1 0, ,k K    and with initial condition |K Kx and |K Kw from the filter recursions. We pick the 

initial conditions for the forward filter at each iteration of the EM algorithm as ( 1) ( )
0|0 0|
i i

Kx x  and 

( 1) ( )
0|0 0|
i i

Kw w  . Finally the state-space covariance algorithm gives all the terms needed for the M-

step to find ( 1)i  in (3) using these recursions42, 51, 57,  

 ||
2 ,k k K k KW w x    

for , ,0k K   and 

 1, 1| | 1| ,k k k k Kk K k KW A w x x      

for , 10, Kk   . The iterations of the EM algorithm are run until convergence. The estimated 

firing rate at any time bin , ,1k K   is in turn the smoothed estimate, |
ˆ ( | ) exp( )c i k Kk S x 

evaluated at the estimate of   in the final iteration. 

 

Repeating this procedure for all neurons under each sequence and fitting the inhomogeneous 

Poisson models results in a continuous smoothed estimate of the rate function for each neuron 

under any given sequence and over the entire length of a trial. Our implementation of the EM 

algorithm is similar to prior work42, 51 (for a comparison with PSTH see Fig. 5 and 

Supplementary Figs. 3, 4). 
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Testing the decoding performance 

 

Chance level accuracy  

 

For the sequence, the chance level accuracy is simply1/ S , where S is the number of sequences 

used. For targets, however, one has to take into account the correlation between the first and 

second targets when calculating the chance level accuracy. This is because depending on the 

number of sequences used in the decoding analysis, the first and second decoded targets may not 

be independent. In the case of 12 sequences, for example, since both targets cannot be at the 

same location, information about one also implies some information about the other. These 

correlation effects must therefore be taken into account when calculating the chance level 

accuracy of the targets.  

 

We define indicator functions for the first and second targets, denoted by 1I and 2I , that are 1 if 

the corresponding targets are decoded correctly and 0 otherwise. We show this analysis for the 

case when 12 sequences are used. In all other cases they can be found similarly. For 12 

sequences, using the total law of probability, the probability that the second target is decoded 

correctly is given by, 

 2 1 2 1 12 1( 1) ( 1| 1) ( 1) ( 1| 0) ( 0)p I p I I p I p I I p I         .  

Now if the first target is correctly decoded, the second target could be at one of three possible 

locations as the two targets cannot be at the same location. Hence the chance level accuracy in 

this case is given by 2 1( 1| 1) 1/ 3p I I   . By a similar argument, if the first target is decoded 

incorrectly, the chance level accuracy of the second target is 2 1( 1| 0) 2 / 9p I I   . Hence the 

chance level accuracy of the second target is given by 

 12

2 1
( 1)

9 9
chancep p I   , (4)  

and vice versa for the first target as the two targets are selected symmetrically in the choice of 

sequences. For example, in a session where we observe a first target accuracy of *p in our 

decoding analysis, the chance level accuracy for the second target is *
2 2 / 9 / 9chancep p   as 
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opposed to simply 1/ 4 . Note that if * 1/ 4p  , i.e., at chance level, then 2 1/ 4chancep   and also at 

chance level as expected.  

 

Random permutation test: Testing significance for the divergence in the amount of information 

held by each cell about the two targets 

 

To determine whether a significant divergence exists in the amount of information held by the 

premotor neurons about the two targets, we need to show that the absolute difference between 

the two target accuracies of each cell averaged across the population is significantly larger than 

that of a population with the same target accuracy values but with no structured relationship 

between each cell’s target accuracies. To find the distribution of this average absolute difference 

in such a population with no structure, we keep the accuracy values the same but randomly 

permute them within the population, and repeat this process 100,000 times. This removes any 

possible structure between the target accuracies of each cell and hence creates a null hypothesis 

distribution. We can then establish the significance of the divergence by comparing the average 

absolute difference of the target accuracies of the premotor neurons against this null distribution 

and calculate a P-value.  

