Name	Genotype	Reference/source
S. cerevisiae		
SEY6210	MATa leu2-3,112 ura3-52 his3-200 trp1-901	(Robinson et al., 1988)
	lys2-801 suc2-9	
BHY10	SEY6210 CPY-Invertase::LEU2 (pBHY11)	(Horazdovsky et al., 1994)
BY4742	MATa his3∆1 leu2∆0 lys2∆0 ura3∆0	ATCC
BY4742 $vps11\Delta$	BY4742; <i>vps11</i> Δ::KAN	Invitrogen
BY4742 vps16Δ	BY4742; <i>vps16</i> Δ::KAN	Invitrogen
BY4742 vps18Δ	BY4742; <i>vps18</i> Δ::KAN	Invitrogen
AMY1275	BY4742; <i>νps33</i> Δ::KAN	This work
BY4742 <i>vps39</i> Δ	BY4742; <i>vps39</i> Δ::KAN	Invitrogen
BY4742 vps41Δ	BY4742; <i>νps41</i> Δ::KAN	Invitrogen
BLY1	BHY10 <i>vps33</i> Δ::KAN	This work
BY4742 pep4 Δ	BY4742 <i>pep4</i> Δ:: <i>neo</i>	(Collins et al, 2007)
BLY2	BY4742 pep4Δ::neo vps33Δ::KAN	This work
BLY3	BHY10 VPS33-ttx-GFP _{A207K} :::NAT	This work
BLY4	BHY10 vps33 ^{D88K} -ttx-GFP _{A207K} ::NAT	This work
BLY5	BHY10 vps33 ^{R281A} -ttx-GFP _{A207K} ::NAT	This work
BLY6	BHY10 vps33 ^{G297V} -ttx-GFP _{A207K} ::NAT	This work
BLY7	BHY10 vps33 ^{D300G} -ttx-GFP _{A207K} ::NAT	This work

Table I. Strains and plasmids used in this study

Yeast Expression Plasmids

pRS416	URA3 CEN/ARSH4 Amp ^R	(Sikorski & Hieter, 1989)
pBL1	pRS416 VPS33pr::VPS33-ttx-GFP _{A207K}	This work
pBL2	pRS416 VPS33pr:::vps33 ^{L75P} -ttx-GFP _{A207K}	This work
pBL3	pRS416 VPS33pr:::vps33 ^{D88K} -ttx-GFP _{A207K}	This work
pBL4	pRS416 VPS33pr:::vps33 ^{1278N} -ttx-GFP _{A207K}	This work
pBL5	pRS416 VPS33pr:::vps33 ^{R281A} -ttx-GFP _{A207K}	This work
pBL6	pRS416 VPS33pr:::vps33 ^{G297V} -ttx-GFP _{A207K}	This work
pBL7	pRS416 VPS33pr:::vps33 ^{D300G} -ttx-GFP _{A207K}	This work
pBL8	pRS416 VPS33pr:::vps33 ^{D300E} -ttx-GFP _{A207K}	This work

pBL9	pRS416 VPS33pr:::vps33 ^{F305L} -ttx-GFP _{A207K}	This work
pBL10	pRS416 VPS33pr:::vps33 ^{T5531} -ttx-GFP _{A207K}	This work
pBL11	pRS416 VPS33pr:::vps33 ^{E653A} -ttx-GFP _{A207K}	This work