 

To do so, we first correct for the correlation effect between the first and second target accuracy 

values, which is the byproduct of the choice of sequences used in the experimental design. Since 

the first and second targets cannot be at the same location within the set of 12 sequences, the 

accuracy of one target has a contribution (even though fairly small) to the accuracy of the other 

even if the neuronal activity is not encoding that target per se.  Hence we also need to remove 

this effect to see the true representation of a target by the neuronal activity, just as we take it into 

account in calculating the chance level accuracies. This means that we subtract from the first 

target accuracy value of each cell, the chance level contribution of that cell’s second target 

accuracy, or 1 1/ 4chanceP  , and vice versa. We then randomly permute these first target accuracy 

values among the cells while keeping their second target accuracy values the same, and repeat 

this process many times. This generates a new population each time with the same accuracy 

values but no pair-wise structure between the first and second target accuracies of each cell. For 

each new population, we compute the average difference and after repeating this many times, 
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find the distribution of this average difference. We then use this distribution to find whether the 

difference of the first and second target accuracies of the cells averaged over the premotor 

population is significantly different from a population with no structure (We find that the average 

divergence in the premotor population is significantly different from that of a population with no 

structure, with or without applying the correlation correction, P < 10-15). 

 

We corrected for the fairly small correlation effect between the first and second target accuracy 

values in the scatter plots of Fig. 6 and Supplementary Fig. 6 as explained for the random 

permutation test above. 

 
 
 
54. Cunningham, J. P., Yu, B. M., Shenoy, K. V. & Sahani, M. Inferring neural firing rates from 
spike trains using Gaussian processes. In: Advances in Neural Information Processing Systems 
20, (eds. Platt, J.,  Koller, D., Singer, Y. & Roweis, S.) 329–336 (MIT Press, Cambridge, MA, 
2008). 
 
55. Eden, U. T., Frank, L. M., Barbieri, R., Solo, V. & Brown, E. N. Dynamic analysis of neural 
encoding by point process adaptive filtering. Neural Comput. 16, 971–998 (2004). 
 
56. Brown, E. N., Frank, L. M., Tang, D., Quirk, M. C. & Wilson, M. A. A statistical paradigm 
for neural spike train decoding applied to position prediction from ensemble firing patterns of rat 
hippocampal place cells. J. Neurosci. 18, 7411–7425 (1998). 
 
57. Jong, P. D. & Mackinnon, M. J. Covariances for smoothed estimates in state space models. 
Biometrika 75, 601–602 (1988). 
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Supplementary Figure 1 Mean population decoding accuracy across all recorded sessions.  (a) 

Mean decoding accuracy for the population across all recorded sessions for the first target (red 

curve), second target (blue curve) and the full sequence (black curve). The figure has the same 

convention used in Fig. 2.    (b) Mean sequence decoding accuracy as a function of the time 

window length preceding the earliest “go” cue used in decoding. The black curve shows the 

mean population sequence decoding accuracy (out of 12 possibilities) across all sessions. Using 

an 800 ms window, the sequence decoding accuracy exceeds 95% of the maximum possible 

when using the neuronal activity from the start of second target presentation until the earliest 

“go” cue.  
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Supplementary Figure 2 Mean population decoding accuracy over time for all recorded 

sessions in monkey 1 (a) and monkey 2 (b).  The figure has the same convention used in Fig. 2. 

Across all standard sessions and during the 500 ms working memory period, the first target, 

second target, and sequence accuracies were 76 ± 12%, 60 ± 19%, and 48 ± 13% for the first 

monkey and 74 ± 11%, 43 ± 3%, and 36 ± 3% for the second monkey, respectively (mean ± s.d.).   
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Supplementary Figure 3 Example of a first (currently held) target selective neuron. The 

subfigure at the upper left corner shows the first and second target accuracies of the cell as a 

function of time into the trial. The vertical bars/lines and their timings follow the same 

convention as Fig. 2. In all other subfigures, each top panel corresponds to a different sequence 

of movements with each row illustrating the spiking activity during a single trial and the black 

dots indicating the spike times. Each bottom panel indicates the corresponding mean firing rate 