Bacterial Expression Plasmids

pHIS parallel1	pET22B- amp ^R GST-(tev)-	(Sheffield et al., 1999)
pGST parallel1	pGEX4T1- amp ^R GST-(tev)-	(Sheffield et al., 1999)
pRP1	pRSF- kan ^R His ₇ -MBP-(tev)-	This work
pBL12	pRSF- kan ^R His6-GFP _{A207K} -(tev)-	This work
pBL12	pRSF- kan ^R -(tev)-GST	This work
pBL13	pBL12- kan ^R SSO1(1-265)-(tev)-GST	This work
pBL14	pBL12- kan ^R VAM3 (1-264)-(tev)-GST	This work
pBL15	pBL12- kan ^R VAM3 _{Habc} (1-145)-(tev)-GST	This work
pBL16	pBL12- kan ^R VAM3 _{Linker} (116-186)-(tev)-GST	This work
pBL17	pBL12- kan ^R VAM3 _{SNARE} (182-264)-(tev)-GST	This work
-	pGST parallel1- amr ^R GST-Vti1 (1-194)	(Stroupe <i>et al.,</i> 2006)
AMB73	pGEX-KET- amp ^R GST-VAM7 (2-316)	(Merz <i>et al.</i> , 2004)
AMB74	pGEX-KET- amp ^R GST-VAM7 _{PX} (2-123)	(Merz <i>et al.</i> , 2004)
pBL18	pGST paralle1- amp ^R GST-(tev)-NYV1 (1-231)	This work
pBL19	pRP1- kan ^R His ₇ -MBP-(tev)-VTI1 (1-194)	This work
AMB225	pTYB3- amp ^R His6-Vam7 (1-316)	(Schwartz et al., 2009)
pBL20	pHIS paralle1- amp ^R His ₆ -(tev)-NYV1 (1-231)	This work
pBL21	pHIS paralle1- $amp^{R}His_{6}$ -(tev)-NYV1 ₅₄ (1-211)	This work
pBL22	pBL12- kan ^R His6-GFP _{A207K} -(tev)-Vam7 (190-316)	This work
pBL23	pGST paralle1- amp ^R GST-(tev)-Vam7 _{SNARE} (190-316)	This work
pBL24	pGST paralle1- <i>amp</i> ^R GST-(tev)-NYV1 _{SN4RE} (162-231)	This work
pBL25	pGST paralle1- <i>amp</i> ^R GST-(tev)-SED5 _{SNARE} (170-319)	This work
pBL26	pHIS paralle1- <i>amp^R His₆-(tev)-BOS1 (1-222)</i>	This work

pBL27	pHIS paralle1- <i>amp^R His₆-(tev)-SE22 (1-188)</i>	This work
pSN358	pET14b- amp ^R His ₆ -BET1 (1-123)	(Stone <i>et al.,</i> 1997)
pBL28	pGST paralle1- amp ^R GST-(tev)-YKT6 (1-195)	This work
pBL29	pGST paralle1- amp ^R GST-(tev)-SE22 (1-188)	This work
pBL30	pHIS paralle1- amp ^R His ₆ -(tev)-YKT6 (1-195)	This work
pBL31	pBL17- kan ^R VAM3 _{SNARE(-9Δ)} (192-264)-(tev)-GST	This work
pBL32	pBL17- kan ^R VAM3 _{SNARE(-7A)} (199-264)-(tev)-GST	This work
pBL33	pBL17- kan ^R VAM3 _{SNARE(-5A)} (206-264)-(tev)-GST	This work
pBL34	pBL17- <i>kan^R VAM3_{SNARE(3A)} (213-264)-(tev)-GST</i>	This work
pBL35	pBL17- <i>kan^R VAM3_{SNARE(-1A)} (220-264)-(tev)-GST</i>	This work
pBL36	pBL17- $kan^{R} VAM3_{SNARE(+1\Delta)}$ (227-264)-(tev)-GST	This work
pBL37	pBL17- $kan^{R} VAM3_{SNARE(+3\Delta)}$ (234-264)-(tev)-GST	This work
pBL38	pBL17- kan ^R VAM3 _{SNARE(+5Δ)} (241-264)-(tev)-GST	This work
pBL39	pBL17- kan ^R SSO1 _{SNARE} (184-265)-(tev)-GST	This work
pBL40	pGST paralle1- <i>amp^RGST-(tev)- VAM3_{SNARE} (182-264)</i>	This work
pBL41	pBL40- $amp^{R}GST$ -(tev)- $VAM3_{SNARE(+9\Delta)}$ (182-257)	This work
pBL42	pBL40- $amp^{R}GST$ -(tev)- $VAM3_{SNARE(+7\Delta)}$ (182-250)	This work
pBL43	pBL40- $amp^{R}GST$ -(tev)- $VAM3_{SNARE(+5\Delta)}$ (182-243)	This work
pBL44	pBL40- $amp^{R}GST$ -(tev)- $VAM3_{SNARE(+3\Delta)}$ (182-236)	This work
pBL43	pBL40- $amp^{R}GST$ -(tev)- $VAM3_{SNARE(-1\Delta)}$ (182-222)	This work
pBL43	pBL40- <i>amp</i> ^R GST-(<i>tev</i>)- VAM3 _{SNARE(-5Δ)} (182-208)	This work
pBL44	pBL18- $amp^{R}GST$ -(tev)-NYV1 _(+9\Delta) (1-225)	This work
pBL45	pBL18- $amp^{R}GST$ -(tev)-NYV1 _{+7Δ)} (1-218)	This work
pBL46	pBL18- $amp^{R}GST$ -(tev)-NYV1 _(+5\Delta) (1-211)	This work
pBL47	pBL18- $amp^{R}GST$ -(tev)-NYV1 _(+5\Delta) (1-211)	This work
pBL47	pBL12- kan ^R PEP12 (1-268)-(tev)-GST	This work
pBL48	pBL12- kan ^R SED5 (1-319)-(tev)-GST	This work

SUPPLEMENTAL FIGURE LEGENDS

Figure S1. Vps11 and Vps18 required for interaction between HOPS and the Vam3-H_{abc}. As in Figure 1B, the cytoplasmic domain of Vam3 (1-264), H_{abc} domain (1-145), linker domain (116-186), and SNARE domain (182-264) were expressed as C-terminal GST fusions. GST and the exoctyic Qa SNARE, Sso1-GST (1-265), were negative controls. Coomassie stained gel of the of GST-fusions proteins shown. ~450 OD_{600 nm} × mL of yeast detergent lysate were incubated with resins for 2 h at 4° C, washed three times with binding buffer, eluted, and samples were analyzed by SDS-PAGE and western blot (WB) for Vps11 or Vps18 and Vps33.

Figure S2. Vps33 binds vacuole Qa, Qc, and R SNAREs and the quaternary SNARE complex. As in Figure 2A, the C-terminal GST fusions were made to the cytoplasmic domains of Vam3, Vti1, Vam7, and Nyv1. SNARE complexes were formed of cytoplasmic domain of Vam3. Sso1 was used as a negative control. ~30 μ g (1 μ M) of each GST-fusion protein were incubated with 10.5 μ g (~0.25 μ M) purified Vps33 for 2 h at 30° C, washed three times with binding buffer, and eluted with binding buffer supplemented with 10mM reduced glutathione, pH 7.4. Samples were analyzed by SDS-PAGE and western blot for Vps33.

Figure S3. Vps33 binds Pep12. (A) For pulldowns on Vam3 or Pep12, the cytoplasmic domain of Vam3 (1-264) or Pep12 (1-268) were expressed as C-terminal GST fusions. GST and the exoctyic Qa SNARE, Sso1-GST (1-265), were negative controls. Coomassie stained gel of the of GST-fusions proteins shown. ~450 OD_{600 nm} × mL of yeast detergent lysate were incubated with resins for 2 h at 4° C, washed three times with binding buffer, eluted, and samples were analyzed by SDS-PAGE and western blot (WB) for Vps41, Vps11 and Vps33. (B) The cytoplasmic domains of the Vam3 and Pep12 were fused to GST. C-terminal GST-fusions of Sed5 (1-319), Sso1 (1-265), and GST were used as negative controls. 1 µg of purified Vps33 was incubated resins pre-bound to GST-fusion proteins for 2 h at 4° C. Resins were washed, and bound fractions were eluted and analyzed by SDS-PAGE and western blot for Vps33.

Figure S4. Vps33 binds Vam7 through its SNARE domain. GST-fusions to the Vam7 cytoplasmic domain, Vam7_{PX}, Vam7_{SNARE}, and the vacuole SNARE complex were used to pulldown purified Vps33. Sec22 and GST were used as negative controls. SNARE complexes were formed using purified Vam3-GST (1-264) bound to GSH resin and incubated overnight at 4° C with a five-fold excess of purified His₇-MBP-Vti1 (1-194), His₆-GFP-Vam7_{SNARE} (190-316), and His₆-Nyv1 (1-231). 10.5 µg of purified Vps33 was incubated for 2 h at 30° C, washed three times with binding buffer, and eluted. Samples were separated by SDS-PAGE and analyzed by western blot for Vps33.

Figure S5. Characterization of chromosomal integrations of Vps33 point mutations. (A) Cultures grown overnight at 24° C were plated onto SC-URA, YPD, or YPD+5mM ZnCl₂ as 20-fold dilutions from 1.0 $OD_{600 \text{ nm}} \times \text{mL}$. Plates were incubated for 48 h and imaged. (B) Strains were grown in minimal media to late mid-log phase, and vacuoles were imaged by fluorescence microscopy after labeling with FM4-64.

Supplemental One

Supplemental Two

Supplemental Three

A) Input: Cell Lysate

B) Input: Purified Vps33

Supplemental Four

Coomassie

Supplemental Five

B)

	FM4-64	Vps33p-GFP	Merge
WT	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		8 8 8 0 8 8 9 0 8 9 9
D88K	Q. O.*		0. O.
R281A	ф. Ф.	0°	\$0°
G297V	ି କର୍ଚ୍ଚ କର୍ଚ୍ଚ	° • 8°	ୢୄୄୄୄୄ
D300G	° . O	0.00	° ° ©