estimates using the expectation-maximization procedure (black curve) and the corresponding 

peristimulus time histogram (PSTH) (magenta curve).  The arrow indicates the working memory 

period. The subfigures in the same row correspond to sequences with the same first target 

location. The subfigures in the same column correspond to sequences with the same second 

target location. Note that repeated target locations were not used in the sequences and hence 

there are 3 subfigures per row/column.  
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Supplementary Figure 4 Example of a neuron selective for both targets. Figure has the same 

convention used in Supplementary Fig. 3. 
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Supplementary Figure 5 Decoding accuracies over time for three sample cells that were 

selective for the first target only (a), second target only (b), and both targets (c) during the 

working memory period.  Figure conventions are the same as in Fig. 2. 
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Supplementary Figure 6 Partitioning of the population during working memory. Scatter plot of 

the first and second target accuracies of the cells that significantly encoded at least one target 

during the working memory period. Statistical significance of the target accuracies was tested 

here at a stricter level (P < 0.001) than in Fig. 6. Red points indicate cells that significantly 

encoded only the first target and blue points indicate those that significantly encoded only the 

second target. At this statistical level, no cell had a significant accuracy for both targets. The 

inset indicates the proportion of cells that significantly encoded only the first or only the second 

target during the working memory period with the same coloring schemes from left to right. 	
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Supplementary Figure 7 Neural partitioning vs. sequence specific selectivity. The original 

scatter plot (Fig. 6) demonstrating the partitioning mechanism is shown on the left. On the right, 

cells that are selective to a single specific sequence (i.e., significantly change their firing rate in 

response to a single sequence) are colored with yellow (paired t-test, P < 0.05, FDR correction 

for 12 comparisons). We find that these sequence selective cells are few in number (10% of the 

cells) and are among the least informative cells (i.e., have low accuracies). Cells that show a 

significant change in firing rate from baseline for at least one specific sequence are colored in 

cyan. As evident, this analysis by itself demonstrates that the majority of the cells in the scatter 

plot display a change in firing rate for at least one sequence (as expected) but it does not reveal 

the population partitioning. The decoding analysis calculates decoding accuracy as a measure of 

information when considering all sequence combinations collectively. It also further 

disambiguates the amount of information held simultaneously about the first and second targets 

by each neuron and therefore reveals the partitioning mechanism.  
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Supplementary Figure 8 Conditional decoding accuracies. The conditional first target accuracy 

given the possible second target locations (i.e., U, R, D, L) and the conditional second target 

accuracy given the possible first target locations are shown for the population in a sample session 

(same session as in Fig. 2). The dotted lines indicate the 99% chance upper confidence bounds. 

Across all sessions we found no significant difference in decoding accuracy of the second target 

based on the location of the first target, and vice versa (repeated ANOVA, P > 0.15).	
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Supplementary Figure 9 Comparison of first target decoding accuracy for the population in 

interleaved and non-interleaved sessions.  In the interleaved dual-target/single-target session, 

target decoding accuracy on single-target trials is shown in red.  In the single-target only session, 

target decoding accuracy is shown in magenta. Each point on the curves indicates the decoding 

accuracy for the population over the preceding 500 ms window. Dotted lines indicate the 95% 

confidence bounds for each accuracy curve (rather than chance level). The red vertical bar 

indicates the time during which the (first) target was presented, and the vertical dotted line 

indicates the average time of the first “go” cue presentation onset. The arrow indicates the time 

point corresponding to the decoding accuracy of the preceding working memory period.  
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Supplementary Figure 10 Electrode recording sites for each of the two monkeys.  Top-view 

schematic of the electrode array positions.  Each array (circle) contains 32 electrode contracts.  

The bar in centimeters is referenced in relation to interaural antero-postero coordinates and 

midline medio-lateral coordinates.  Here, A is anterior, P posterior, M medial and L lateral.  In 

the left panel, from monkey 1, the white and gray circles indicate recordings from two separate 

hemispheres.  In the right panel, from monkey 2, the white circles indicate recordings from one 

hemisphere. 

 


